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Abstract

This paper is about a new approach for ultra-low queuing
delay for all Internet traffic. ’Ultra-low queuing’ means a
few hundred microseconds of queuing delay on average, and
about 1ms at the 99th percentile. This is 10 times better than
state-of-the-art AQMs (FQ-CoDel and PIE). And all traffic
means not just low rate VoIP, gaming, etc. but also capacity-
seeking TCP-like applications. It is achieved by addressing
the root cause of the problem—the congestion controller at
the source.

The solution is to use one of the family of ’scalable’ con-
gestion controls. The talk will explain what that means, but
for now it will suffice to say that Data Centre TCP (DCTCP)
is an example. But there are other examples, including a
scalable congestion control for real-time media. So the task
has been to make it possible and safe to incrementally deploy
congestion controls like DCTCP over the public Internet.

The whole architecture is called Low Latency Low Loss
Scalable throughput (L4S). Although this all sounds rather
grandiose, it actually only involves a few incremental
changes to code in hosts and network nodes. You will recog-
nise some of these, because most are desirable in themselves,
and already in progress (e.g. Accurate ECN and RACK).
However, focusing on all the parts loses sight of the sum. So
this paper starts by explaining the sum of the parts - the big-
ger motivation for all the changes together. Then the body of
the paper dives into the changes to DCTCP needed to make
it safely coexist with other traffic, and to improve perfor-
mance when used over the Internet—to satisfy the ‘Prague
L4S Requirements’. The resulting TCP implementation is
called TCP Prague.
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1 Low Delay and High Bandwidth

Traditionally it has been believed that capacity-seeking ap-
plications (TCP-like) always build a queue so they can-
not have extremely low (sub-millisecond) queuing delay.
This has led to the mistaken idea that an application fun-
damentally cannot have both ultra-low latency and maximal
throughput. With L4S every application can have both. It is
ultimately intended to replace ’best efforts’ as the new de-
fault Internet service.

Not only does L4S remove all the unnecessary and vari-
able lag from today’s applications (e.g. gaming, everything
on the web, video chat), but it also enables tomorrow’s ap-
plications that need both high bandwidth and extremely low
delay. For instance, high definition video conferencing and
video chat, cloud-rendered interactive video, cloud-rendered
virtual reality, augmented reality, remote presence with re-
mote control, and others yet to be invented.

The L4S architecture [9] is in the late stages of standard-
ization on the IETF’s experimental track. it involves incre-
mental changes to hosts and network [14, 13]. Both parts of
L4S are in large part integrations of existing tried and tested
pieces. The aim has been to minimize risk and to ease incre-
mental deployment but to still achieve radically better per-
formance.

Back in summer 2015, the day after the first demonstra-
tion of applications using L4S over a DSL broadband link,
30-odd DCTCP-folks got together during the IETF in Prague
and agreed a prioritized set of changes to DCTCP that would
be needed to deploy it over the public Internet. The list was
dubbed the ’TCP Prague requirements’, which were subse-
quently written into an IETF spec. They have since been
renamed the Prague L4S Requirements, because they also
apply to UDP-based transports.

This paper introduces the important components of the
first ’TCP Prague’ implementation to satisfy these require-
ments, which has been open-sourced in Linux. As well as
outlining rationale, it explains how to use it and gives the ma-
turity of each component implementation, plus some points
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Figure 1: Scalable Congestion Control resolves the Delay-
Utilization Dilemma

of interest and issues where decisions are needed. Before
diving into these nuts and bolts, it starts with an overview of
the sum of the parts.

2 L4S Overview

The performance gains of L4S depend on the sender us-
ing a ‘scalable’ congestion1 controller. Data Centre TCP
(DCTCP) is an example of a scalable congestion control.
It is already available as a loadable kernel module in Linux
(and in other OSs such as Windows and FreeBSD). For ap-
plications over UDP, a scalable variant of the SCReAM con-
gestion controller has already been written for real-time me-
dia2 and the QUIC transport protocol provides the necessary
feedback mechanisms for a scalable congestion control like
DCTCP to be added.

At the time of writing, end-to-end transport protocols like
TCP or QUIC use a non-scalable or ‘classic’ congestion con-
trol by default (e.g. Cubic, Reno or BBR). This is because,
until now, it has not been safe to deploy scalable congestion
controls on the public Internet—they would out-compete
classic traffic sharing the same bottleneck. Later (§ 2.4) we
will explain how L4S solves that coexistence problem. How-
ever, first we need to explain what a scalable congestion con-
trol is, and why it gives such low delay.

2.1 Why L4S gives such Low Queuing Delay
Figure 1 visualizes link capacity as the size of a pipe and
buffer capacity as the vertical space above it. The light grey
shading within the buffer represents the queue and the large
red saw-teeth of a classic congestion control can be seen
continually seeking out available capacity in any of scenar-
ios (1)–(3); as it alternately increases the congestion window
then reduces on detecting a loss—typically by half.

1The term ‘congestion’ is used for the routine outcome of the process
that seeks out capacity. It does not (necessarily) mean capacity is insuffi-
cient. Rather it is a healthy sign that applications can fully utilize capacity.

2https://github.com/EricssonResearch/scream

If the buffer is sized to hold more than one base round
trip time (RTT) of data (‘bufferbloat’), halving the window
from full will still leave a standing queue (1). This is what
causes the delay when small web or game transfers have to
sit behind a long-running TCP transfer.

AQM (2) proactively introduces packet drops at a target
of 10–20 ms of queue. This is sufficient for the RTT of the
majority of flows. However, any transfers with a larger RTT
cannot fully utilize the link. if the AQM target were pushed
down to 1 ms, severe underutilization would result for nearly
all transfers, depicted as a smaller grey pipe (3).

Scalable (L4S) congestion controls adopt a similar saw-
toothing approach, except the sender scales its window re-
duction to the extent of recently experienced congestion. In
contrast, classic congestion controls make a worst-case re-
duction at the first sign of the existence of any congestion.
Thus, when a scalable CC’s window is roughly correct, it
continually makes small adjustments; shown as tiny red saw-
teeth (4). Nonetheless, when congestion suddenly increases,
scalable controls adapt their adjustment to the severity of
congestion.

In summary, the root cause of excessively variable queu-
ing delay is the sender’s congestion control. Changes in the
network can improve matters up to a limit. But, for further
improvements without compromising utilization, the sender
has to change—to a scalable (L4S) congestion control.

2.2 L4S: No Congestion Loss
Recall that a classic congestion control induces at least one
loss at the tip of each sawtooth. So, it would seem that
the significantly more frequent saw-teeth of L4S will pro-
hibitively increase the loss level. On the contrary, L4S re-
moves all congestion losses by mandating the use of Explicit
Congestion Notification (ECN).

L4S-ECN uses the same mechanism as Classic ECN [22]
where an AQM indicates congestion by setting the two ECN
bits in the IP header instead of dropping packets. How-
ever, whereas a classic ECN marking has to have the same
strength as a loss, an L4S-ECN marking has a much lower
strength [5], which is why each reduction is much smaller.
Senders set the ECN field to ECT(1) to indicate that they sup-
port the much smaller response to congestion of L4S [14].
The resulting ECN codepoints are shown in Table 1.

The mandatory use of ECN for L4S removes two further
significant sources of delay:
• Loss delay: The intermittent delay detecting and repair-

ing congestion losses, which particularly impacts short
web-like data transfers.
• Feedback delay: When a classic AQM detects a burst

of queuing, it holds back from discarding a packet for
100–200 ms in case the burst subsides of its own accord.
The resulting bursts of delay harm applications, partic-
ularly real-time media. The root cause is that a discard-
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Codepoint Binary Meaning

Not-ECT 00 Not ECN-Capable Transport
ECT(0) 10 ECN-Capable Transport (Classic)
ECT(1) 01 ECN-Capable Transport (L4S)

CE 11 Congestion Experienced

Table 1: The ECN Field of the IP header (v4 or v6) for the
L4S Experiment

based AQM faces a dilemma between two impairments:
a spike of delay vs. perhaps unnecessarily discarding a
packet. By mandating ECN, L4S escapes this dilemma.
So, it can signal queue growth without delay thus re-
moving the delay spikes that Classic AQMs suffer from.
With L4S, any smoothing of signals is applied at the
sender at the timescale of its own RTT, not in the net-
work, which doesn’t know each flow’s RTT.

2.3 Why L4S is Scalable
The key to the scalability of scalable congestion controls like
DCTCP and TCP Prague is that the number of ECN marks
they induce per round trip (2 on average) remains invariant
as flow rate scales.

In 2008 TCP Cubic was introduced because TCP Reno
had reached its scaling limit. TCP Cubic is now reaching its
scaling limit. Every time Cubic takes a loss and reduces its
window, it takes hundreds of RTTs to refill the buffer enough
to induce the next loss, during which time it is running blind
to any newly available capacity. And the faster Cubic trans-
fers data, the longer it runs blind between loss feedback sig-
nals. For instance, at 100Mb/s Cubic induces a loss every
250 round trips. And an 8-fold rate increase doubles the du-
ration of each sawtooth to 500 round trips.

While we use unscalable classic controllers like Reno or
Cubic, many applications (e.g. web browsers, speedtest.net)
open multiple data flows in order to fully utilize capacity.
TCP Prague and the family of scalable congestion controls
will always be able to fill high bandwidth and/or high RTT
links with a single flow.

2.4 Coexistence of L4S with Existing Traffic
Until now, to reap the benefits of scalable congestion controls
like DCTCP on the public Internet, all devices on the Inter-
net would have had to switch over at the same time. That’s
because the frequent ECN-marking seems like heavy con-
gestion, so it fools classic congestion controls into starving
themselves. Indeed, DCTCP was so named because it was
originally expected to only be applicable in private data cen-
tres, where the administrator could arrange such a switch-
over.

The IETF’s Dual Queue Coupled AQM framework [13] is
the key piece of the L4S architecture that solves this coexis-
tence problem. A reference Linux qdisc implementation was
open-sourced in July 2016 and it has recently been refactored
as DualPI2 [2].

In most networks the access link is designed to be the bot-
tleneck. So most of the benefit can be gained by deploying
this queue structure at the ingress to the access link, prefer-
ably in both directions. The cable industry recently made
the DualQ Coupled AQM mandatory for DOCSIS 3.1 [1]
Cable Modems (CMs) (upstream) and CM Termination Sys-
tems (downstream). This structure is also being implemented
in high speed switch chip-sets. So it is becoming likely that
this queue structure will be common at access bottlenecks.

The DualQ Coupled AQM consists of two queues, one
called LL for Low Latency, and one called Classic. Each
has its own AQM. ECT(1) packets are classified into the LL
queue.

If a packet arrives at an L4S AQM already marked CE,
the AQM cannot tell whether it was originally ECT(0) or
ECT(1). Nonetheless the IETF has decided that it is safe
to (mis-)classify CE packets as L4S even though they could
be reordered if they were originally ECT(0), because a few
packets delivered early will not cause spurious retransmis-
sions.

L4S traffic induces a very shallow queue, which is sepa-
rated from the larger queuing delay induced by classic con-
gestion controls. Nonetheless, from a bandwidth perspective
it makes the two queues seem to be one—even though the
two queues feed into a priority scheduler, this is only for la-
tency priority, there is no bandwidth priority. For instance, if
there are n flows in the L4S queue and m flows in the classic
queue, each flow will get roughly 1/(n+m) of the aggregate
capacity available to both queues. The network doesn’t iden-
tify any flows in order to do this — it even works if some or
all of the flow identifiers are encrypted.

It works by coupling the congestion signalling level (drop
or ECN-marking) from the classic queue to the LL queue so
that the congestion level fed back to senders from the LL
queue appears as if the classic flows are in the LL queue.
Then L4S flows leave enough space between their packets
for the classic traffic.

The coupling also takes account of the different way the
two types of congestion controllers reduce their rate in re-
sponse to congestion signals. it is well-known (by TCP re-
searchers) that the packet rate r of a classic TCP flow re-
sponds to loss level p by following the inverse square-root
law shown in Figure 2. In contrast, a scalable congestion
controller follows an inverse linear law (which is why it is
scalable and classic TCP is not).

The coupling is arranged so that the classic queue sees
the square of the congestion level coupled across to the L4S
queue. This counterbalances the square root in the source’s
response formula. So the upshot is that all flows share out
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Figure 2: DualQ Coupled AQM; r: packet rate per flow, p: drop or marking probability

the capacity equally. This is the theory, and it also works
amazingly well in practice. Further details about the DualQ
Coupled AQM are in the complementary paper on the Linux
implementation of the DualPI2 qdisc [2].

We have seen that, as sources upgrade to L4S, the coupled
AQM ensures they safely coexist with Classic traffic. But
what if the upgrades happen the other way round—a source
upgrades to L4S but there is no coupled AQM at the bottle-
neck? This is also safe because the host can detect that the
current bottleneck link does not support L4S. Then its con-
gestion control has to fall back to classic behaviour, so as not
to starve competing classic flows. This is covered in § 3.

In summary, the lower strength L4S-ECN marking is cen-
tral to all three aspects of L4S: i) Low Latency: the marking
acts as the classifier for a separate shallow queue; ii) Low
Loss: ECN avoids congestion loss, which in turn removes
the delay of loss repair and allow immediate congestion sig-
nalling; iii) Scalable throughput: The frequency of L4S-
ECN signalling remains invariant with flow-rate, ensuring
that throughput should scale indefinitely.

3 TCP Prague

The beneficial properties of L4S traffic (low queuing delay,
etc.) depend on all L4S sources satisfying a set of condi-
tions called the Prague L4S Requirements. The name is af-
ter an ad hoc meeting of about thirty people co-located with
the IETF in Prague in July 2015. The meeting was hastily
arranged the day after the first public demonstration of an
interactive cloud-rendered video application running over an
Internet access link with L4S support.

The meeting agreed a list of modifications to DCTCP to
focus activity on a variant that would be safe to use over the
public Internet. it was suggested that this could be called
TCP Prague to distinguish it from DCTCP.

As explained above, DCTCP already implements a scal-
able congestion control. So most of the changes to make it
usable over the Internet seemed trivial, often merely involv-
ing adoption of other parallel developments like Accurate
ECN TCP feedback or RACK. Some were more challeng-
ing (e.g. RTT-independence). And others that seemed trivial
became challenging (e.g. when confronted with the complex
set of bugs and behaviours that characterize today’s Internet).

The rest of this paper gives the rationale for each modifica-

tion to DCTCP, its current status, and points of interest. Con-
figuration advice is included for those components that are
still deemed too immature to enable by default. The sections
below reflect the latest position since the IETF adopted the
list of L4S requirements and documented them in more de-
tail [14], including adding one new item (RACK). The modi-
fications are categorized into mandatory requirements (§ 3.1)
and optional performance optimizations (§ 3.2) as follows:

Mandatory Requirements
• L4S-ECN packet identification: ECT(1)
• Accurate ECN feedback
• Fall-back to Reno-friendly on Loss
• Fall-back to Reno-friendly on classic ECN bottleneck
• Reduce RTT dependence
• Scale down to fractional window
• Detecting loss in units of time

Optional Performance Optimizations
• ECN-capable TCP control packets
• Faster flow start
• Faster than additive increase

Note that the Prague L4S Requirements are not TCP-
specific; they apply irrespective of wire-protocol (TCP,
QUIC, RTP, SCTP, etc), and there are L4S implementations
for other transports, e.g. L4S SCReAM for real-time media3.
Nonetheless, this section focuses on how the Prague require-
ments have been addressed for the TCP protocol — for TCP
Prague.

TCP Prague is open sourced under GPLv2 and is being
developed as a congestion control module against the latest
Linux net tree4, and will be incrementally submitted to main-
line. It can be loaded and enabled as follows:

sudo modprobe tcp_prague

sudo sysctl -w net.ipv4.tcp_congestion_control=prague

3.1 The Prague L4S Requirements
We begin by detailing the requirements for a transport pro-
tocol to be L4S-capable. These include both safety behav-
ior, which prevent L4S flows from starving classic ones,
and scalability requirements, which ensure that the rate of

3https://github.com/EricssonResearch/scream
4https://github.com/L4STeam/tcp-prague
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the congestion signals per round trip scales together with
bandwidth-delay product (BDP or window) changes.

3.1.1 Packet Identification: L4S-ECN

Satisfying the mandatory Prague L4S Requirements entitles
the source to identify that its packets support L4S in the 2-bit
ECN field of the IP header.

The IETF is standardizing the experimental ECT(1) code-
point (0b01) to mean L4S on the public Internet [14].

The default should be sufficient but, in a controlled envi-
ronment like a data centre, the operator might have reason for
TCP Prague to use ECT(0) for L4S traffic (e.g. to avoid some
other local use of ECT(1)). Such a non-default scenario can
be configured (for both IPv4 & IPv6) as follows:

sudo modprobe tcp prague prague ect=b

where the values for b have the meanings tabulated below.

b TCP Prague DCTCP

0 Use ECT(0) default
1 Use ECT(1) default

Conversely, a DC operator might want DCTCP to use
ECT(1). Therefore DCTCP could add a similar module op-
tion, but it would have to be dependent on the patch fixing
DCTCP’s response to loss being accepted (and not disabled
via another module option). Assuming it would be similar
to the TCP Prague module option (except with ’prague’ re-
placed by ’dctcp’), we have given it a column in the table
above to show the likely relationship between the defaults.

3.1.2 Accurate ECN Feedback

Unfortunately, when ECN feedback was originally added to
TCP in RFC3168, it only reported at most one congestion
event per round trip [22]. The rationale was that TCP Reno
was required to respond to congestion no more than once
per round trip. When a CE-marked packet arrives at a Clas-
sic ECN (RFC3168) receiver, in case an ACK is lost, it just
solidly feeds back the Echo Congestion Experienced (ECE)
flag in the TCP header (Figure 3) of every packet until the
sender acknowledges it has heard by setting the Congestion
Window Reduced (CWR) TCP header flag.

0 3 4 6 7 8 9 10 11 12 13 14 15

Header Length Reserved A
E

C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Figure 3: The TCP header flags, including the experimental
Accurate ECN (AE) flag

TCP Prague, like DCTCP or any scalable congestion con-
troller, achieves its low queuing delay by making continual
fine adjustments in response to marginal changes in the con-
gestion level. So a TCP Prague sender has to know how

many bytes arrived at the receiver in packets with their ECN
field marked as ‘Congestion Experienced’ (0b11).

Therefore TCP Prague uses Accurate ECN (AccECN)
TCP feedback, which is the IETF’s experimental change
to the TCP wire protocol to feed back the extent of ECN
feedback [8]. Briefly, AccECN uses the three TCP header
flags AE, CWR & ECE (Figure 3) to negotiate support for
AccECN during the 3-way handshake. Then it re-purposes
them as a 3-bit counter (called the ACE field) for each end to
repeat the number of CE marks it has seen to the other.

So why doesn’t TCP Prague use DCTCP’s feedback
scheme? DCTCP corrected the deficiency of TCP’s ECN
feedback with its own proprietary modification to the TCP
wire protocol. However, it does not provide a way for one
DCTCP peer to check that the other understands DCTCP
feedback (consistent configuration of all hosts is arranged
by the sysadmin in data centres). Also, DCTCP’s feedback
metric becomes confused when ACKs are lost. So the IETF
did not consider the DCTCP scheme robust enough for the
general Internet and selected AccECN instead [18].

TCP Prague uses Külewind’s implementation of AccECN
for Linux [17]. AccECN updates the base TCP stack and
is intended to be generic for any congestion control module,
because it is backward compatible with congestion controls
that only need feedback of one congestion event per round
trip. The AccECN code is targeted at the base TCP stack At
the time of writing the AccECN code has been ported to v5.1
and an RFC submitted .

Although AccECN does not require TCP Prague, the re-
verse is not true. A TCP Prague sender requires both ends to
have negotiated support for AccECN. Therefore, it would be
perfectly valid for one TCP peer to support L4S congestion
control and set ECT(1) on its packets, while the other end
used a different (non-L4S) congestion control. However, this
scenario could only arise if both ends supported AccECN.

The requirement that neither host in a connection can use
TCP Prague unless both ends support AccECN feedback
makes TCP Prague deployment rather unrewarding while
AccECN is not widely supported. Therefore, we have pro-
vided a non-default sysctl option to AccECN in the TCP
stack. It can be enabled during testing to force the remote
peer to echo CE markings individually.

sudo sysctl -w net.ipv4.tcp_force_peer_unreliable_ece=1

It only becomes effective on connections where AccECN
feedback has not been successfully negotiated but classic
RFC3168 ECN feedback has. This is not recommended for
use over the public Internet because, like DCTCP feedback,
the individual echoes are not delivered reliably. Therefore it
might be possible for congestion on the reverse path to de-
grade congestion feedback on the forward path — clearly a
potentially delicate scenario. However, in controlled test en-
vironments this option is likely to prove invaluable.
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This feedback mode works by setting the CWR TCP
header flag proactively and continuously (meaning Conges-
tion Window Reduced Figure 3). Normally CWR is only
set once to acknowledge and stop each volley of ECE fed
back from the remote peer (meaning Echo Congestion Expe-
rienced).

There was a bug in the ECN code of all early derivatives
of BSD, that we have to be careful not to trigger on those
remote peers that still suffer from it. If a packet with CWR
in the TCP header happens to also be marked as CE in the IP
header, a bugged receiver sends no feedback at all. There-
fore, before our TCP Prague host sets CWR continuously, if
this module option is enabled, the TCP Prague host sets both
CWR and CE on its first data packet. If the feedback for that
packet does not carry ECE, it knows the remote peer has the
bug. Otherwise, it can safely send CWR for the rest of the
connection.

3.1.3 Fallback on Loss

DCTCP includes a non-default module option to fall back to
Reno behaviour on loss. However, even with the option en-
abled, the code only handles losses detected by a retransmis-
sion timeout not via fast retransmit. Also, on a retransmis-
sion timeout, it causes an unnecessarily large cwnd reduction
by setting DCTCP’s congestion level estimate (alpha) to its
maximum, which impacts high BDP flows particularly badly.
This was a long-standing bug that we have recently fixed for
TCP Prague, and submitted a patch for DCTCP.

The original code halved ssthresh on a retransmission
timeout, which is also the decrease used in the bugfix.
Nonetheless, this raises the question of whether the reduction
on loss should be less severe if TCP is in the CWR (Conges-
tion Window Reduced) state. This would imply that there
has been less than a round trip since a previous reduction
due to any of i) ECN marking; ii) local qdisc congestion; or
iii) TLP (tail loss probe) loss detection. In the worst case,
if this earlier reduction had been a full halving, compound-
ing another halving due to loss would result in a reduction to
1/4. Section 3.5 of the DCTCP RFC [4] gives requirements
for this case, but they are ambiguous.

Firstly, we propose that it is unnecessary to adjust for ex-
actly how much of the first round trip had passed before the
loss starts a new round trip of reduction. One policy would
then be to contrive the second reduction so that the com-
pound of both reductions amounts to a reduction of 1/2. The
first reduction in ssthresh due to ECN would have been
(1-alpha/2) [in floating point terms] or (2-alpha)/2. To com-
pound this into 1/2 requires the second reduction (on the
loss) to be 1/(2-alpha) to cancel out the numerator. However,
this would involve division between two u32s.

Instead, on loss we propose to reduce ssthresh by (2+al-
pha)/4 if in CWR state. This is both cheaper to process and
gives roughly the desired outcome. If alpha is small, it makes

the compounded reduction closely approximate to 1/2. And
if alpha takes its maximum value, it results in a compounded
reduction of 3/8, which is conveniently half-way between 1/2
and 1/4.

3.1.4 Fallback on Classic ECN

The requirement here is for TCP Prague to detect if it is
getting ECN marking from the network that is from an
AQM applying ’classic’ ECN not L4S ECN marking. Other-
wise, if not protected by a per-flow queuing scheduler (FQ),
TCP Prague would dominate other ’classic’ TCP-friendly
flows, which respond much more strongly to ECN than L4S
sources.

To detect this case, the sender has to monitor the smoothed
RTT from the start of the connection. If SRTT increases by
more than about 2 or 3 ms, it is likely to be a Classic ECN
bottleneck. Then TCP Prague should respond to ECN marks
once per RTT as it would for loss (§ subsubsection 3.1.3).
The question of how quickly a flow could detect this sce-
nario, and whether it would make any difference for short
flows anyway is to be determined.

This requirement is yet to be coded, on the basis that Clas-
sic ECN AQMs never materialized on the public Internet
until FQ-CoDel was deployed. And FQ-CoDel [16] would
prevent TCP Prague starving other flows anyway. If other
classic ECN AQMs appear, we will obviously have to revisit
this decision.

3.1.5 Reducing RTT-Dependence

Given TCP’s rate has always been inversely proportional to
RTT, it might seem that this is an unnecessary aspirational
requirement. However, until now the effect has always been
masked by large buffers, as the following example reveals.

Imagine two competing flows over two paths with base
round trips of 100 ms and 5 ms. You would think the ratio
between their rates would be 20:1 so the longer RTT would
starve. However, if they both experience a common (bloated)
queuing delay of 95 ms the ratio of their RTTs will be far less
problematic - closer to 2:1 (=(100+95)/(5+95) = 195/100).

We first tripped up on this starvation problem when we
tested the DualQ Coupled AQM with DCTCP. At first we
thought it was a bug in the coupling. However, it was
DCTCP behaving as intended—it was just that no-one had
seen the problem before, because no queues had been that
small.

RTT dependence is a more significant problem for TCP
Prague, given it is targeted at the public Internet where the
range of RTTs is much wider than in a DC. We have imple-
mented solutions in a simulator and chosen the best (the can-
didate designs and the currently chosen winner are in [7]).
However, as of the time of publication it is yet to be imple-
mented in Linux.
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Figure 4: The need for a fractional window, to preserve a
tiny queue

3.1.6 Scaling Down to Fractional Windows

While testing the coupled AQM with different numbers of
DCTCP flows, we noticed that the queue started to grow be-
yond the AQM’s delay target once a few flows were added,
but only in low base RTT scenarios. We worked out that
the cause was TCP’s minimum window of 2 segments. With
such a short queue, the RTT was so small that the flows could
fill the link with less than 2 segments per RTT. Because TCP
does not allow a window below 2 segments, it became un-
responsive to the ECN marks from the AQM and just forced
the queue to grow until the RTT was large enough to fit 2
segments per flow.

Figure 4 (adapted from [6]) shows the potential scope of
this problem once queues are small. It shows ranges of
bandwidth-delay product across the two dimensions of ca-
pacity and RTT. The boundary between red and green repre-
sents a BDP of ten 1500 B packets. As shown, this BDP of
10 could consist of 5 flows at their min cwnd of two 1500 B
packets, or just less than one flow using larger 9000 B pack-
ets, also at its min cwnd of two. Two rectangles are overlaid
to visualize the approximate scope of broadband and DC net-
works. Then the red-green boundary shows that a good pro-
portion of regular networks will need to operate with a BDP
of less than 10 under not atypical circumstances.
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Figure 5: The congestion windows of 12 parallel TCP flows
modified to support a fractional window

To change such a fundamental part of TCP has proved
challenging, both in design and implementation terms. Our
goal is to modify the base TCP stack for all congestion con-
trols. Figure 5 shows cwnd below 2 SMSS with the Reno
congestion control module loaded.5 However, at the time of
writing we are still in the process of debugging synchroniza-
tion problems when using DCTCP.

There were two challenges to overcome in the base TCP
stack and two in the TCP Prague CC module:

• A Linux sender counts the window in whole max-
sized segments (SMSS). We have added a variable to
hold a fractional part of the window (separate from
snd cwnd cnt).

• Packet conservation cannot rely on the ACK clock when
the required spacing between packets is greater than the
time an ACK takes to return. Instead we used the pacing
facilities now in the Linux kernel.

• With a fractional cwnd, multiplicative decrease scales
well, but the constant additive increase of 1 SMSS per
RTT keeps pushing cwnd above 1 SMSS no matter how
small it is after a decrease. Therefore, we have replaced
the constant additive increase with a variable, and we
are experimenting with recalibrating it on each decrease
of ssthresh to be

add = ADD0 * lg(ssthresh/SSTHRESH0 + 1);

where the constants (ADD0 = 256 B; SSTHRESH0 =
512 B) are integer powers of 2 arranged so that the in-
crease is roughly 1 SMSS for the current typical range
of ssthresh, which ensures rough interoperability with
existing TCP.

• The exponentially weighted moving average (EWMA)
algorithm of DCTCP is meant to run every round trip
clocked by ACKs. However, ACKs arrive less often
than round trips. Therefore, in the fractional window
regime we run the EWMA on each ACK and algorith-
mically adjust it, as if it ran every whole round trip.

We have not included these modifications in the TCP
Prague implementation. Once we have a solution that tests
well in a range of scenarios, we will make it available sep-
arately for researchers to evaluate. We encourage others to
come up with alternatives. Once we have more confidence
in the stability of a solution we will add it to the TCP Prague
implementation, probably initially as a default-off systctl op-
tion.

5Testbed config: 20 TCP Reno flows; bottleneck link rate: 200 Mb/s;
base RTT: 300 µs; SMSS: 1448 B; AQM: RED 0–10% over 1–3 ms;
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3.1.7 Detecting Loss in Units of Time

RACK [10, 11] is a sender-only change to the bases TCP
stack that detects loss by counting in units of round trip times
instead of counting packets (as in the traditional 3 DupACK
rule).

It occurred to us that, as well as simplifying the TCP im-
plementation, counting in time also has the potential to en-
able link designs to scale better in future. As flow rates have
increased over the years, the need to keep reordering within
3 packets has required links to hold reordering within an in-
creasingly tight timespan (because it takes less time to trans-
mit 3 packets). Once senders count in time units to detect
loss, the reordering constraint on links no longer tightens as
flow rates scale up.

However, this opportunity can only be realized if a link
is certain that all traffic comes from senders that are using a
loss-detection algorithm that counts in time units. We real-
ized that we could exploit this opportunity in L4S links now
by making it mandatory for L4S senders to detect loss in
units of time.

Superficially it seems that implementing this requirement
is just a case of using RACK, which has been the default in
Linux kernels since v4.18. There is just a slight wrinkle in
that RACK bootstraps itself with the 3 DupACK rule, until
it has a stable measurement of the path’s reordering degree.
Unless we eliminate all packet counting for loss detection
(including at bootstrap) in L4S transports the scaling advan-
tage of RACK will be lost.

As of the time of writing, TCP Prague uses RACK as-
is. We (and the developers of RACK) are considering the
best way to modify RACK’s bootstrap to allow links to scale,
such as:

• Bootstrap RACK with a reordering window of, say,
SRTT/8, where the value of the SRTT is informed by
the RTT during the 3WHS as well as any other cached
information, such as the per-destination cache or a TFO
cookie [12].

• Use the 3 DupACK rule, but never send the packets of
the initial window back-to-back. Instead, ensure they
are paced over the RTT so that packet spacing will stay
constant as flow rates scale.

It is suspected that inaccuracy in the early RTT measure-
ment will sometimes cause spurious retransmissions or take
too long to detect loss. Therefore the second approach is cur-
rently preferred. The choice for TCP Prague depends on the
flow-start approach adopted (see § 3.2.2).

3.2 TCP Prague Performance Optimizations
3.2.1 ECN-Capable TCP Control Packets

When ECN was originally added to TCP [22], the ECN ca-
pability was precluded from TCP control packets and re-

transmissions. The concerns that led to that decision have
since been rebutted and the IETF is proposing an experimen-
tal track scheme called ECN++ that allows all TCP control
packets and retransmissions to be ECN-capable [3].

Loss of a control packet tends to impact performance
much more than loss of a data packet. In particular, loss
of a SYN leads to a 1 s timeout. Therefore protecting control
packets with ECN significantly improves performance.

The IETF’s ECN++ spec. requires that the ECN capability
on SYNs and pure ACKs is conditional on negotiating Ac-
curate ECN feedback. Fortunately AccECN is also manda-
tory for TCP Prague. Therefore, all TCP Prague packets
are ECN-capable. The DCTCP CC module already requires
ECN to be enabled on all packets, so TCP Prague merely
copies that.

Using ECN-capable control packets over the Internet is
not as straightforward as in a DC, because of the possibility
that middleboxes and/or servers reject packets that do not
conform to earlier IETF specs. TCP Prague does not yet
implement all the fall-back mechanisms suggested in [3].

The Over-Strict ECN Negotiation Bug Back in 2012,
there was some concern that the IP-ECN field might be man-
gled as it traversed Internet paths. Section 6.1.1 of the ECN
RFC [22] says ”A host MUST NOT set ECT on SYN ...
packets”, So it was assumed that a SYN with a non-zero
ECN field would always be a symptom of network mangling.
Therefore, on arrival of a SYN attempting to negotiate ECN
at the TCP layer, a check for a non-zero IP-ECN field (called
’strict ECN negotiation’) was added to Linux. If the IP-ECN
field on the SYN was non-zero, ECN was disabled for the
rest of the connection so that a potentially mangled ECN
field would not be relied on.

In an RFC ”MUST NOT” does not mean ”MUST never”.
Inevitably, RFC 3168 has been updated by RFC 8311 [5]
to allow ECN-capable control packets. However, Linux’s
strict ECN negotiation is now so widespread that it has be-
come pointless to try to send an ECN-capable SYN—you
will nearly always just disable ECN completely. Indeed, ac-
cording to measurements in a Nov 2017 study, of the 82%
of the Alexa top 50k web servers that supported ECN, 84%
disabled ECN in response to ECT or CE on a SYN [19].

There is a way out of this impasse though. The strict-ecn
test can be made specific to an RFC3168 ECN set-up SYN.
As well as solely testing that the two ECN flags are set (CWR
and ECE at bits 8&9 in Figure 3), the fix also checks that the
first four TCP header flags (res1 at bits 4-7) are zero. This
makes the test specific to clients not using any of the 4 re-
served flags, which gives the client a way to exclude itself
from the test. Indeed, the IETF’s specification for making
SYNs ECN-capable requires the 4th flag to be set to 1. So,
when sending to a patched server, the client’s SYN automat-
ically excludes itself from the strict ECN negotiation test.
Therefore the client can send ECN-capable SYNs without
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triggering the server to disable ECN.
We have submitted a patch that uses this idea, and made it

is easy to back-port in an attempt to fix the over-strict ECN
negotiation ’bug’ on as large a proportion of the deployed
base of Linux servers as possible.

3.2.2 Faster Flow Start

DCTCP uses the traditional slow start algorithm, which
means it exits slow start at the first ECN feedback. As we
have explained, DCTCP induces significantly higher ECN-
marking frequency than a classic TCP algorithm with ECN
support, such as Cubic [23]. So, it is already well-known
from DC experience that a DCTCP flow trying to push into
other DCTCP traffic at the bottleneck is likely to be knocked
out of slow start early.

TCP Prague has the same problem, but compounded by
another. On the Internet, unlike in a DC, the bottleneck link
tends to be one or two orders of magnitude slower than the
sending NIC. So it is very easy for a TCP Prague sender
to tip the bottleneck over its shallow ECN threshold during
slow start, even if no other traffic is present.

Either or both these effects tend to cause a new flow to take
a long time to reach its intended rate. Thus, both DCTCP and
TCP Prague are weak at getting up to speed. Nonetheless, on
the plus side, they only induce a tiny queue.

The ’obvious’ solution seems to be to make TCP Prague’s
slow start respond to the extent of ECN marking, not just the
existence of a single mark, which is the essence of DCTCP’s
approach in the congestion avoidance phase. However, this is
problematic, because TCP Prague cannot immediately know
whether ECN markings are coming from a classic ECN
AQM or an L4S-ECN AQM. it can detect the difference once
it’s had some time to assess the evolution of the RTT (see
§ 3.1.4). But it cannot sit back and watch for a number of
round trips in order to decide in hindsight what it should have
done on the first ECN mark.

Another ’obvious’ solution seems to be to add support for
a special acceleration signalling protocol to all L4S AQMs
and to all L4S congestion controls. However, all special
acceleration signalling schemes fail on incremental deploy-
ment grounds. During flow start-up, it is very common for
the bottleneck to move. This is because another TCP flow
(or flows) that was filling a high rate link (e.g. the 800 Mb/s
link in Figure 6) will rapidly decrease its rate to let in a new
flow. So what appeared to be hardly any available capacity
suddenly jumps (to 400 Mb/s in the example). Then, if the
red node in the example emits a new acceleration signal, the
source could easily overrun the 100 Mb/s link where the new
signal is not supported.

Based on these arguments, for flow start we believe TCP
Prague will have to use a signal that is universally supported,
i.e. loss or delay. The most promising current approach is
paced chirping [21], which uses delay.

Figure 6: The problem of deploying new acceleration signals

Up to now, the most aggressive flow-start has tended to
cause the worst queue overshoot. However, the flow com-
pletion times of paced chirping compare with the best (Cu-
bic with or without hystart [15]) while its queuing compares
with the low single digit milliseconds of the least aggressive
approach (DCTCP).

Chirps are sequences of one or two dozen packets with
increasingly reducing gaps between them. The sender ana-
lyzes the ACK-spacing to determine the available capacity
from the point at which the gaps between the ACKs diverge
from the gaps between the sent packets. Paced chirping in-
volves sending out a sequence of chirps separated by guard
intervals. Then as the ACKs arrive, the sender averages the
estimates of available capacity to determine a better average
rate for each chirp. And the less variance there is between the
estimates, the more rapidly it closes up the guard intervals.

Although promising, paced chirping is still considered re-
search. So it is not (yet) included in the TCP Prague im-
plementation. It is under continual development, but the
Linux implementation is open-sourced6 so it can be manu-
ally added to TCP Prague (or to any other congestion con-
trol). An overview of the Linux implementation is available
in the Netdev 0x13 paper about it [20].

3.2.3 Faster than Additive Increase

DCTCP uses the unmodified additive increase of TCP Reno.
At a window increase of 1 segment per round trip, this makes
DCTCP slow to pick up newly available capacity. TCP Cu-
bic [23] was developed to solve this problem. However, it
is now reaching its own scaling limits. For instance, over a
20ms RTT, at 100 Mb/s, each Cubic sawtooth is 250 round
trips long and this duration doubles every 8× increase in
flow-rate.

The two can be compared in Figure 7 (copied from [20]),
which shows a simulation of an increase in capacity from
50 Mb/s to 100 Mb/s, for instance, due to a flow finishing.
The plots show how fast different congestion controls (sepa-
rately) pick up the newly available capacity. The base RTT
is 100 ms.

The awful responsiveness of unmodified DCTCP is most
apparent, taking 600 round trips (Reno would be no differ-
ent). Cubic takes about 120 round trips. Nonetheless, it
shows that DCTCP can be modified to take just 6 round trips

6https://github.com/JoakimMisund/PacedChirping
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Figure 7: Comparison of Paced Chirping with other ap-
proaches to regain newly freed up capacity, each simulated
separately

to get within 95% of full utilization, in addition to the num-
ber of quiet RTTs that it is configured to wait over before
probing (e.g. 2).

The modified DCTCP still uses Reno-like additive in-
crease while in congestion avoidance. But after a couple of
rounds with no ECN signals it deems that it can start prob-
ing for available capacity. It starts introducing a few paced
chirps, which rapidly measure the newly available capacity
in the subsequent rounds, then it rapidly increases to fill the
target capacity.

Not only is the modified DCTCP much faster but the over-
shoot of the queue with paced chirps is tiny—-the same as
unmodified DCTCP (about 1 ms). In contrast, even though
they increase more much slowly, the queue delay overshoot
of Cubic (and BIC) fills the buffer.

Cubic and other classic controls do not have the potential
to be modified like this. Cubic expects a signal (loss or ECN)
every few hundred round trips on average. When capacity
opens up, it takes a few hundred more rounds before Cubic
can even start to think that the signals might have stopped.
In contrast, DCTCP can rapidly tell when 2 marks per round
has stopped. And DCTCP’s scaling property (§ 2) mean its
superior responsiveness will remain invariant while others
will degrade as flow rate scales.

We have tried adding continual chirps to Reno during con-
gestion avoidance, but this adds a lot of delay noise, which
makes it hard and therefore slow for flows entering the sys-
tem to measure available capacity using chirps.

Paced chirping can be added to any congestion control
during slow start (including re-starts). But it is only applica-
ble to scalable controls, like DCTCP and TCP Prague, during
congestion avoidance.

In both cases, paced chirping needs more research before
it can be considered mature enough to ship with TCP Prague
or DCTCP.

Figure 8: TCP Prague Implementation Status

4 Summary

Like DCTCP, L4S derives its extremely low latency from a
complementary interaction between the sender’s congestion
control and a very simple AQM in the network. This paper
has introduced the whole L4S architecture. But its focus is
the transport protocol, in particular TCP Prague, which is
largely where the interesting parts are.

Figure 8 summarizes the Linux implementation status of
the alterations to DCTCP to turn it into TCP Prague, by
addressing each Prague L4S Requirement or Optimization.
It can be seen that half the components are either already
optional parts of the base TCP stack or they are works in
progress motivated for other reasons than just L4S—TCP
Prague is essentially a configuration that makes these options
mandatory. Three of the remaining parts are also applicable
to DCTCP.

That leaves i) reduced RTT dependence and ii) Classic
ECN detection. As already detailed, the former has been
designed and simulated, but not yet implemented. And the
latter is thought to be unnecessary for the current Internet,
but can be added if it proves necessary.
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[18] KÜHLEWIND, M., SCHEFFENEGGER, R., AND BRISCOE,
B. Problem Statement and Requirements for Increased Ac-
curacy in Explicit Congestion Notification (ECN) Feedback.
Request for Comments RFC7560, RFC Editor, Aug. 2015.
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