
M3I - Fifth Framework Project 11429 D3 PtII - Price Reaction Design

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Version 1.0 Page 1 of 24

Market Mana ged Multi-ser vice Internet

M3I
European Fifth Framework Project IST-1999-11429

Deliverab le 3
Pricing Mec hanisms Pt II

Price Reaction Design

The M3I Consortium

Hewlett-Packard Ltd, Bristol UK (Coordinator)
BT Research, Ipswich GB
Eidgenössische Technische Hochschule, Zürich CH
Darmstadt University of Technology, Darmstadt DE
Telenor, Oslo N
Athens University of Economics and Business, Athens GR

© Copyright 2000, the Members of the M3I Consortium

For more information on this document or the M3I project,
please contact:

Hewlett-Packard Ltd,
European Projects Office,
Filton Road,
Stoke Gifford,
BRISTOL BS34 8QZ,
UK
Phone: (+44) 117-312-8631
Fax: (+44) 117-312-9285
E-mail: sandy_johnstone@hp.com

D3 PtII - Price Reaction Design M3I - Fifth Framework Project 11429

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Page 2 of 24 Version 1.0

Document Control

Title: Pricing Mechanisms PtII; Price Reaction Design

Type: Public Deliverable

Editor: Bob Briscoe

E-mail: Bob.Briscoe@bt.com

Origin: BT Research

Wk Package: 5.3

Doc ID: pr_react_des_1_0.fm

AMENDMENT HISTORY

Legal Notices
The information in this document is subject to change without notice.
The Members of the M3I Consortium make no warranty of any kind with regard to this document, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Members
of the M3I Consortium shall not be held liable for errors contained herein or direct, indirect, special, incidental
or consequential damages in connection with the furnishing, performance, or use of this material.

Version Date Author Description/Comments

V 0.0 7 May 2000 Bob Briscoe First draft

V 0.1 9 Jul 2000 Bob Briscoe Added AUEB Intelligent Agent discussion;
Updated for consistency with M3I Architecture;
Added explanation of types of reactoin table;
Added comments following review at modelling
workshop.

V 1.0 10 Jul 2000 Bob Briscoe First Issue

M3I - Fifth Framework Project 11429 D3 PtII - Price Reaction Design

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Version 1.0 Page 3 of 24

Table of Contents

(This page intentionally blank)

D3 PtII - Price Reaction Design M3I - Fifth Framework Project 11429

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Page 4 of 24 Version 1.0

1 Introduction
Some applications only make sense within a very tightly bounded range of quality of service
(QoS) from the network. Others are far more adaptive. For the former type of application, it
is relatively easy to determine their QoS requirements. This document primarily concerns
how to determine the QoS requirement of the latter type of application, given a tariff for
network quality of service. We also cover how an application might describe its policy for
determining QoS with respect to price. This description can then be used as policy for
another entity controlling QoS, whether a middleware function on the same host, or a
remote application being communicated with through a protocol.

The RSVP protocol [7] was developed to succinctly describe QoS requirements and
transport them to routers. Therefore, it makes sense to re-use the content of the protocol,
whether or not the transport features are required to communicate with routers on the path
used by the application. The rest of the document focuses on how to determine such a QoS
requirement given pricing and the new protocol elements that will be required to describe
price sensitivity to QoS, rather than just QoS itself.

After giving further motivation for this work in Section 2, the body of this document is
essentially in two parts. The first deals with an overview of what QoS control policies might
look like, how they might be created, what type of information they contain, how they are
adapted, how they are approximated, etc. The second half presents a software framework
to allow QoS control policies to be applied to traffic flows in the Internet, allowing flexibility
at the same time as efficiency. The document ends by enumerating limitations and further
work, then drawing conclusions.

2 Motivation
A strong requirement of network service is to offer a predictable service at predictable
charges [2], [3]. However, this assumes the customer (or the application she is using) can
predict her own needs, as it is difficult to guarantee a predictable response to a vague
request. Proposed QoS solutions favour applications and organisations that can both
predict what traffic they will send or receive and predict where they intend to send it to, or
receive it from. Where prediction is difficult, it is typical to simply leave a margin of error by
over-estimating future demands. Current attempts to deploy the differentiated services
(diffserv) architecture [4] take this pragmatic approach, often using prediction periods of
weeks or months. However, in a competitive market, if over-estimation is known to be the
rule, providers will tend not to deploy as much resource as customers predict they will need,
instead over-booking as requirements are aggregated in order to cut costs at the risk of
occasionally failing to be able to meet demand. Also, of course, customer over-estimates
may occasionally be insufficient.

Although the integrated services architecture (intserv) [5] requires prediction of QoS
requirements per-flow, rather than per customer contract, one can still see the same
pressures at work. To illustrate the point, one only has to consider what reservation would
be made by a participant in a network game or distributed simulation [8]. The game may
involve long periods with not much network activity, followed by sudden flurries of data, all
of which requires low latency delivery. Further, it may be impossible to predict which hosts
will be interacted with until it is too late. Thus, any reservation made by participants is likely
to either be far too optimistic, or far too pessimistic. Further, there will be pressure for over-
booking by the provider, if the actual usage of many such reservations is being monitored.

M3I - Fifth Framework Project 11429 D3 PtII - Price Reaction Design

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Version 1.0 Page 5 of 24

Worse still, network providers have to predict the likely future level of customer predictions
when sizing their physical network installations. Clearly, there is margin for error here too.

An approach that the M3I project [6] is interested in investigating is to supplement
prediction of QoS with flexibility in the price domain. Thus, when predictions turn out to
have been wrong, the price can be raised to prioritise available capacity for those most
willing to pay. Once this approach is available to supplement prediction, the M3I project is
also interested to investigate how far dynamic pricing can replace the need for prediction.
The project plans to investigate whether it is possible to simultaneously satisfy a customer’s
demand for price stability by interposing some form of risk broking function or role. It is also
interesting to speculate what new applications may be encouraged by a network that offers
service to customers without the need for prediction.

Given regular variation in price might be used to signal congestion, it may become
impractical to separate the price reaction function from the QoS control function. This would
require continual messages between the two in order to continually adapt the QoS
requirement as the price varied. This motivates the need for an application to be able to
describe how it would adapt QoS as the price varies. This price reaction policy can then be
used within the QoS control function.

It may be possible to describe this QoS control policy to routers on the path but it is not
clear how a customer can trust its network provider to execute her own buying policy. It
seems more feasible for QoS control to be moved closer to the customer, perhaps on the
customer host, or in a proxy of the customer. These are respectively the dynamic price
handler (DPH) and the guaranteed service provider (GSP) scenarios referred to in the M3I
requirements specification [2]). These approaches have the disadvantage that price
feedback from within the network is delayed, compared to if it could be acted on at the point
of congestion (the router). However, among their advantages are greater scope for
innovation without requiring standardisation and a removal of dependence on the route
through the network (if routers aren’t managing QoS control there is no longer a need to
identify which routers are within the scope of the communication). This frees the network to
re-route if advantageous. The pros and cons of all three approaches will be weighed in the
M3I project.

3 QoS control policies and price reaction policies
We propose that price-based QoS control should be separated into two parts: price
reaction and QoS control. The aim of the price reaction function is to produce a policy for
the QoS controller. The Price reaction function is a high level, flexible module that must be
able to adapt to novel provider tariffs and out of the ordinary user requirements. The QoS
controller is separated out from this, as it must directly control the flow of network traffic and
therefore must sit low in the communications stack, preferably in the kernel (or equivalent)
of the operating system. Thus, the QoS controller will most likely be fairly standardised so
that there are likely to only be a few types of QoS control policy. For instance, there may be
one type like a token bucket which tends to keep the rate around a mean. Another type
might control an adaptive transmission window, like TCP’s, but perhaps allowing different
multipliers in the rates of increase and decrease of the window. A QoS control policy is
simply the set of parameters that controls one of these algorithms.

We will discuss price reaction policies later in this section. But first, we must work back from
the goal, i.e. the end result of the QoS controller’s behaviour that the price reaction function
ultimately controls. The output from a QoS controller is either a specification of quality of

D3 PtII - Price Reaction Design M3I - Fifth Framework Project 11429

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Page 6 of 24 Version 1.0

service, or actual control of the rate of a flow of traffic. Which type of control is exerted
depends solely on the type of input to the QoS controller (polymorphism). This is necessary
because QoS signalling on the Internet is carried in packets that must be distinguished from
regular data packets.

Figure 1b)i) shows the behaviour o f a QoS controller if the input is a QoS specification, Iq0
- the output is another QoS specification, Iq1, that has been set by the QoS control policy,
Pq. Figure 1b)ii) shows the behaviour if the input is a stream of packets, Ip - the output is a
modified stream of packets, that conforms to the QoS policy of the controller, Pq. Figure 1a)
shows the abstract case of invocations of network service, I, being processed by the QoS
controller, irrespective of their type, which gives the high level view of both behaviours

.

Figure 1: QoS controller polymorphism

Having identified what a QoS control policy controls, we must now clarify that, in general, a
QoS control policy is multi-dimensional, as also discussed in Shenker’s seminal work [1].

3.1 QoS mapping
A QoS control policy has to embody a mapping between user or application conceptions of
QoS and network conceptions (e.g. RSVP takes a network view of QoS, being, effectively,
the parameters required to set up a token bucket, which is the typical router mechanism
used to police QoS). We believe that useful intermediary concepts from an application
programmer’s point of view will be:
• bandwidth (x)
• burstiness (dx/dt)
• responsiveness (r = 1/latency)
• jitter (dr/dt)
• delivery probability (d = 1 - drop_probability)

Note that we have transformed two of the classic measures of QoS (latency and drop-
probability) to ensure all our measures increase as QoS gets ‘better’.

M3I - Fifth Framework Project 11429 D3 PtII - Price Reaction Design

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Version 1.0 Page 7 of 24

The notion of effective bandwidth [9] is used to embody both bandwidth and burstiness, as
it provides a measure of both peak and mean bandwidth requirements. However, it still fails
to encompass all the above measures. An opposite problem is that all the above measures
are not independent. Introducing resource to improve one (e.g. bandwidth) improves others
(e.g. delivery probability, responsiveness and usually jitter). However, there is not a linear
relation between the improvements, hence the necessity to consider all these dimensions.

The nature of the mapping between user and network notions of QoS is for further
investigation, primarily through a review of the likely copious literature in this area. We rule
wider aspects of network QoS, such as availability, out of scope.

3.2 Appr oaches to price contr olled QoS
Assuming we are now clear on how we expect to control QoS, we can now venture into how
a QoS control policy might be generated from pricing and charging information.

In the case of dynamic pricing for network services there is a strong need for automated
mechanisms that will be able to handle the varying prices on behalf of customers and ‘buy’
the desired amount of resources according to the user's utility function. The knowledge of
the utility function of the customer would be adequate for such a mechanism to make the
optimal choices, but it is extremely difficult to be expressed in a simple and consistent way.
It depends on her elasticity, her total budget, her perception of QoS, and various emotional
and unpredicted factors that are strongly related to her personality and the specific task. It
is impossible for a price reaction mechanism to know, in the case of a video on demand
(VoD) service for example, what is the favourite scene of a user, and if, for instance, there is
congestion during that scene, whether it should offer a lot of money relative to the rest of
the scenes in order to achieve the best possible QoS.

Current research activity on the design of automated price reaction mechanisms is focused
on the approximation of customer’s utility function based mainly on some user input
(budget, QoS sensitivity, recorded user choices) and the specific application characteristics.
The general model is that the price reaction function ‘listens’ to the varying prices per unit of
network resources used (p) and the QoS received (taking one dimension, bandwidth x) and
decides either the new willingness to pay per unit of time (w) of the customer or the
resources (QoS) that will be requested each time (x), where w = p*x.

Network services, as most of the services in real life, are constituted of several levels, each
of which may be differently priced, but the user is always interested in the whole service
delivered. In the case of the Internet, the basic service offered by the network is the delivery
of packets. Above that, many services could be offered in terms of a flow, a collection of
flows, etc. The different levels of a service’s provision could be mapped to the
corresponding utility acquired by customers. So according to service levels, as an initial
approximation we could identify two basic levels of customer utility for the network service
although are undoubtedly more. The first, short-term level corresponds to the utility that the
customer acquires from the volume of data received (bandwidth) per unit of time. The
second, longer-term, level of utility corresponds to the overall utility that a user obtains with
the termination of a flow (e.g. a video stream). Of course there could be even more levels as
for example the utility of the overall QoS received by a number of flows (e.g. a video
conference), etc.

Taking the utility of bandwidth first, as we stated in the introduction, the quality requirements
of some applications are very insensitive to the price of the quality of the network service
(QoS), while others are relatively sensitive. One can characterise the utility function with

D3 PtII - Price Reaction Design M3I - Fifth Framework Project 11429

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Page 8 of 24 Version 1.0

respect to QoS of any user of a price insensitive application as close to a step function [1]
(probably with slightly rounded off corners). On the other hand, adaptive applications and
tasks can be achieved with a broad range of QoS. They therefore typically have a more
gradually increasing utility function, although probably still generally sigmoid in shape with a
working range of QoS over which they are most sensitive (the marginal utility is greatest).
See Figure 2 for some examples. Thus, determination of a QoS specification for non-
adaptive applications is straightforward, while that of an adaptive application is more
involved.

A number of approaches to the problem of determining a QoS specification from the price
of bandwidth have been proposed:
• An approach targeted at non-adaptive applications, based on per session sharing of a

communications budget
• Approaches targeted at the adaptive application space, based around the theoretical

ideal that could be attained if the customer’s utility function for QoS were known:
♦ A configurable enterprise agent that creates an approximation of the utility function

from the configuration
♦ A variation on the above, where the configuration can be created using a more

declarative approach
♦ A intelligent agent that learns an approximation of the utility function

These approaches therefore cover a spectrum starting from the prescriptive, moving to the
declarative, and ultimately, a learning approach.

3.2.1 Non-adaptive applications

The simpler case implemented as ‘QoteS’ [15] is where the input consists of:
• a fixed QoS specification
• the tariff for such a QoS specification
• a budget to achieve the desired QoS
• a policy setting whether cost or quality is paramount if both requirements cannot be

achieved simultaneously

In this base case, if requirements conflict but QoS is paramount, the user is asked to
confirm it is OK to exceed the budget. If, on the other hand, budget is paramount, the QoS
is degraded pro-rata to fit the budget. In the QoteS implementation, QoS varies slowly in
response to changing cost and excess or deficit budget is traded off during the adaptation
using an additive increase, multiplicative decrease algorithm internally. Cost might change
due to changing price for reserved capacity, or due to variation in traffic volume under the
reservation if volume is a chargeable parameter. This will be the case if the ‘abc’ tariff is
applied [9] (Ch. 2), so-called because charge = aT +bV +c, where a, b and c are constants, T
is the duration of the QoS reservation and V is the volume of traffic.

3.2.2 Adaptive applications

A more sophisticated (indeed idealistic) set of policy inputs would allow required QoS to be
optimised with respect to the utility function of the user. This would require the following
inputs:
• a set (vector) of utility functions, each with respect to a dimension, i, of QoS, U([Qi])
• the equivalent vector of prices for each QoS dimension, [pi]
Suchinputsareshown in Figure2, leadingto anoutputspecificationof QoS,[Qi]. Herethecurrentpriceof theQoSdimensionin

questionis assumedlinear, andthebalancebetweenutility andchargeis optimisedat thepoint wherethemarginal utility matches

the price [10].

M3I - Fifth Framework Project 11429 D3 PtII - Price Reaction Design

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Version 1.0 Page 9 of 24

Figure 2: Inside QoS control policies

One step higher still would be to take the declarative, task-oriented approach, simply
describing the task at hand (context) and enable this to lead to a QoS control policy
(perhaps by looking it up in some directory of previously stored QoS control policies).
Having retrieved one (or failing that been presented with an interface to define or refine
one), this could then form the input to one of the previous two cases.

However, such approaches are (probably unattainable) ideals. In practice, modelling an
inherently human characteristic like price sensitivity to QoS is a very inexact science. It
would be overkill to build software to support such an exact model of such an inexact reality.
Therefore one of the main goals of the work is to define pragmatic approximations and
show that they are reasonable. We believe we have the following scope for approximations:
• prioritisation of multiple quality dimensions
• definition of the context of the task at hand
• characterisation of each utility function
• re-use of similar utility functions

Firstly, although Figure 2 shows QoS with multiple dimensions, we conjecture that, for any
one task, one dimension will typically dominate price sensitivity, while the others can
effectively be considered fixed

Secondly, there is good evidence that QoS price sensitivity is task rather than application
specific [3], but there are clearly a large, if not infinite number of possible types of task.
Therefore, in practice, whenever a QoS control policy isn’t available or known for a certain
task, it would seem reasonable to find a closest match as long as the user can intervene to
tailor a new policy to the task in hand if the one chosen isn’t appropriate. BT’s first attempts
to implement such a directory are shown at the top left of Figure 3, where hierarchies of
services, users, applications and tasks allow a task to inherit its policy from the closest
parent in the hierarchy, as highlighted bottom left of Figure 3.

Thirdly, we need a technique to approximate to the utility curve for any particular task. In
this document we present one conjectured extension of an existing approach and another
existing approach that will be used and evaluated in this project.
• ‘QoteS’ [17], shown in Figure 3, is conjectured to be able to estimate a set of utility

fitness curves categorized according to the application selected and user configured
bounds (budget and QoS).

D3 PtII - Price Reaction Design M3I - Fifth Framework Project 11429

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Page 10 of 24 Version 1.0

• The ‘Intelligent Agent’ [18], estimates the short-term utility mentioned above based on
observations of user choices.

QoteS

Figure 3: Setting QoS control policy

The bottom right hand side of Figure 3 shows how we might allow a customer to
characterise her utility function underneath the more familiar user interface elements shown
at the top right of Figure 3. This is a graphically edited adaptation of the real QoteS user
interface built for the earlier, non-adaptive case. The top slider in Figure 3 allows the
customer to set the maximum she is willing to pay for any QoS for a particular task context.
The bottom sliders allow her to set both the minimum QoS acceptable for the task and the
target QoS she would expect to be happy with. The graph bottom right of Figure 3 shows
these settings as three solid straight lines. The imputed utility curve is initially assumed to
be a symmetric sigmoid curve about the target QoS, perhaps modelled on a cumulative
normal distribution curve. The shape of the curve is then tied down by three points and the
two asymptotes by making assumptions on the number of ‘standard deviations’ away from
the ‘mean’ that the utility crosses the minimum QoS bound. The lower point is the
intersection of the minimum QoS and some proportion of the maximum utility (say the 5
percentile). The upper point is the intersection between the 95 percentile (say) and an
assumed upper bound of high QoS sensitivity equidistant from the target QoS to the lower
bound, but above it. It is further assumed that, if these assumptions prove incorrect, the
customer will be able to conceptualise how to adjust the sliders incrementally to achieve the
desired effect.

M3I - Fifth Framework Project 11429 D3 PtII - Price Reaction Design

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Version 1.0 Page 11 of 24

Intellig ent Ag ent

Figure 4 shows the demand curve and the algorithm that the Intelligent agent uses to
construct it, in order to estimate the utility function.

Figure 4: Intelligent agent algorithm

The Intelligent Agent records the points (w, x), which correspond to the user's choices under
different network states (different prices per unit of bandwidth, where price p = w/x). After
having collected sufficient number of points, it fits a decreasing curve in the p,x axis
applying antitone regression (Figure 5) assuming concavity of the utility function u(x).

Figure 5: Filtering out ‘noise’ from measurements

In [18] it is shown how non-concave utility functions could be approximated by concave
ones extending the applicability of the Intelligent Agent to non-concave utility functions as
well.

Intelligent Agent was designed and implemented in an ATM context (for priced ABR
connections) but it could easily be applied to elastic services in general, such as TCP/IP.

It replaces the user in choosing the willingness-to-pay, adaptively to the network state
(which is expressed by the corresponding price per unit).

Each user is assumed to select his willingness-to-pay so as to maximize his net benefit,
namely the difference of the utility acquired by the QoS received minus the willingness-to-
pay. The user observes QoS (e.g. video quality), ‘evaluates’ utility, and adjusts w until she is

D3 PtII - Price Reaction Design M3I - Fifth Framework Project 11429

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Page 12 of 24 Version 1.0

satisfied. Intelligent Agent records the corresponding points (measuring the bandwidth x
received) until a sufficient number of points are recorded.

Simulations have shown that the Intelligent Agent works very close to the optimal choices
but the fact that it only takes into account the short-scale aspects of user's utility poses
some limitations to its use in a ‘real’ environment where users value the long-term aspects
of utility much more highly than the short-term ones.

We now return to the fourth and final item in our list of possible approximations.

Fourthly, we conjecture that as budget varies an individual’s utility curve will merely vary in
scale, not shape for a certain task. Further we conjecture that the remaining budget
available for communications will scale the utility curve in a predictable fashion. Indeed, it is
likely that the utilities of different people for the same task will be similar, but scaled by
individual wealth. If true this would allow default characterisations of utility curves to be
deployed with applications, which could then simply be scaled to the declared
communications budget of the user.

Figure 6: Conjectured effect of wealth on utility

Further we conjecture that relative wealth of an individual will primarily scale their utility
vertically (Figure 6). In effect, increasing wealth or budget, simply scales the value the
individual puts on money. However, there is likely to be a small effect in the QoS axis, where
a richer individual can afford to be more discerning in their quality choices. The figure
shows how we assume the shapes of two utility curves scale. They only differ in terms of
the individual’s wealth. The curve is conjectured to move mostly downwards but also slightly
to the left as wealth decreases. The arrows join points of equal slope on the curves,
representing equal price sensitivity to QoS (marginal utility wrt. quality). The point is that,
once a utility curves for a task has its shape defined, we expect it to be relatively easy to
extend this to a family of utility curves for related tasks and individuals in systematic ways.

In this way, we expect that it will also be possible to systematically infer a utility curve in one
context, from that in another. For instance, if a volume discount is promised to a group on
condition that a target spend is reached, it should be possible to estimate the utility curve
for the context where the discount is reached and for that where it isn’t. Then all that is
necessary in terms of group communications is to occasionally be advised of the probability
that the group will reach the target, rather than all sharing detailed usage statistics.

3.2.3 Further work

Combine the tw o appr oaches

The fact that the Intelligent Agent can adapt its learned utility curve according to new-
recorded pairs, gives us the intuition to combine the two approaches described for

M3I - Fifth Framework Project 11429 D3 PtII - Price Reaction Design

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Version 1.0 Page 13 of 24

estimating the utility function. The new agent could make its first decisions according to the
pre-computed curve fitness for the specific application with the budget and QoS constraints
set by the user for the specific task (QoteS) and user could help the adaptation of pre-
computed utility curves towards his own, ‘correcting’ the agent choices instead of starting
from scratch. The fact that the Intelligent Agent must first record a significant number of
user choices makes it somehow difficult to be used by inexperienced users.

Application specific intellig ence

Another interesting feature that one could add to the price reaction algorithm is the
knowledge of some specific application characteristics that may ‘help’ the agent in order to
make the best choices concerning the long-term aspects of utility. For example, for a VoD
application, the price reaction algorithm could take into account the assumption that users
prefer to have a single long degradation of video quality rather than many short ones.
Having such information, a price reaction algorithm could - in case of congestion and the
need to allow quality degradation (because for example the price was too high) - keep for
some time the low quality situation in order to ‘save’ some money for future ‘difficult’
situations.

Effectively such a feature would be equivalent to giving the user control over the setting of
the kappa time constant in the feedback equations. QoteS has a user interface element to
vary the frequency with which agent calculations are updated, which could form the basis of
this setting

Assumptions about the future

The most challenging research area in the field of price reaction mechanisms is the ability
to predict future situations concerning the network state (price, congestion) and the
application behaviour (bursts, etc.).

This knowledge will enable the agent to take into account long-term aspects of utility in a
more efficient way. For example, an agent having the information that a period of high
prices is always followed by a period of low ones, could avoid being conservative in the
‘peak’ periods, as far as the budget is concerned, and allow some ‘over-spending’ with the
hope that later it will make up for it.

In order to make such assumptions about the future one should identify the crucial events
that are involved in the decision making of the price reaction algorithm and calculate the
possibility that they will occur in the future based on past observations (the longer the past
experience the more the confidence in the predictions made).

D3 PtII - Price Reaction Design M3I - Fifth Framework Project 11429

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Page 14 of 24 Version 1.0

4 Types of reaction
A QoS control policy should implicitly clarify the type of reaction required by a QoS
controller. This should be inferable from whichever QoS dimension is dominant. Different
types of reaction are given in Table 1.

There are two main classes of reaction, depending on the application (first column). Either
the volume of data to be transmitted must be preserved, or it can be reduced in the
presence of congestion. The types of reaction available also depend on where the QoS
controller is in the data path: whether sender or receiver or whether somewhere in between
acting on behalf of either, or the network itself. Each of the second to last columns shows
what choices of reaction are available to the different parties potentially present on a path.
Each row represents a consistent set of reactions which will work together to produce the
desired change in QoS:
1 Any party can absorb data into a buffer for at least a short while to sit out temporary

congestion conditions. Even the receiver can do this if the host processor or disk is
‘congested’. Of course the receiver also has to feed back some indication that a reaction
is necessary. Delay of this feedback should cause the sender to slow down. The best
place to delay data is at the sender, which can stretch all the data that must be sent over
a longer time period. A typical application of this case is a file transfer.

2 The sender can delay sending future data if it is receiving congestion marking feedback,
instead of delayed acknowledgement as in the previous case.

3 If the network or sender proxy has to drop a packet, the parties downstream can
feedback an indication that data is missing. The sender then has to re-transmit, as all
data must be preserved in this category. Note, we use the term ‘nack’ for negative
acknowledgement. Strictly, this has a specific meaning where a nack is only sent when
data is missing. We use the wider meaning to include not sending an acknowledgement,
or acknowledging the next data received to imply there is a gap.

4 If it is legitimate not to receive all sent data, a receiver can simply not feedback anything
if sufficient but not all data has arrived. This is a typical case used for many real-time
Internet applications (but with longer-term feedback of receiver reports to cause longer
term adaptation).

5 As with network marking above, this case is identical, except the sender can reduce the
amount of data it sends, typically by using a lower quality encoding of a real-time
stream.

data volume sender
sender
proxy

network
receiver
proxy

receiver

preserve delay buffer buffer buffer buffer/f/b

delay mark mark f/b mark f/b mark

re-xmt drop drop f/b nack f/b nack

reduce - drop drop suppress
nack

suppress
nack

recode mark mark f/b mark f/b mark

recode drop drop f/b nack f/b nack

- - (f/b nack) f/b drop layer f/b drop layer

Table 1: Types of QoS control reaction

M3I - Fifth Framework Project 11429 D3 PtII - Price Reaction Design

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Version 1.0 Page 15 of 24

6 This case is similar to the previous one, except drop is necessary to indicate congestion,
instead of marking.

7 The final case is only possible with IP multicast. The sender side need do nothing
except always send data in ‘layers’ that can be re-constituted at the receiver, the higher
layers cumulatively adding more quality. If each layer is sent to a different multicast
address (channel), individual receivers can ‘tune’ in or out of channels depending on the
congestion each experiences on their own leg of the multicast tree. The term ‘drop layer’
is used to imply ‘tuning out’ of a ‘channel’.

In all cases, the protocol agreed makes explicit what the sender should do when sent
congestion feedback by the receiver. However, it must always be remembered that the
sender always has the option to react in its own best interest, rather than to keep to the
protocol.

5 Example scenarios
Having discussed what should be in QoS control policies and in price reaction policies, and
the various ways QoS can be controlled, we now move on to present a framework within
which software to implement these policies can sit.

As in the M3I architecture [11], the following examples first describe scenarios with a price
reaction service in operation then scenarios of how to configure such services. The various
service building blocks used and the symbols for them are defined in the M3I architecture.
Each is labelled with its name. Those labelled with an abbreviation use the legend given
earlier in Figure 1. Only relevant service building blocks are shown in order to remove
unnecessary detail. ‘Relevant’, is taken to mean ‘related to the scope of the flows in
question’. How the flow scopes are classified is outside the focus of this discussion, and
therefore left unshown for clarity.

As described in Section 2, as the ability to predict decreases, tightness of control has to
increase. Thus price reaction only becomes important in scenarios where prediction is
difficult or becomes incorrect over time (as likely to be due to the actions of others as to any
misestimation). And, the tighter price control has to be, the closer it has to move to the end
systems to avoid continual messaging to adapt the policy. This tendency can be seen in the
following list of scenarios:
• fixed traffic profile per customer (diffserv)
• fixed traffic profile per flow, but can adapt (intserv)
• congestion charge reaction by proxy (e.g. risk broker [2])
• congestion charge reaction middleware on host
• congestion charge reaction by application

Moving from top to bottom of these scenarios increases the level of application control to
take account of unexpected events. Conversely the level of over-estimation expected
reduces. In the diffserv scenario, a traffic control agreement will remain for weeks or
months, so price reaction hardly needs automation, being primarily a human activity.
Moving to intserv, the traffic must be predicted for the duration of a flow. If the expected
traffic is underestimated, the contract can be re-negotiated at the risk of being denied.
Therefore price reaction is primarily important at flow set up. During transmission, the flow
is at least protected from the vagaries of the actions of others. The next three scenarios
assume that unpredictability has been exposed in the form of dynamic pricing. This caters
for both the unpredictability of the customer and of everyone else crossing her path through
the Internet. The third scenario uses a proxy function on a remote host, while the second

D3 PtII - Price Reaction Design M3I - Fifth Framework Project 11429

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Page 16 of 24 Version 1.0

scenario uses a middleware function on the customer’s own host. Therefore, in both cases,
it can be assumed that the customer (or application writer) can predict traffic to some
degree in order to give the proxy or middleware a policy to work with. However, if this
function is on the local host, this policy can be adapted as circumstances change with only
minor overhead. Whereas if the function is at a proxy, more prediction leeway will have to be
allowed, as adaptation of the policy consumes more overhead. The final scenario is
included to highlight that sometimes no-one can predict what will happen next. Here, the
application has to take full control of QoS and reaction to its pricing, as there is no scope for
describing the policy to adopt in case of all possible future events. A network game is a
typical example of this scenario.

On this spectrum of tightness of price reaction control, the first is of little interest in terms of
price reaction design, while the last is very difficult to design for. Therefore we shall focus
on scenarios like the middle three. However, we will bear in mind, that the final (full
application control) scenario will require functions in the application similar to those we
design for more generic use. Thus we focus on generic design issues, whether for
deployment in the network, host middleware, or within applications themselves.

6 Scenarios in operation
Figure 7 shows the relatively simple case of intserv charged purely by duration. The
sender’s ISP charges the sender for PATH messages (for their potential to cause a later
reservation), while the receiver’s ISP charges for successful RESV messages (which do set
up a reservation). An alternative scenario (not shown) might have the sender charged for
successful appearance of a RESV from the receiver(s), but the scenario in the figure also
makes commercial sense. Also note that the receiver may choose to reserve less than or
equal to the PATH message.

Figure 7: Duration charged intserv

The figure actually covers two scenarios, one without the dashed arrows and the other with.
Without the dashed arrows, the QoS controllers shown are meant to depict those in the end

M3I - Fifth Framework Project 11429 D3 PtII - Price Reaction Design

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Version 1.0 Page 17 of 24

sender and receiver applications. These would typically take required QoS from the logic of
the application or some directory of associations between task and QoS.

With the dashed arrows, the QoS controllers represent intermediaries in the path between
sender and receiver, acting as proxies for each. An example of a proxy scenario might be
some QoS control middleware on the host acting on behalf of an application to manage
spending. Alternatively, a proxy might even be a separate organisation (the M3I GSP
scenario [2]). Thus a proxy might take the required QoS from the upstream application and
degrade it to keep to a budget, based on the QoS control policy rules.

The operational phases is shown in the bottom half of the figure, with the configuration
phase shown on the shaded background above.

Whether the scenario involves proxies or not, the price reaction policies could include all or
none of the complexity described in Section 3 in order to end up with a QoS specification for
the QoS controllers. Just to briefly re-iterate, the simple case would be to input the required
QoS directly to the policy, which would then merely have to take account of available
budget. The more complex cases involve inputting approximations to utility functions for the
context at hand. These are then used to determine the QoS specification, taking fuller
account of the cost implications. In all cases, the price reaction policy function requires
access to the tariff currently in use.

Whatever, once the QoS policy is determined, it is fed down to the QoS controllers and
stays fixed in this scenario, throughout the session. Therefore, during operation, this
scenario is extremely simple - all the complexity is in the configuration phase.

Figure 8: ‘abc’ charged intserv

Note that the receiver’s QoS control policy uses the PATH message as an indication of the
required QoS. The policy given to the QoS controller can then allow it to adapt if the PATH
messages change, without requiring a new policy. This would be essential if we were
dealing with the real receiving application, but even if it were a proxy, receiving a hint from
the receiving application of the desired QoS, it may still be interested in listening to the
maximum QoS possible, in case the budget allowed the QoS policy to allow the QoS

D3 PtII - Price Reaction Design M3I - Fifth Framework Project 11429

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Page 18 of 24 Version 1.0

controller to upgrade QoS from that which the receiver initially believed was necessary, as
opposed to only ever down-grading it.

The above assume the traditional intserv notion that the sender knows the QoS
specification inherently, while the receiver learns it through RSVP PATH messages. See the
discussion in the M3I architecture [11] on a generalisation of this architecture to a position
where neither knows the QoS specification a priori, until informed through session control.

Price reaction becomes more interesting in a scenario such as that in Figure 8, where
intserv is still the QoS architecture, but it is charged using the ‘abc’ tariff described in
Section 3. This requires the addition of the chain dotted elements compared to the previous
scenario (where the tariff was only aT+c, rather than aT+bV+c). Now, there is price back
pressure on the actual volume of traffic sent under the reservation as well as the level of
reservation itself. The motivations for this are described in [9]. This requires metering of
data volume at both sender and receiver. The session characterisation from the meter (data
volume in a certain duration) is then fed into the charge advice function, which uses the
tariff to inform the price reaction function of the current charge for the volume charging
element of the tariff. It can then take this into account when determining its overall reaction
to both prices in the tariff, much as before, but with two degrees of freedom.

Figure 9: Congestion charging sender and receiver

Moving to the third and fourth scenarios, we now consider congestion charging, shown in
Figure 9. Here, it will be noticed, there is no dependence between routing and QoS control
in the network, as all QoS control for the flow in question is determined fully by the end-
systems (or their proxies). Of course, there is effectively a QoS controller at every router
determining the congestion marking rate of all flows, but this is not specific to this flow, and
is therefore left unshown. This marking is denoted by ‘CE’ which implies setting of the
experimental ‘congestion experienced’ bit [12] in each packet. As congestion approaches
on any router in the path, the rate of marking increases. For this scenario, we assume the
receiver’s ISP charges a tiny amount for each mark. We then assume the sender is charged
by the receiver for any marks fed back (verifiable on longer time-scales by the receiver’s
ISP). The CE marking rate in the data is measured at the receiver and fed directly into its

M3I - Fifth Framework Project 11429 D3 PtII - Price Reaction Design

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Version 1.0 Page 19 of 24

QoS controller, which directly controls the amount of congestion feedback to the sender. On
longer time scales, this rate is aggregated and fed into a (rudimentary) charge advice
function, which sets the current longer term price of the marking rate as input to the QoS
control policy. This allows the QoS control policy to calculate the current willingness to pay
and hence optimum QoS given the receiver’s utility function.

The feedback behaviour of ECN is only defined for TCP, which is effectively in the ‘preserve
all data’ class of reactions in Table 1. For applications that can tolerate never sending some
potential data, we have to assume how the ECN feedback protocol will work. For this
scenario, let us assume that the receiver only indicates congestion when it wishes the
sender to reduce its rate. It charges the sender whenever it does this. The receiver’s ISP
can verify the total level of congestion marking in the session at the receiver, so that the
sender can be assured the receiver isn’t trying it on (assuming the receiver and its ISP
aren’t colluding). The functions at the sender, are then identical to those at the receiver, in
terms of how it meters the congestion feedback rate (rather than marking rate) and controls
its data sending rate.

Note that we have only discussed charges by the receiver’s network provider (whether paid
by sender or receiver). The sender’s network provider may charge on any other basis, but
cannot charge based on congestion itself, as this information is not always available to it.
Thus the sender’s charging strategy should be treated as orthogonal to congestion
charging.

Figure 10: Congestion charging receiver directly, sender indirectly

A simpler alternative would be for the QoS control policies at sender and receiver to belong
to whoever is paying. If, for instance, the sender is paying for both ends, it might include its
QoS control policy in the session description of the session set-up message (Figure 10 -
perhaps using SIP [13]). The receiver would then use the sender’s policy to determine its
QoS control feedback. The sender’s policy might set an upper limit on the cost, which the
receiver might even choose to improve on if it doesn’t need the QoS the sender is allowing
(assuming in this case that the two parties are friendly).

D3 PtII - Price Reaction Design M3I - Fifth Framework Project 11429

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Page 20 of 24 Version 1.0

6.1 Scenarios f or set up
As promised, we now briefly describe the context within which the above service scenarios
operate, in terms of how they are created and configured. Figure 11 is similar to the generic
QoS control configuration figure in the M3I architecture [11], which should be referred to for
a general description of how a QoS control policy is found in the first place. In that
description, we left undefined what application was driving the process. In Figure 11 we
have chosen to show a buying agent separate from the application setting the QoS control
policy. Our motivation is to enable price-controlled QoS for applications without the
application having to be modified. Certainly we would hope to avoid any need for
applications to understand pricing issues, but there is also the possibility that QoS can be
added to applications through client middleware using session control to add the necessary
information.

The buying agent sets the price reaction policy by finding the context in which a particular
flow is being used by an application, looking this up in its database of policies, then applying
the relevant policy to the QoS controller. Context might typically be discovered through
interrogating session description information from the session control function. The buying
agent would deal with generation of new policies where an appropriate one cannot be found
(perhaps using an interface similar to that in Figure 3, or using the Intelligent Agent to teach
it the new policy). The other addition in this figure to those objects discussed in the M3I
architecture is a query to an object holding a record of the current budget the customer
wishes to use, in order to scale the utility function it uses to the budgetary context. The
ability to control QoS by price, without major alterations to applications is one of our primary
requirements. However, it is unclear how we can find the context in which an application is
using the network without the application revealing this explicitly. We can fall back on adding
context information into a session description, as above, but this is not always available.
Such a capability is very application and operating system specific, even to the extent that
the application name is sometimes not available directly.

Figure 11: Price reaction in context

M3I - Fifth Framework Project 11429 D3 PtII - Price Reaction Design

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Version 1.0 Page 21 of 24

We are clear, however, on the importance of abiding by the overriding principles of
application involvement. Even if the application is not modified to manage QoS, it is
necessary to insist that it should at least delegate control of its quality to another entity,
such as a QoS controller, or a buying agent and QoS controller combined, but only for ‘non-
functional’ communication quality.

We define non-functional communication quality as that which can be controlled by policy,
because its requirements can to some extent be predicted in advance. On the other hand,
functional communication quality is directly under the control of the application, and it
makes no sense for another entity to override it. Any price reaction for functional quality
must be through making the user or application directly aware of the cost of her or its
actions, so that she or it may react according to rules that will be completely application or
user-specific.

Figure 12: The meta-object design pattern

In BT’s earlier work [14] use of the meta-object design pattern is recommended to achieve
delegation of control for non-functional QoS. This requires a minimal decision by the
application programmer to open a differently named socket from normal if she wishes to
delegate QoS control to some other entity for that socket. All parameters remain the same
as for a regular socket because the reflective socket inherits its behaviour from the regular
socket. The details are shown in Figure 12, which is taken from that work. Essentially, the
application is edited to open such sockets through a point of indirection. This point of
indirection can then be controlled independently, to determine what happens on opening
and subsequently closing a socket with delegated QoS control. In our example
implementation of a receiver, a reservation was set up on creation of the socket, and torn
down on closure, but only if the presence of PATH messages was detected from the sender.
Thus, the context was supplied by the sender in this case. This still leaves open the
question of how context is shared in other scenarios, if session control information is not
available.

Thus the general principle is that another agent shouldn’t take control of QoS away from an
application unsolicited. This is because, the application must remain in control, otherwise,
future versions of the application which include some QoS control could well conflict with
the attempts of another agent to control QoS. The only exception to this, is if the user
becomes involved.

D3 PtII - Price Reaction Design M3I - Fifth Framework Project 11429

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Page 22 of 24 Version 1.0

The user is entitled to delegate control over any application’s network QoS to any other
agent if she so desires, and can obviously supply context if necessary. Obviously, the user
is then responsible for any conflicts with the application. Similarly, as already said, the user
is responsible for price reaction for functional actions taken directly by herself. User charge
advice feedback is designed into the system for this purpose.

7 Limitations & Further Work
There is a view, being expressed from the economic modelling task of the M3I project, that
modelling the utility of the network service is futile as soon as the customer is buying a
bundle that merely includes the network service as one part. This discussion is obviously
fundamental to the work described in this paper, and will continue until resolution.

The approximations conjectured in the QoteS implementation shown are definitely the
subject of further research and validation by experiments as they involve taking
considerable liberties with unproven assumptions (and Java GUI APIs!).

In general, it is recognised that this area of research is new and fragile, with a lot more work
required to establish even the correctness of the basic assumptions, such as the
conceptualisation of customer utility of network QoS.

8 Conclusions
Background work by BT and AUEB in the field of controlling network quality of service
through dynamic and not so dynamic pricing has been described. A software framework
consistent with the M3I architecture has been presented which will allow these price
controlled QoS algorithms to be configured into a working system while it is running, to help
enable a market managed multi-service Internet.

Acknowledgements
Konstantinos Damianakis, Jérôme Tassel, Mike Rizzo, Kennedy Cheng & Francesco
Manganotti (BT); Panayotis Antoniadis & George Stamoulis (AUEB).

References
[1] Scott Shenker (Xerox PARC), “Fundamental Design Issues for the Future Inter-

net”, IEEE Journal on Selected Areas in Communications, 1995. URL: <http://
www.spp.umich.edu/spp/courses/744/docs/FundamentalDesign-shenker.pdf>

[2] Ragnar Andreassen (ed) (Telenor R&D), "Requirements specifications; Refer-
ence model", M3I Eu VthFramework Project IST-1999-11429, Deliverable 1, Jul
2000, <URL:http://www.m3i.org/private/>

[3] Bouch, A., Sasse, M., & DeMeer, H. G (UCL), "Of packets and people: A user-
centred approach to Quality of Service", In Proc. IWQoS'00, May 2000,
<URL:http://www.cs.ucl.ac.uk/staff/A.Bouch/42-171796908.ps>

[4] S. Blake (Torrent), D. Black (EMC), M. Carlson (Sun), E. Davies (Nortel), Z.
Wang (Bell Labs Lucent), W. Weiss (Lucent), "An Architecture for Differentiated
Services", IETF RFC 2475, Dec 1998 <URL:rfc2475.txt>

M3I - Fifth Framework Project 11429 D3 PtII - Price Reaction Design

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Version 1.0 Page 23 of 24

[5] R. Braden, D.Clark, S.Shenker, "Integrated Services in the Internet architecture:
an overview", IETF RFC 1633, Jun 1994. <URL:http://www.isi.edu/div7/rsvp/
pub.html>

[6] M3I project Web site <URL:http://www.m3i.org/>

[7] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin, "Resource ReSerVa-
tion Protocol (RSVP) -- Version 1 Functional Specification". IETF RFC 2205,
Sep 1997, <URL:rfc2205.txt>

[8] Pete Bagnall, Bob Briscoe & Alan Poppitt (BT), “Taxonomy of Communications
Requirements for Large-Scale Multicast Applications”, IETF RFC 2729, Dec
1999, <URL:rfc2729.txt>

[9] Dave Songhurst (Lyndewode) (ed), "Charging Communications Networks; From
Theory to Practice", Pub: Elsevier, ISBN:0-444-50275-0

[10] {Ed: Suitable reference on optimisation of willingness to pay}

[11] Bob Briscoe (BT) (ed), “Architecture”, M3I Eu VthFramework Project IST-1999-
11429, Deliverable 2, Jul 2000, <URL:http://www.m3i.org/private/>

[12] K. K. Ramakrishnan (AT&T Labs Research) and Sally Floyd (LBNL), "A Propos-
al to add Explicit Congestion Notification (ECN) to IP", IETF RFC 2481, Jan
1999 <URL:rfc2481.txt>

[13] M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg , " SIP: Session Initiation
Protocol", IETF RFC 2543, Mar 1999, <URL:rfc2543.txt>

[14] Jérôme Tassel, Bob Briscoe, Alan Smith, (BT), “An End to End Price-Based
QoS Control Component Using Reflective Java”, in Lecture Notes in Computer
Science from the 4th COST237 workshop, pub. Springer-Verlag, Dec 1997,
<URL:http://www.labs.bt.com/people/briscorj/papers.html#QoteS>

[15] Konstantinos Damianakis, Mike Rizzo, Jérôme Tassel & Bob Briscoe (BT), “QoS
around the edge (QoteS), release III”, software (unpublished). Based on [14] &
[17]

[16] Martin Karsten (TUD) (ed), "M3I Pricing Mechanisms (PM); Design" M3I Eu Vth
Framework Project IST-1999-11429, Deliverable 3, Jun 2000, <URL:http://
www.m3i.org/private/>

[17] Bob Briscoe, Mike Rizzo, Jérôme Tassel & Kostas Damianakis, (BT), "Light-
weight Policing and Charging for Packet Networks", in Proc. IEEE OpenArch
2000, pp77-87, Tel Aviv, Israel (Mar 2000), <URL:http://www.labs.bt.com/peo-
ple/briscorj/papers.html#e2char_oa00>

[18] C. Courcoubetis, G.D. Stamoulis, C. Manolakis, and F.P.Kelly, “An Intelligent
Agent for Optimizing QoS-for-Money in Priced ABR Connections”, Presented:
ICT’98 Porto Carras, Greece, 24 Jun 1998, To appear: Telecommunications
Systems; Speical Issue on Network Economics.

Abbreviations
ABR Available Bit Rate (an ATM service class)

API Application programming interface

ATM Asynchronous Transfer Mode

D3 PtII - Price Reaction Design M3I - Fifth Framework Project 11429

© Copyright 2000, the Members of the M3I Consortium

Public Deliverable

Page 24 of 24 Version 1.0

AUEB Athens University of Economics and Business

BT British Telecommunications plc

CE Congestion Experienced (part of the ECN protocol)

diffserv IETF differentiated services

DPH Dynamic Price Handler

ECN Explicit congestion notification

Echo Echo of congestion experienced (part of the ECN protocol)

GSP Guaranteed Service Provider

IETF Internet Engineering Task Force

GUI Graphical user interface

intserv IETF integrated services

IP Internet Protocol

ISP Internet Service Provider

M3I Market Managed Multi-service Internet

QoS Quality of Service

QoteS QoS around the edge

Pr Price reaction policy

Pq QoS control policy

PATH An RSVP message from the data sender to routers on the path, and
onward to the receiver

RESV A RSVP message from the data receiver to routers on the path reserving
resources

RSVP Resource Reservation Protocol

TCP Transmission Control Protocol

VoD Video on Demand

