
Discussion paper

Resolving Tensions between

Congestion Control Scaling Requirements

Bob Briscoe∗ Koen De Schepper†

11 Jul 2017

Abstract

Low Latency, Low Loss Scalable throughput (L4S)
is being proposed as the new default Internet ser-
vice. L4S can be considered as an ‘incrementally
deployable clean-slate’ for new Internet flow-rate
control mechanisms. Because, for a brief period,
researchers are free to develop host and network
mechanisms in tandem, somewhat unconstrained
by any pre-existing legacy.

Scaling requirements represent the main constraints
on a clean-slate design space. This document con-
fines its scope to the steady state. It aims to resolve
the tensions between a number of apparently con-
flicting scalability requirements for L4S congestion
controllers. It has been produced to inform and
provide structure to the debate as researchers work
towards pre-standardization consensus on this is-
sue.

This work is important, because clean-slate oppor-
tunities like this arise only rarely and will only be
available briefly—for roughly one year. The deci-
sions we make now will tend to dirty the slate again,
probably for many decades.

1 Introduction

A new Internet service has been proposed called
L4S, for Low Latency, Low Loss Scalable through-
put. It enables so-called ‘Scalable’ congestion con-
trols to keep queuing delay and congestion loss to
extremely low levels. But they can still share Inter-
net capacity with existing traffic, while remaining
isolated from its highly variable queuing delay and
loss. The best background reference on L4S, for the
present document is [DSBTB15]1

∗research@bobbriscoe.net,
†koen.de schepper@nokia.com

1 This reference is a little dated. A more up to date paper is
under submission. [BEDSB17] explains how the parts of
L4S fit together and collects together all the references to

For a brief period of a year or so, L4S provides what
has been called an ‘incrementally deployable clean-
slate’ for new flow-rate control mechanisms. During
this brief period, researchers have the freedom to
develop congestion controls (CCs) in tandem with
queue management mechanisms, because there is
no legacy for the L4S traffic class, either on hosts
or in the network.

The aim of this paper is to articulate the tensions
between a number of conflicting scaling require-
ments. The scope is limited to the steady-state.
Various ways to resolve these tensions are given, in-
cluding consideration of whether each requirement
is best resolved in the network or on hosts. The
idea is to determine the design space that flow-rate
control mechanisms are confined to, because scaling
requirements are the main constraints on a clean-
slate design space.

Realistically, L4S is not truly a clean slate; it is a
‘slightly-dirty slate’, because it is built within the
Internet architecture, which imposes a number of
additional constraints. Some of these are docu-
mented explicitly as assumptions. But many im-
plicit assumptions remain hidden, by definition!

This work is important, because clean-slate oppor-
tunities like this arise only rarely and will only
be open briefly. The period of research freedom
will end as experimental standards start to be ap-
proved for the network mechanisms (perhaps late
2017 or early 2018). Therefore, the decisions we
make now will dirty the slate again, probably for
many decades.

The paper is structured as follows. § 1.1 follows
with definitions of terms, variables and assump-
tions. § 2 states a number of scaling requirements
that are mutually in tension, then § 3 proposes var-
ious ways to resolve these tensions. Some unequiv-
ocally solve the dilemmas, others are compromises
that partially satisfy some of the apparently mutu-
ally incompatible requirements.

the details of each part. https://riteproject.eu/dctth/
collects together links to L4S materials.

c© Simula Research Laboratory & Nokia Bell Labs, 2017 Version 01 1 of 11

mailto:research@bobbriscoe.net
mailto:koen.de_schepper@nokia.com
https://riteproject.eu/dctth/


TR-CS-2016-001 Scalable Congestion Control Tensions

1.1 Terminology & Assumptions

Assumption 1. Scaling of topology is not part of
this exercise. For traffic scaling purposes, it will be
sufficient to consider a mini-scenario of a number
of flows competing for capacity at a single bottle-
neck.

Consider a bottleneck link of capacity X serving
a number of traffic flows indexed by i, where each
flow has:

• bit-rate xi;
• round trip time Ri;
• and consists of segments of typical (usually

maximum) size si.

The number of segments sent but not acknowledged
by source i is termed its window,

Wi =
xiRi

si
. (1)

Assumption 2. We initially assume first-in first-
out (FIFO) queuing, so all L4S microflows for a
site (customer/user) will share the same queuing
delay, q.

The round-trip time Ri of flow i consists of the base
propagation delay between the endpoints R0i and
the queuing delay, that is Ri = R0i + q

It is unlikely that carrier-scale equipment will im-
plement per-microflow queuing, not only due to
cost, but also due to concerns over the tension be-
tween transport layer packet inspection and net-
work layer encryption for privacy. Also per-flow
queuing in the network requires the network to
schedule each microflow, which raises concerns over
constraining application flexibility (e.g. variable-
bit-rate video).

Assumption 3. We assume an L4S-enabled bot-
tleneck implements some form of unary per packet
explicit congestion notification (not necessarily the
standardized form of ECN [RFB01]) so all flows
share the same packet marking probability p, with
0 ≤ p ≤ 1.

Assumption 3 does not preclude congestion controls
that use both delay and explicit marking as com-
plements. It does imply that solutions based solely
on delay and/or loss would require a completely
different analysis.

Assumption 4. We assume traffic will sometimes
share the link with legacy (‘Classic’) TCP traffic,
but it will be isolated from the harmful large and
variable queue induced by ‘Classic’ TCP using, for
example, the DualQ Coupled AQM [DSBEBT16].

2 Scalable Congestion Control
Tensions

Here we show that a number of ideal scaling re-
quirements are not all mutually compatible:

1. Scalable congestion signalling;
2. Limited RTT-dependence;
3. Unlimited responsiveness;
4. Low relative queuing delay;
5. Unsaturated signalling;
6. Coexistence with Classic TCP.

The scope is limited to scalability under steady-
state conditions. Nonetheless, the purpose of some
of the requirements (e.g. scalable control signalling)
is to enable scaling of dynamic control. However,
that linkage will not be explored in this paper.

2.1 Scalable Congestion Signalling

Requirement 1. For all flows, in the steady state,
the number of congestion signals per round-trip, vi
should be no less than a minimum.

Formally:

vi , pWi; vi ≥ v0. (2)

where v0 will be a widely agreed lower bound for all
flows. v0 need not be > 1, but it should not be a lot
less than 1, so that even in the worst case (steady-
state) there will still be a signal nearly every round
trip. The dependence of the variable vi on other
variables will be investigated below.

This requirement ensures that flow rate can hug
variations in available capacity as tightly as possi-
ble within the minimum delay that feedback takes
to reach the sender. It ensures adjustments can re-
main as small as possible, which minimizes excur-
sions into both queuing delay and under-utilization.

It also ensures that the sender can detect the ab-
sence of congestion signals within a small number
of round trips, which can be used to rapidly trigger
probing for more available capacity.

2.2 Limited RTT-Dependence

Requirement 2. In the steady state, the through-
put of a flow with very large base RTT should not
approach starvation while other flows sharing the
same bottleneck queue receive plenty.

This requirement is deliberately not as strong as
‘RTT-Fairness’, in which the bit rates of competing
flows are required to be independent of their RTTs.

2 of 11 Version 01 c© Simula Research Laboratory & Nokia Bell Labs, 2017



Scalable Congestion Control Tensions TR-CS-2016-001

q Total RTT Imbalance

Drop
Tail

200 ms (200 + 200)/(2 + 200) ≈ 2

PIE
AQM

15 ms (200 + 15)/(2 + 15) ≈ 13

L4S
AQM

500µs (200 + 0.5)/(2 + 0.5) ≈ 80

Table 1: Cushioning effect of queuing delay, q on
Total RTT Imbalance (R1+q)/(R2+q) for example
base RTTs R1 = 200 ms, R2 = 2 ms

Nonetheless, any dependence of flow rate on RTT
is required to be limited. The word ‘fairness’ is
deliberately not used for this requirement, because
it is not trying to describe a desire for different users
to have similar rates. Rather it describes the desire
that no flow should approach starvation while other
flows do not [FA08].

It may be argued that existing congestion controls
are RTT-dependent, and the lower throughput of
large-RTT flows has not been problematic. How-
ever, this is because the RTT-dependence of TCP
has been cushioned by queuing delay, which L4S
aims to remove.

Specifically, with tail-drop queues, the RTTs of all
long-running flows have included a common queu-
ing delay component that is no less than the worst-
case base RTT (due to the historical rule of thumb
for sizing access link buffers at 1 worst-case RTT).
So, even where the ratio between base delays is ex-
treme, the ratio between total RTTs rarely exceeds
2 (e.g. if worst-case base RTT is 200 ms, worst-case
total RTT imbalance tends to (200+200)/(0+200).

Classic AQMs reduce queuing delay to a typical,
rather than worst-case, RTT, but this still cushions
the effect of RTT-dependence. For instance, with
PIE, the target queuing delay common to each flow
is 15 ms. Therefore, even if the ratio between RTTs
is 100× (e.g. 200 ms/2 ms) worst-case rate imbal-
ance is only roughly 13 (see Table 1).

However, because L4S all-but eliminates queuing
delay, any RTT-dependence translates (nearly) di-
rectly into rate imbalance. For instance, if the tar-
get L4S queuing delay is 500µs, the same 100×
imbalance of base RTTs leads to a rate imbalance
of about 80 (also shown in Table 1).

It is hard to state requirement 2 precisely. Initially
it will be stated as a rough equality requirement,
but this will be nuanced in later discussion. For
now, consider two flows i & j sharing the same
bottleneck. Then,

xi ≈ xj . (3)

Combining Equation 1 & Equation 2, the marking
probability p is common to all flows. That is,

p =
visi
xiRi

=
vjsj
xjRj

.

Substituting into Equation 3:

visi
vjsj

≈ Ri

Rj
. (4)

Therefore, for flow bit-rate to be (roughly) indepen-
dent of RTT, source i would have to make either the
segment size si or vi (or the product of both) pro-
portionate to its RTT Ri. Both lead to problems
when the RTT is small:

• The segment size is usually set to the maxi-
mum that all the links along the path can sup-
port. Therefore, to make si proportionate to
Ri, segment size would have to be reduced on
shorter RTT paths. Then the packet process-
ing rate and therefore the likelihood of proces-
sor overload, would be much higher than nec-
essary whenever content was sourced locally,
rather than remotely. Such perverse ineffi-
ciency is not a feasible proposition.

• If vi were proportionate to Ri, the number of
round-trips between signals would become very
large over short RTT paths, leading to slack
control of dynamics (failing Req 1);

We will tease apart this dilemma between require-
ments 1 & 2 when we consider potential compro-
mises between requirements in § 3.

One possible escape from this dilemma is that the
range of feasible RTTs will not need to scale in-
finitely, although this point is controversial:

• The RTT in glass over the earth’s surface be-
tween two points at opposite poles (200 ms
or 240 ms allowing for typical indirect rout-
ing) could be considered as an upper bound to
RTT. However, this excludes inter-planetary
communication, which is likely to become less
and less unusual.

• There is clearly a minimum distance and there-
fore RTT between two machines capable of
running application processes and congestion
control algorithms, given physics sets a min-
imum bound on the size of transistors. But
such a limit would be hard to pin down pre-
cisely.

Traditionally, flows at very different scales of RTT
do not coexist in the same bottleneck. Instead, a
domain at one scale (e.g. a data centre) is often

c© Simula Research Laboratory & Nokia Bell Labs, 2017 Version 01 3 of 11



TR-CS-2016-001 Scalable Congestion Control Tensions

separated from a domain at another scale (e.g. the
public Internet) by an intermediate buffering node;
a congestion control proxy. Nonetheless, one pur-
pose of designing scalable control algorithms is to
remove the need for such proxies.

2.3 Unlimited Responsiveness

Requirement 3. An L4S congestion controller
must continue to remain responsive to congestion
for all values of the window, Wi.

The ACK-clocking mechanism of Classic TCP can-
not work if the window is less than d segments,
where d is the delayed ACK factor. For example,
with a delayed ACK factor of 2, the ACK-clock
fails if the window is less than 2. If the base RTT
is so low that the window needs to be below d to fit
available capacity, Classic TCP never reduces its
congestion window below d. Instead, TCP holds
the congestion window at d, which forces the queue
to grow. This grows the total RTT until a window
of d packets will fit within it [BDS15].

Traditionally, it was thought that this was only a
problem with very low capacity. However, once
queuing delay is all-but removed, it is not uncom-
mon for the base RTT to be low enough to ex-
hibit this problem. For instance, consider available
capacity xi = 2 Mb/s, which might occur when a
few flows happen to be sharing the link. With a
common segment size si = 12 kb and base RTT
Ri = 6 ms, the window to fill this capacity is
Wi = xiRi/si = 1 segment per round.

If L4S controllers became unresponsive at some
limit, like Classic TCP does, they would ruin the
low queuing delay feature of the L4S service in
many realistic cases like those above. This is why
requirement 3 states that an L4S controller must
not exhibit such a limit.

2.4 Low Relative Queuing Delay

Requirement 4. Queuing delay should remain
small relative to the likely shortest base RTT of any
bottlenecked flow.

There is no need for queuing delay to be smaller
than some absolute delay limit as long as it does not
have significant impact relative to the base round
trip delay of any communication.

Queuing delay has been steadily eroded as we have
moved from i) tail drop to ii) AQMs for Classic
TCP traffic to iii) an L4S AQM designed to be used
with Scalable congestion controls. Assuming the

bottleneck is in a link where flow multiplexing is
low, these respectively keep queuing delay to i) the
worst-case base RTT; ii) a typical base RTT; and
iii) the minimum expected base RTT. Therefore
L4S brings us to the point where this requirement
can be satisfied.

Each case is briefly explained in the following:

1. In a low stat-mux case, a well-sized drop-tail
buffer is not configured smaller than 1 worst-
case bandwidth-delay product, which equates
to 1 worst-case RTT of delay. Otherwise all
lone flows except those with worst-case RTT
would under-utilize the bottleneck link and
continual unavoidable bursts would exacerbate
under-utilization even for the longest RTT
flows.

2. An AQM is designed to absorb bursts up to
a worst-case RTT in duration, so it can be
configured to aim for a typical RTT of queu-
ing delay, accepting that there will be some
under-utilization by lone large RTT flows. For
instance, an AQM in a data centre is config-
ured with a much lower target delay than an
AQM in the public Internet.

3. The utilization of Scalable traffic is relatively
insensitive to a lower-than-optimal target de-
lay [AJP11] so an L4S queue can be configured
for close to the minimum likely RTT with very
little under-utilization.

If we aim to enable a wider range of flows to coexist
in the same bottleneck (e.g. 1µs–200 ms), it will
be necessary to either manually configure target
delay lower, to reflect the lowest typical base RTT,
or perhaps to design AQMs that auto-detect the
lowest RTT flow that is using the bottleneck at any
one time and auto-tune its target delay accordingly.

Satisfying this scaling requirement for a wider range
of RTTs seems to require a change to AQM algo-
rithms in the network. Whereas the other require-
ments have so far been addressed with host-only
changes. Nonetheless, this requirement is still rel-
evant to mention here because it complements re-
quirements 2 & 3.

2.5 Unsaturated Signalling

Requirement 5. Algorithms should avoid saturat-
ing congestion signalling at 100% marking.

From Equation 2 and the valid range of p,

p =
vi
Wi

; p ≤ 1.

4 of 11 Version 01 c© Simula Research Laboratory & Nokia Bell Labs, 2017



Scalable Congestion Control Tensions TR-CS-2016-001

Equation 2 is conditional on vi ≥ v0, therefore

v0 ≤ vi ≤Wi,

This combination of inequalities implies v0 ≤ Wi.
So, when the window is small, congestion signalling
could saturate at p = 100%. Then the controller
will effectively stop reducing the window Wi in re-
sponse to further increases in congestion, contra-
vening requirement 3. This causes the queue to
grow, until the total RTT grows large enough to
satisfy (substituting from Equation 1):

Ri ≥
v0si
xi

. (5)

This inequality is plotted in Figure 1 to illustrate
the region where signalling saturates for two exam-
ple values of v0.

0

5

10

15

20

0 2 4 6 8 10 12 14 16

R
T

T
, 
R
i 
[m

s]

Flow-rate, x [Mb/s]

v0 = 2 

v0 = 1 

Figure 1: Congestion signalling saturates for combi-
nations of RTT and available capacity in the shaded
region (segment size, si = 12 kb

It might seem that v0 could be set as low as possible
to reduce the likelihood of saturation. However, at
the other end of the window spectrum, this would
reduce the number of control signals per RTT, com-
promising requirement 1.

2.6 Coexistence with Classic TCP

Requirement 6. No standard Classic TCP
flow [APB09] should be pushed towards starvation
while any L4S flows are not.

As with requirement 2, the words ‘fairness’ or
‘TCP-friendliness’ are deliberately not used for this
requirement, because it is not trying to justify some
unsubstantiated feeling that different users or ap-
plications should have similar rates [Bri07]. It is
expressed in terms of each flow avoiding starvation,

which Floyd and Allman [FA08] explained was the
underlying motivation behind TCP-fairness. Per-
flow starvation-avoidance is all that is necessary for
end-systems to implement. Networks might (and
often do) additionally enforce or police the relative
rates of users, but networks need to be careful not
to limit application flexibility without strong rea-
sons.

As long as there is plenty of capacity, this require-
ment then allows flows to weight their rates to be
different from each other as long as they do not
increase congestion to a level at which a standard
TCP flow [APB09] would approach starvation.

We use the term ‘approach starvation’ rather than
just ‘starvation’ because strictly starvation is a con-
dition where one congestion control continually re-
duces another, driving it to its minimum through-
put whatever capacity is available. It will probably
be necessary to define and standardize ‘approach-
ing starvation’ as some minimum throughput of a
Classic TCP flow, or equivalently some maximum
level of Classic drop (or Classic marking). We shall
call these the ‘tolerable throughput’ or ‘tolerable
congestion level’, but not quantify them here.

The RTT used by the comparable standard TCP
flow also needs to be considered, for two reasons:

• As was explained in § 2.2, RTT-dependent con-
gestion controls are no longer cushioned by
queuing delay when queuing delay is kept low
by AQMs.

• The traditional definition of TCP-fairness has
always applied to flows of similar RTT, but this
is not appropriate for comparing flows that are
served by queues with different target queuing
delay within the same bottleneck (as in the
DualQ AQM [DSBEBT16]).

It would be over-restrictive to prohibit Scalable
flows from pushing a long RTT Classic flow towards
starvation, given short RTT Classic flows already
push long RTT Classic flows towards starvation.

We take the position that we only have to prohibit
Scalable flows from pushing low-RTT Classic flows
towards starvation. Just as the aim here is to de-
sign Scalable CCs with limited RTT-dependence
(requirement 2), it can be asserted that there is
nothing to stop Classic CCs being redesigned for
limited RTT-dependence. If so, there is no doubt
that the aggression of long-RTT Classic flows would
be increased, rather than that of short-RTT flows
decreased.

This still begs the question of what RTT we mean
by a ‘low-RTT’ Classic flow. The RTT of a Classic
TCP flow will never be less than the queue delay

c© Simula Research Laboratory & Nokia Bell Labs, 2017 Version 01 5 of 11



TR-CS-2016-001 Scalable Congestion Control Tensions

target in an AQM for Classic traffic. As explained
in § 2.4 the queuing delay target of a Classic AQM
is configured for the typical RTT of the flows it con-
trols. We do not know of a study that measures the
average base RTT of traffic on the pubic Internet
weighted by usage. Nonetheless, the lowest opinion
of what is ‘typical’ is the 5 ms target of CoDel.2

By Assumption 4, L4S and Classic traffic share ca-
pacity through a mechanism like the DualQ Cou-
pled AQM [DSBEBT16]. Currently, this relates the
loss (or ECN marking) probability seen by Classic
traffic, pC , to that seen by L4S traffic, p, as follows:

pC =
(p
k

)2

. (6)

By the above arguments, it is sufficient for coexis-
tence to set the coupling factor, k with only ‘low-
RTT’ Classic flows in mind.

This leaves the question open of what value to agree
on for the aggressiveness of Scalable flows (v0 in
Equation 2). The choice of v0 already requires a
tough compromise to be struck between require-
ments 1, 2, 3 and 5. So it would be sensible to
wait for some consensus to emerge over the choice
of v0 before recommending a value for the coupling
factor k.

3 Solutions and Compromises

3.1 Unsaturated Marking

A scheme such as REM [ALLY01] could be used in
the network to reduce the likelihood that signalling
will saturate (requirement 2.5). Nonetheless, be-
low we propose a scheme that purely involves the
sender’s control algorithm.

It is proposed to use the number of unmarked pack-
ets, u, between marked packets to drive the sender’s
congestion control algorithm. If p is the packet
marking probability, as already defined, then the
number of packets delivered per marked packet is
1/p. Therefore, the number of unmarked packets
between the marked packets,

u =
1

p
− 1

or

1

u
=

p

(1− p)
(7)

Whereas p is confined to the range [0, 1], the range
of 1/u is [0,∞). This is the unsaturating property
that is needed.
2 In private networks, e.g. data centres, the typical RTT

and therefore the queuing delay target of an AQM will
generally be lower.

Figure 2: Number of unmarked packets as a non-
saturating congestion signal

Under normal lightly loaded conditions, when p
is close to zero, 1/u → p. For example, if p =
0.01, 1/u = 0.01010101. But as p → 1, 1/u → ∞.
For example, if p = 0.9999999, 1/u = 9999999.
Other examples are illustrated in Figure 2.

These unsaturating congestion signals will some-
times be called virtual marks, because the host (or
any observer) can calculate the occurence of virtual
marks from the spacing between real marks.

3.2 Scalable Signalling vs. RTT In-
dependence

A difficult tension remains between the scalable
congestion signalling requirement (2.1) and the re-
quirement to limit RTT-dependence (2.2).

The authors cannot find an elegant resolution to
this tension. Instead, we have considered a num-
ber of inelegant compromises. Those ideas that are
decent enough to present here are named “Compro-
mise 4” and “Compromise 5”. The flow of the argu-
ment continues from § 2.2, where we initially set the
bit rates of two competing flows, i & j with different
RTTs to be roughly equal, xi ≈ xj , which we shall
call our ‘interim RTT-independence requirement’.
Different compromises soften this requirement in
different ways.

Before continuing, we shall simplify. § 2.2 con-
cluded that the maximum segment size could not
be varied upwards, given existing link limitations,
and nothing would be gained by varying it down-
ward. Therefore we shall simplify by discussing
packet rate, r, not bit rate. Then Equation 1 can
be restated as

Wi = riRi. (8)

3.2.1 Compromise 4

This compromise ends up not being chosen, but it
is included here to illustrate the problem.

6 of 11 Version 01 c© Simula Research Laboratory & Nokia Bell Labs, 2017



Scalable Congestion Control Tensions TR-CS-2016-001

Returning to our interim RTT-independence re-
quirement, it led us to Equation 4, which required
that the marks per RTT, vi ∝ Ri. Substituting in
Equation 2,

pWi ∝ Ri (9)

Substituting from Equation 8 and introducing a
constant of proportionality

priRi = c0Ri

ri =
c0
p
. (10)

The constant c0 = pri can be interpreted as the
constant number of marks per unit time necessary
for RTT-independence. For example, if c0 = 1000,
in each flow, one packet would be marked per ms.

Such RTT-independence would be problematic in
two cases:

Low rate: If r < 1 packet/ms, there would not be
enough packets to be marked once per ms;

Low RTT: If Ri < 1 ms, there would be less than
1 mark per round trip. For example, if Ri =
1µs, there would be only one mark every 1,000
round trips, which would not provide the tight
control demanded by requirement 2.

The first problem is a signalling saturation prob-
lem, which can be solved using the technique in
§ 3.1. The second problem is not surprising, be-
cause Equation 10 is derived from pWi = c0Ri, and
when Ri is small this contravenes vi ≥ v0 from
Equation 2, which expresses the scalable signalling
requirement.

In contrast, DCTCP [AGM+10] is a good example
of the advantage of scalable congestion signalling
(requirement 2). In the steady state its congestion
window converges to,

Wi =
v0
p
,

where in DCTCP’s case v0 = 2 segments. However,
this contravenes requirement 2, because, substitut-
ing from Equation 8, the packet rate is inversely
dependent on RTT.

ri =
v0
Rip

. (11)

One possible compromise is to replace the depen-
dence on RTT in Equation 11 with dependence on
another scalable property, perhaps the inter-packet
departure time, 1/r:

ri =
v0
p/ri

.

This should scale reasonably well, because it will
only be less than the RTT if the window is less
than 1 segment, which is uncommon (but not
impossible—see requirement 3). However, this sim-
plifies to

p = v0,

which would be an impractical rate control, be-
cause, the congestion level would not change with
rate, so it would never converge.

A possible alternative compromise would be to re-
place dependence on RTT with dependence on the
square-root of the inter-departure time 1/sqrtr.
For completeness, we will also address the satura-
tion problem by replacing p with 1/u:

ri =
v0u

1/
√
ri
,

which simplifies to

ri = v20u
2.

Renaming the squared constant, we get

ri = c0u
2. (12)

Figure 3: Inter-mark time compared with inter-
packet departure time for the ‘Compromise4’ al-
gorithm of Equation 12

Figure 3 uses Equation 12 to plot the inter-mark
time 1/(pri) compared to the inter-packet depar-
ture time, using c0 = 1000. At any flow rate, for ex-
ample the vertical at 1 Gb/s, the ratio of the times
where this vertical intersects the two plots (120µs
/ 12µs = 10) represents a likely worst-case num-
ber of round trips per mark at that flow-rate. This
assumes that the worst-case is a window of one seg-
ment, so that the intersection of the vertical with
the inter-packet time plot represents a worst-case
RTT, which is perhaps reasonable, but not strictly
true, as already discussed.

c© Simula Research Laboratory & Nokia Bell Labs, 2017 Version 01 7 of 11



TR-CS-2016-001 Scalable Congestion Control Tensions

Therefore, at flow rates below about 100 Mb/s,
there is little likelihood of unscalable control sig-
nalling (many round trips between marks). How-
ever, at higher flow rates, and low RTTs, this ap-
proach compromises the scalable control signalling
requirement (1) in favour of RTT-independence.

Further, because of the squared congestion metric
in Equation 12, the coupling between Classic and
L4S congestion signals would have to be altered
from that given in Equation 6. In order to coex-
ist with Classic TCP (requirement 6), the coupling
would require an exponent of 4, rather than 2.

It is questionable whether it will be worthwhile to
standardize an exponent of 4 rather than 2 in the
L4S coupling mechanism, solely to support an ap-
proach that does not reliably satisfy one of the con-
flicting requirements, specifically scalable signalling
(requirement 1).

3.2.2 Compromise 5

The nub of the tension can be seen by restating
the equations representing the scalable signalling
requirement (Equation 2) and the limited RTT-
dependence requirement (Equation 9) together:

pWi ≥ v0, (2)

pWi ∝ Ri, (9)

A better compromise might be possible if the marks
per RTT can take the form of a function of RTT
vi(Ri), such that, as RTT reduces, marks per RTT
are lower bounded (or at least reduce slowly) while,
as RTT rises, marks per RTT become proportional
to RTT. Equation 13 fits this description fairly well:

Wi

u
=

v0
lg (R0/Ri + 1)

. (13)

R0 would probably need to be standardized, at least
to within a range. It is a configuration parameter
common to all flows that represents the RTT at
which Wi/ui = v0. This formula is illustrated in
Figure 4 using parameters v0 = 2, R0 = 500µs.

It will be noted that non-saturating congestion sig-
nals, 1/u, have been used in place of p, as described
in §,3.1. We use the unit ‘marked packet’ for these
signals, which is a good enough approximation at
the low marking probabilities used in the examples
here.

The marks have been contrived to become pro-
portional to RTT as RTT rises3 so that, when
marks/RTT is divided by Ri to derive the formula

3 The Taylor series of ln(1 + y) = y − y2/2 + y3/3 . . ..
So as y → 0; ln(1 + y)→ y.
So, for Ri � R0; v0/ lg (R0/Ri + 1)→ ln (2)v0Ri/R0

Figure 4: Compromise 5 control algorithm showing
marks per RTT as a function of RTT (Equation 13)

for marks per second, it will tend to a constant
asymptote. The resulting formula for marks per
second is given in Equation 14 and Figure 5 im-
plies that it does indeed tend to a constant of about
2,800 as Ri →∞.

ri
u

=
v0

Ri lg (R0/Ri + 1)
(14)

= f(Ri). (15)

Figure 5: Compromise 5 control algorithm show-
ing marks per second as a function of RTT (Equa-
tion 14)

For two flows, i & j with RTTs Ri & Rj , the ratio
between their packet rates will be the ratio of the
functions f(Ri)/f(Rj) using Equation 15. This is
because u will always be common to both flows. For
example, reading off from Figure 5 at Ri = 10µs &
Rj = 130 ms, ri/rj ≈ 35, 000/2, 800 ≈ 13. Thus, a
round-trip ratio of over 4 orders of magnitude only
results in a rate imbalance of a little more than 1
order of magnitude.

This relatively small rate imbalance is not at the
expense of control signal scaling. For instance, in
a round trip of 10µs there are about 0.35 marks
(about 3 round trips per mark).

Therefore, in theory at least, ‘Compromise 5’ is
a good compromise between scaling requirements
that were thought to be mutually incompatible.

8 of 11 Version 01 c© Simula Research Laboratory & Nokia Bell Labs, 2017



Scalable Congestion Control Tensions TR-CS-2016-001

1. Scalable congestion signalling Good compromise #5 (§ 3.2.2) or #4?

2. Limited RTT-dependence Good compromise #5 (§ 3.2.2) or #4?

3. Unlimited responsiveness To be resolved

4. Low relative queuing delay Separate scope: AQM requirement

5. Unsaturated signalling Resolved (§ 3.1)

6. Coexistence with Classic TCP. Resolved [DSBEBT16]

Table 2: Status of Steady-State Scaling Requirements

4 Summary

The status of the requirements set at the start of
this document are summarized in Table 2.

The tension between the first two requirements is
resolved fairly well by Compromise 5 (§ 3.2.2), but
this does not preclude finding a better compromise.

The unlimited responsiveness requirement (2.3) was
set aside for the purposes of the present paper be-
cause it is not so obviously in tension with any other
requirements. It remains to be resolved.

References

[AGM+10] Mohammad Alizadeh, Albert Greenberg,
David A. Maltz, Jitu Padhye, Parveen Pa-
tel, Balaji Prabhakar, Sudipta Sengupta,
and Murari Sridharan. Data Center TCP
(DCTCP). Proc. ACM SIGCOMM’10, Com-
puter Communication Review, 40(4):63–74,
October 2010.

[AJP11] Mohammad Alizadeh, Adel Javanmard, and
Balaji Prabhakar. Analysis of DCTCP: Sta-
bility, Convergence, and Fairness. In Proc.
ACM SIGMETRICS’11, 2011.

[ALLY01] S. Athuraliya, V.H. Li, Steven H. Low, and
Qinghe Yin. REM: Active Queue Manage-
ment. IEEE Network, 15(3):48–53, May/June
2001.

[APB09] M. Allman, V. Paxson, and E. Blanton. TCP
Congestion Control. Request for Comments
5681, RFC Editor, September 2009.

[BDS15] Bob Briscoe and Koen De Schepper. Scaling
TCP’s Congestion Window for Small Round
Trip Times. Technical report TR-TUB8-2015-
002, BT, May 2015.

[BEDSB17] Bob Briscoe (Ed.), Koen De Schepper, and
Marcelo Bagnulo. Low Latency, Low Loss,
Scalable Throughput (L4S) Internet Service:
Architecture. Internet Draft draft-briscoe-
tsvwg-l4s-arch-01, Internet Engineering Task
Force, March 2017. (Work in Progress).

[Bri07] Bob Briscoe. Flow Rate Fairness: Disman-
tling a Religion. ACM SIGCOMM Computer
Communication Review, 37(2):63–74, April
2007.

[DSBEBT16] Koen De Schepper, Bob Briscoe (Ed.), Olga
Bondarenko, and Ing-Jyh Tsang. DualQ Cou-
pled AQM for Low Latency, Low Loss and

Scalable Throughput. Internet Draft draft-
briscoe-tsvwg-aqm-dualq-coupled-00, Inter-
net Engineering Task Force, October 2016.
(Work in Progress).

[DSBTB15] Koen De Schepper, Olga Bondarenko, Ing-
Jyh Tsang, and Bob Briscoe. ‘Data Center to
the Home’: Ultra-Low Latency for All. Tech-
nical report, RITE Project, June 2015.

[FA08] Sally Floyd and Mark Allman. Comments on
the Usefulness of Simple Best-Effort Traffic.
Request for Comments RFC5290, RFC Edi-
tor, July 2008. (Individual submission to RFC
Editor).

[RFB01] K. K. Ramakrishnan, Sally Floyd, and David
Black. The Addition of Explicit Congestion
Notification (ECN) to IP. Request for Com-
ments 3168, RFC Editor, September 2001.

c© Simula Research Laboratory & Nokia Bell Labs, 2017 Version 01 9 of 11



TR-CS-2016-001 Scalable Congestion Control Tensions

Document history

Version Date Author Details of change

00A 24-May-2016 Bob Briscoe First Draft

00B 25-May-2016 Bob Briscoe Extended Introduction, Completed TCP Coexistence,
added Discussion section. Plus minor clarifications
throughout.

00C 26-Mar-2017 Bob Briscoe Restructured to defer potential compromise solutions until
after all constraints. Added new compromise ideas.

00D 27-Mar-2017 Bob Briscoe Nits and added brief discussion section.

00E 07-Jul-2017 Bob Briscoe Fixed nits and avoided describing 1/u as virtual marking
probability.

01 11 Jul 2017 Bob Briscoe De-garbled Coexistence text; added RTT-imbalance exam-
ples.

10 of 11 Version 01 c© Simula Research Laboratory & Nokia Bell Labs, 2017


	Introduction
	Terminology & Assumptions

	Scalable Congestion Control Tensions
	Scalable Congestion Signalling
	Limited RTT-Dependence
	Unlimited Responsiveness
	Low Relative Queuing Delay
	Unsaturated Signalling
	Coexistence with Classic TCP

	Solutions and Compromises
	Unsaturated Marking
	Scalable Signalling vs. RTT Independence
	Compromise 4
	Compromise 5


	Summary
	References
	Document history

