
MARKS: Multicast Key Management using Arbitrarily Revealed

Key Sequences

Bob Briscoe

<bob.briscoe@bt.com> <www.btexact.com/people/briscorj/>

BT Research, B54/130, Adastral Park, Martlesham Heath, Ipswich, IP5 3RE, England

Tel. +44 1473 645196

13 Aug 1999

Abstract

The goal of this work is to separately control in-
dividual secure sessions between unlimited pairs
of multicast receivers and senders. At the same
time, the solution given preserves the scalability
of receiver initiated Internet multicast for the data
transfer itself. Unlike other multicast key manage-
ment solutions, there are absolutely no side effects
on other receivers when a single receiver joins or
leaves a session and no smartcards are required. So-
lutions are presented for single and for multi-sender
multicast. Further, we show how each receiver’s
data can be subject to an individual, watermarked
audit trail. The cost per receiver-session is typically
just one short set-up message exchange with a key
manager. Key managers can be replicated without
limit because they are only loosely coupled to the
senders who can remain oblivious to members be-
ing added or removed. The technique is a general
solution for access to an arbitrary sub-range of a
sequence of information and for its revocation, as
long as each session end can be planned at the time
each access is requested. It might therefore also be
appropriate for virtual private networks or for in-
formation distribution on other duplicated media
such as DVD.

1 Introduction

This paper presents techniques to maintain an in-
dividual security relationship between multicast
senders and each receiver without compromising
the efficiency and scalability of IP multicast’s data
distribution. We focus on issues that are foremost
if the multicast information is being sold commer-
cially. Of prime concern is how to individually
restrict each receiver to extract only the data for
which it has paid.

We adopt an approach where the key used to en-
crypt sent data is systematically changed for each
new unit of application data. The keys are taken
from a sequence seeded with values initially known
only to the senders. Four constructions of se-
quences are presented where arbitrarily different
portions of the sequence can be revealed to each
receiver by only revealing a small number of inter-
mediate seed values rather than having to reveal
every key in the sequence. The first construction
requires only two seed values to be revealed to each
receiver in order to enable the reconstruction of any
part of the sequence, however it is flawed for most
practical applications for reasons that will be de-
scribed later. The other three constructions avoid
this flaw at the minimal extra expense of requir-
ing a maximum of O(log N) seeds to be revealed
once per session to each receiver in order to recon-
struct a part of the key sequence N keys long. This
should be compared with the most efficient multi-
cast key management solutions to date, that require
a message of length O(log n) to be multicast to all
n receivers every time a receiver or group of re-
ceivers joins or leaves. Further, calculation of each
key in the sequence only requires a mean of under
two fast hash operations in the most lightweight
scheme. (Mathematical notation used is explained
in Appendix C.)

In contrast, whenever a receiver is added or re-
moved in any of the constructions presented here,
there is zero side effect on other receivers. A spe-
cial group key change doesn’t have to be initiated
because systematic changes occur sufficiently regu-
larly anyway. No keys need sending over the mul-
ticast, therefore reliable multicast isn’t required. If
key managers are delegated to handle requests to
set-up receiver sessions, the senders can be com-
pletely oblivious to any receiver addition or re-
moval. Thus, there is absolutely no coupling back
to the senders.
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Our thesis is that there are many applications that
only rarely if ever require premature eviction, e.g.
pre-paid or subscription pay-TV or pay-per-view.
Thus, we don’t present a solution for unplanned
eviction, but instead concentrate on the pragmatic
scenario of pre-planned eviction, which we believe is
a novel approach. Each eviction from the multicast
group is planned at each session set-up, but each is
still allowed to occur at an arbitrary time. Nonethe-
less, we show how the occasional unplanned evic-
tion can be catered for by modular combination
with existing solutions at the expense of loss of sim-
plicity and scalability.

By focussing on this pragmatic scenario, the sin-
gle set-up message per receiver session can be with
a highly replicated key manager rather than the
sender. Key manager replication potential is lim-
ited if user account changes need to be synchro-
nised across all replicas to prevent fraud. However
the set-up exchange might, for instance, simply be
a check that the receiver’s identity entitles it to
listen to information up to a certain security clas-
sification. Or a prepayment might give a certain
viewing time. In both these scenarios and many
others, key managers can be stateless allowing any
amount of key manager replication. Thus perfor-
mance can be linear with key manager replication
and system resilience is independent of key manager
resilience. The constructions we present decouple
the sender from the key managers but the coupling
between receivers and key managers depends on the
commercial model of the application using the se-
cure session. Key manager statelessness is therefore
outside the scope of this paper.

In section 2, we discuss requirements and describe
related work on multicast key management and
other specific multicast security issues. In Section 3
we use an example application to put the paper into
a practical context and to highlight the scalability
advantages of using systematic key changes. In sec-
tion 4 we present four key sequence constructions
that allow different portions of a key sequence to
be reconstructed from various combinations of in-
termediate seeds. Section 5 discusses the efficiency
and security of the constructions. Section 6 de-
scribes variations on the approach to add other se-
curity requirements such as multi-sender multicast,
a watermarked audit trail and unplanned eviction.
We also discuss how to apply the approach to non-
multicast multi-party scenarios such as virtual pri-
vate networks or circulation of data copies on DVD.
Finally limitations of the approach are discussed
followed by conclusions.

2 Background and Require-
ments

When using Internet multicast, senders send to a
multicast group address while receivers ‘join’ the
multicast group through a message to their local
router. For scalability, the designers of IP multicast
deliberately ensured that any one router in a multi-
cast tree would hide all downstream join and leave
activity from all upstream routers and senders [9].
Thus a multicast sender is oblivious to the identi-
ties of its receivers. Clearly any security relation-
ship with individual receivers is impossible if they
can’t be uniquely distinguished. Conversely, if re-
ceivers have to be distinguished from each other,
the scalability benefits start to be eroded.

2.1 Multicast Key Management

If a multicast sender wishes to restrict its data to
a set of receivers, it will typically encrypt the data
at the application level. End-to-end access is then
controlled by limiting the circulation of the key. A
new receiver could have been storing away the en-
crypted stream before it joined the secure session.
Therefore, every time a receiver is allowed in, the
key needs to be changed (termed backward secu-
rity [18]). Similarly, after a receiver is thrown out
or requests to leave, it will still be able to decrypt
the stream unless the key is changed again (forward
security). Most approaches work on the basis that
when the key needs to be changed, every receiver
will have to be given a new key. Continually chang-
ing keys clearly has messaging side effects on all the
other receivers than the one joining or leaving.

We define a ‘secure multicast session’ as the set
of data that a receiver could understand, having
passed one access control test. If one key is used
for many related multicast groups, they all form
one secure session. If a particular receiver leaves
a multicast group then re-joins but she could have
decrypted the information she missed, the whole
transmission is still a single secure session. We en-
visage very large receiver communities, e.g. ten mil-
lion viewers for a popular Internet pay-TV channel.
Even if just 10% of the audience tuned in or out
within a fifteen minute period, this would poten-
tially cause thousands of secure joins or leaves per
second.

We use the term ‘application data unit’ (ADU) as a
more general term for the minimum useful atom of
data from a security or commercial point of view
(one second in the above example). The ADU
equates to the aggregation interval used in Chang et
al [8] and has also been called a cryptoperiod when
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measured in units of time. ADU size is application
and security scenario dependent. It may be an ini-
tialisation frame and its set of associated ‘P-frames’
in a video sequence or it may be ten minutes of ac-
cess to a network game. Note that the ADU from
a security point of view can be different from that
used at a different layer of the application. For
performance, an ADU may only be partially en-
crypted with the remainder in the clear [17]. ADU
size can vary throughout the duration of a stream
dependent on the content. ADU size is a primary
determinant of system scalability. If a million re-
ceivers were to join within fifteen minutes, but the
ADU size was also fifteen minutes, this would only
require one re-key event.

However, reduction in re-keying requirements isn’t
the only scalability issue. In the above example,
a system that can handle a million requests in fif-
teen minutes still has to be provided, even if its
output is just one re-key request to the senders.
With just such scalability problems in mind, many
multicast key management architectures introduce
a key manager role as a separate concern from the
senders. This deals with policy concerns over mem-
bership and isolates the senders from much of the
messaging traffic needed for access requests.

Ever since Internet multicast became a feasible
proposition, scalability improvements have been
sought over the earlier group key management
schemes that scale linearly with group size (e.g. In-
gemarsson et al [15]). A second class of solutions
extend Diffie-Hellman public key cryptography in
order to act as a group key, but they require num-
bers of public key operations that also scale lin-
early with group size. Ballardie suggests exploiting
the same scalability technique used for the under-
lying multicast tree, by delegating key distribution
along the chain of routers in a core based multicast
routing tree [4]. However, this suffers from a lack
of end-to-end security, requiring edge customers to
entrust their keys to many intermediate network
providers. The Iolus system [19] sets up a similar
distribution hierarchy, but only involving trusted
end-systems. However, it also addresses the side
effects of re-keying the whole group by requiring
the gateway nodes in the hierarchy to decrypt and
re-encrypt the stream with a new key known only
to their local sub-group. This introduces a latency
burden on every packet in the stream and requires
strategically placed intermediate systems to volun-
teer their processing resource.

An alternative class of approaches involves a single
key for the multicast data, but a hierarchy of keys
under which to send out a new key over the same
multicast channel as the data. These approaches
involve a degree of redundant re-keying traffic arriv-
ing at every receiver in order for the occasional mes-

sage to arrive that is decipherable by that receiver.
The logical key hierarchy (LKH) [25] gives each re-
ceiver its own key then creates the same number
of extra keys, one for each node of a binary tree
of keys with each member’s key at the leaves. For
n receivers, LKH therefore requires the centre to
store O(2n) keys but each receiver need only store
O(log n). The root of the tree is the group key un-
der which data is encrypted. When a member joins
or leaves, all the keys on their branch to the root
are replaced in one long message multicast to the
whole tree. Each new key is included twice; each
encrypted under one of the two keys below it. Each
re-key message is therefore O(2 log n) times the key
length. The closer a receiver is in the logical tree to
the changed leaf key, the more decrypt operations
it will need to extract its new keys from this mes-
sage, the maximum being O(log n). Perlman has
suggested an improvement to LKH, termed LKH+,
where a one way function could be used by all those
with knowledge of the existing key to compute the
next one [22]. The joining member would only be
told the new key and not be able to work back
to the old one. Unfortunately, the same argument
cannot be applied for backward security. Wong et
al [26] take an approach that is a generalisation
of LKH, analysing key graphs as a general case of
trees. They find a tree similar to LKH (but of de-
gree four rather than binary) is the most efficient
for large groups.

The one-way function tree (OFT) technique [18] is
in the same class of approaches as LKH. Inciden-
tally, OFT is also presented in [3], which is partic-
ularly notable for its comprehensive and accurate
review of the literature. Like LKH, all members
have their own key, and a binary tree of keys is built
over them with the root also being the group key.
However, the keys at each intermediate node are
a combination of the hashes of the two keys below,
rather than being freely generated. Thus Perlman’s
suggestion cannot be applied to OFT because the
group key is not independent of the keys lower in
the tree. As a result, LKH+ becomes more efficient
than OFT in most scenarios. The standardised ap-
proach to pay-TV key management also falls into
this class [16]. A set of secondary keys is created
and each receiver holds a sub-set of these in tamper-
resistant storage. The group key is also unknown
outside the tamper-resistant part of the receiver.
In case the group key becomes compromised, a new
one is regularly generated and broadcast multiple
times under different secondary keys to ensure the
appropriate receivers can re-key.

Chang et al [8] also falls into this class but offers
two advances over LKH+. We term it LKH++ for
brevity. The group members are still arranged as
the leaves of a binary tree with the group session
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key at the root, but instead of assigning an auxiliary
key to each node, as in LKH, just two auxiliary keys
are assigned per layer of the tree. If each member
is assigned a different user identity number (UID)
this effectively assigns a pair of auxiliary keys to
each bit in the UID space. The first of each pair is
given to users with a 1 at that bit position in their
UID and the other when there is a 0. Thus storage
per member is still O(log n) but storage at the con-
troller is O(2 log n) as opposed to O(2n) with LKH.
When a single member leaves, a new group session
key is randomly generated and multicast encrypted
with every auxiliary key in the tree except those
held by the leaving member. This guarantees (aside
from the reliability of multicast) that every remain-
ing member will get at least one message they can
decrypt. The auxiliary keys are then all changed
by a hash keyed with the new group session key to
ensure future rekeying messages cannot be opened
by members who have left. This costs a message
of O(log n) as with LKH. The second improvement
recognises the potential for aggregation of member
removals if many occur within the timespan of one
ADU. With this variation, the group session key
is multicast to the group multiple times, each en-
crypted with different logical combinations of the
auxiliary keys in order to ensure all members but
the leaving ones can decrypt at least one message.
The combinations are chosen primarily to minimise
the number of messages and secondarily to min-
imise the number of keys combined per message.
Finding this minimised set has the same solution
as the familiar problem of reducing the number of
logic gates and inputs in the field of logic hard-
ware design. The resulting message size to re-key
depends on which members leave but is typically
smaller than the sum of all the otherwise discrete
leave messages, and can be smaller than the mes-
sage for a single member leaving.

All work in this class of approaches uses multicast
itself as the transport to send new keys. As ‘reliable
multicast’ is still to some extent a contradiction in
terms, all such approaches have to allow for some
receivers missing the occasional multicast of a new
key due to localised transmission losses. Some ap-
proaches include redundancy in the re-keying to al-
low for losses, but this reduces their efficiency and
increases their complexity. Others simply ignore
the possibility of losses, delegating the problem to
a choice of a sufficiently reliable multicast scheme.

LKH+ [22] is not actually in the same class of
approaches as LKH and OFT. It relies on a pre-
ordained new group key known in advance by all
authorised recipients. Dillon’s approach [10] falls
into the same class. Documents transmitted over
satellite are encrypted with a key generated from
a one way hash of a seed keyed with the docu-

ment ID. The seed is stored at the receiver in a
tamper-resistant security engine having been trans-
mitted under the public key of that security engine,
the private key being installed in the security en-
gine at manufacture. To request a document from
a catalogue, the receiving computer requests that
a key be generated by its associated security en-
gine which it pre-loads into its satellite receiver, to
be used when the next encrypted document broad-
cast is scheduled. Any documents that arrive with
no corresponding key awaiting them are discarded.
The distinguishing feature of this class of solutions
is that the group key used to encrypt a document is
specific to that document ID. Thus each broadcast
document is encrypted using a different key rather
than the key only being changed in synchrony with
the addition or removal of receiver interest.

The Nark scheme [5] also falls into this class.
As with the present approach, the group key is
systematically changed for each new ADU in a
stream. However, unlike with the present approach,
a smartcard happens to be required to give non-
repudiation of delivery so it can also be exploited
to control which keys in the sequence to reveal.
Each receiver has a proxy of the sender running
within her smartcard, so all smartcards can be sent
one primary seed for the whole key sequence. The
proxy on the smartcard then determines which keys
to give out depending on the policy it was given by
the key manager when the receiver set up the ses-
sion. The present paper shows how to construct
a key sequence such that it can be partially re-
constructed from intermediate seeds, thus remov-
ing the need for a smartcard if non-repudiation is
not a requirement.

2.2 Multicast Audit Trail

Re-multicast of received data requires very low
resources on the part of any receiver. Even if
the value of the information received is relatively
low there is always a profit to be made by re-
multicasting data and undercutting the original
price (arbitrage), as proved in Herzog et al [14].

In general, prevention of information copying is
considered infeasible; instead most attention fo-
cuses on the more tractable problem of copy detec-
tion. It is possible to ‘watermark’ different copies
of a copyrighted digital work. If a watermarked
copy is later discovered, it can be traced back to its
source, thus deterring the holders of original copies
from passing on further, illicit copies. Watermarks
are typically applied to the least significant bits of
a medium to avoid significantly degrading the qual-
ity. Such bits are in different locations with differ-
ent regularity in different media, therefore there is
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never likely to be a generic approach [24]. The most
generic scheme discussed to date is Chameleon [1].
In Chameleon a stream is ciphered by combining
a regular stream cipher with a large block of bits.
Each receiver is given a long-term copy of the block
to decipher the stream. In the concrete example
given, four 64b words in the 512kB block are chosen
by indexing the block with the output of the regular
stream cipher. Then all four are XORed together
with each 64b word of the stream. The block given
to each receiver is watermarked in a way specific to
the medium. For instance, the least significant bit
of every 16b word of an audio stream might be the
only place where a watermark can be stored with-
out degrading the content significantly. Because
the block is only used for the XOR operation, the
position of any watermarked bits is preserved in the
output.

Naor et al [20] formalises a pragmatic approach to
such ‘traitor tracing’ by proposing a parameter that
represents the minimum number of group members
that need to collude to eliminate a watermark. The
elimination criteria are that none of the conspir-
ators are identifiable, and it is assumed that the
copyright owner will want to avoid accusing inno-
cent members. For instance, watermarking at least
the square root of the total number of bits that
could hold a watermark in the Chameleon scheme
would protect against conspiracies of four or less
members.

Watercasting [6] is a novel, if rather convoluted way
to embed an individual watermark in each receiver’s
copy of multicast data. Multicast forwarding is
modified by including active networking elements
at strategic branch points. These elements drop
redundant data inserted into the original stream
in order to produce a different drop pattern on
each forwarded branch. A chain of trusted network
providers is required for watercasting, each of which
has to be willing to reveal their authenticated tree
topology to each sender.

In this paper, for completeness, we report how it is
possible to add an audit trail back to the copier of
multicast information using watermarking. Our ap-
proach is not novel in this respect, simply re-using
Chameleon. However, we include it to demonstrate
our modular approach to the addition of mecha-
nisms.

2.3 Other Requirements

Beyond the two requirements we have focussed on
so far, two taxonomies of multicast security require-
ments [2, 7] include many other possible combina-
tions of security requirements for multicast.

We have placed sender authentication outside the
scope of this paper, but its importance merits a
brief survey of the literature. A sender may merely
need to prove it is one of the group of valid re-
ceivers in which case use of the group encryption
key suffices. If receivers require each sender to au-
thenticate their messages individually, public key
signing leads to an unscalable solution because of
the sheer volume of heavy asymmetric key opera-
tions required. Balenson et al [3] and Canetti et
al [7] both provide up to date reviews of more ef-
ficient approaches to this problem, the latter also
offering a compromise solution where senders add
as many one bit message authentication codes to
their messages as there are receivers, each keyed
with a secret known to only one receiver.

The need for proof of delivery is recognised in
the above taxonomies, but solutions are rarely dis-
cussed in the academic literature. Proof of delivery
is a very different problem to acknowledgement of
delivery. It has to be possible to prove the receiver
did indeed receive data when they might deny re-
ception. Pay-TV and pay-per-view systems invari-
ably use the tamper-resistant processing and stor-
age capabilities of the local receiver to record which
products or programmes have been requested in or-
der to form a bill at a later time (e.g. [16, 10] as al-
ready cited). Where an isochronous stream is being
transmitted, Nark [5] even allows late delivery of an
ADU to be proved. Thus a refund can be claimed
where quality of service is degraded for a particu-
lar leaf of a multicast tree. This is achieved by the
receiver holding back its request to its smart card
for the key to each ADU until it is satisfied that
the ADU has been received on time. Thus, any
record of a successful key request generated by the
smartcard is sufficient proof that the ADU arrived
on time.

The scenario where the data is an ordered stream
and access is allowed between a start and an end
point is not the only one to cater for. Access
might be given only to certain categories of data,
or to a certain total amount of data from any-
where within the stream. A more random access
approach might be required for non-sequential ap-
plication name spaces [12]. Few multicast secu-
rity approaches specifically cater for such scenarios.
This paper is no exception, because a secure ses-
sion is assumed to be a bounded portion of a linear
sequence space. However, variations to cater for
non-ordered and multi-dimensional key sequences
are discussed later.

We have described four multicast security require-
ments beyond basic privacy key management. It
is generally agreed that a modular approach is re-
quired to building solutions for combined require-
ments, rather than searching for a single monolithic
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‘super-solution’. Later, as examples of this modu-
lar approach, we show how a number of variations
can be added to the basic key management schemes
to achieve a selection of the above requirements.

3 Sender-Decoupled Architec-
ture

We now describe a large-scale network game sce-
nario to explain why systematic key changes allow
sender decoupling, giving the scalability benefits as-
serted in the introduction. This motivates the need
for key sequences that can initially be built from
a small number of seeds. Use of a practical exam-
ple also clarifies why it must be possible to reveal
arbitrary portions of the key sequence to different
customers. This motivates the need for reconstruc-
tion of any sub-range of the key sequence, also from
a small number of intermediate seeds. The sub-
sequent section will describe four different key se-
quence constructions that meet these requirements,
but for the purposes of describing the architecture,
they will all be discussed collectively, and simply
termed ‘MARKS constructions’.

We deliberately choose an example where the fi-
nancial value of an ADU (defined in Section 2.1)
doesn’t relate to time or data volume, but only to
a completely application-specific factor. In this ex-
ample, participation is charged per ‘game-minute’,
a duration that is not strictly related to real-time
minutes, but is defined and signalled by the game
time-keeper. The game consists of many virtual
zones, each moderated by a different zone con-
troller. The zone controllers provide the back-
ground events and data that bring the zone to
life. They send this data encrypted on a multi-
cast address per zone, but the same ADU index
and hence key is used at any one time in all zones.
Thus the whole game is one single ‘secure multicast
session’ (defined in Section 2.1 2.1) despite being
spread across many multicast addresses. Players
can tune in to the background data for any zone as
long as they have the current key. The foreground
events created by the players in the zone are not
encrypted, but they are meaningless without refer-
ence to this background data.

Fig 1 only shows data flows relevant to game secu-
rity and only those once the game is in progress,
not during set-up. Clearly all players are sending
data, but the figure only shows encrypting senders,
S — the zone controllers. Similarly, only receivers
that decrypt, R, are shown — the game players. A
game controller sets up the game security, which is
not shown in the figure, but is described below. Key
management operations are delegated to a number

of replicated key managers, KM, that use secure
Web server technology.

The key to the secure multicast session is changed
every game-minute (every ADU) in a sequence. All
encrypted data is headed by an ADU index in the
clear, which refers to the key needed to decrypt it.
After the set-up phase, the game controller, zone
controllers and key managers hold initial seeds that
enable them to calculate the sequence of keys to be
used for the entire duration of the game (unless a
staged set-up is used).

3.1 Game set-up

1. The game controller (not shown) unicasts a
shared ‘control session key’ to all KM and S af-
ter satisfying itself of the authenticity of their
identity. The easiest way to do this would be
for all S as well as all KM to run secure Web
servers so that the session key can be sent to
each of them encrypted with each public key
using client authenticated secure sockets layer
(SSL) communications [11]. The game con-
troller also notifies all KM and S of the mul-
ticast address it will use for control messages,
which they immediately join.

2. The game controller then generates the initial
seeds to construct the entire key sequence and
multicasts them to all KM and all S, encrypt-
ing the message with the control session key
and using a reliable multicast protocol suit-
able for the probably small number of targets
involved.

3. The game is announced in an authenticated
session directory announcement [13] regularly
repeated over multicast (not shown). The an-
nouncement protocol is enhanced to include
details of key manager addresses and the price
per game-minute. Authenticated announce-
ment prevents an attacker setting up spoof
payment servers to collect the game’s revenues.
The key managers listen to this announcement
as well as the receivers, in order to get the cur-
rent price of a game-minute. The announce-
ment must also specify which key sequence
construction is in use.

3.2 Receiver session set-up, duration
and termination

1. A receiver that wishes to pay to join the game,
having heard it advertised in the session di-
rectory, contacts a KM Web server request-
ing a certain number of game-minutes using
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Figure 1: Key management system design

the appropriate form. This is shown as ‘uni-
cast set-up’ in Fig 1. R pays the KM the cost
of the requested game-minutes, perhaps giv-
ing her credit card details, or paying in some
form of e-cash or in tokens won in previous
games. In return, KM sends a set of interme-
diate seeds that will allow R to calculate just
the sub-range of the key sequence that she has
bought. The key sequence constructions de-
scribed in the next section make this possible
efficiently. All this would take place over SSL
with only KM needing authentication, not R.

2. R generates the relevant keys using the inter-
mediate seeds she has bought.

3. R joins the relevant multicasts determined by
the game application, one of which will always
be the encrypted background zone data from
one S. R uses a key from the sequence calcu-
lated in the previous step to decrypt these mes-
sages, thus making the rest of the game data
meaningful.

4. Whenever the time-keeper signals a new game-
minute (over the control multicast), all the
zone controllers increment their ADU index
and use the next key in the sequence. They
all use the same ADU index. Each R notices
that the ADU index in the messages from S
has been incremented and uses the appropri-
ate next key in the sequence.

5. When the game-minute index approaches the
end of the sequence that R has bought, the
application gives the player an ‘Insert coins’

warning before she loses access. The game-
minutes continue to increment until the point
is reached where the key required is outside
the range that R can feasibly calculate. If R
has not bought more game-minutes, she has to
drop out of the game.

This scenario illustrates how senders can be com-
pletely decoupled from all receiver join and leave
activity as long as key managers know the financial
value of each ADU index or the access policy to each
ADU through some pre-arrangement. There is no
need for any communication between key managers
and senders during the session. Senders certainly
never need to hear about any receiver activity. If
key managers need to avoid selling ADUs that have
already been transmitted, they merely need to syn-
chronise with the changing stream of ADU sequence
numbers from senders. In the example, key man-
agers synchronise by listening in to the multicast
data itself. In other scenarios, it may be possible
for synchronisation to be purely time-based, either
via explicit synchronisation signals or implicitly by
time-of-day synchronisation. In yet other scenar-
ios (e.g. multicast distribution of commercial soft-
ware), the time of transmission may be irrelevant.
For instance, the transmission may be regularly re-
peated, with receivers being sold keys to a part of
the sequence that they can tune in to at any later
time.

In this example, pre-payment is used to buy seeds.
This ensures key managers hold no state about their
customers. This means they can be infinitely repli-
cated as no central state repository is required, as
would otherwise be the case if seeds were bought on
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account and the customer’s account status needed
to be checked.

4 Key Sequence Construction

In all the key sequence constructions below, the
following notations are used:

• b(v) is the notation used for a function that
blinds the value of v. That is, a computa-
tionally limited adversary cannot find v from
b(v). An example of a blinding or one-way
function is a hash function such as the MD5
hash [23] or the standard Secure Hash 1 [21].
Good hash functions typically require only
lightweight computational resources. Hash
functions are designed to reduce an input of
any size to a fixed size output. In all cases,
we will use an input that is already the same
size as the output, merely using the blinding
property of the hash, not the size reduction
property.

• bh(v) means the function b() applied repeat-
edly to the previous result, h times in all.

• r(v) is any computationally fast one-to-one
function that maps from a set of input val-
ues to itself. A circular (rotary) bit shift is an
example of such a function.

• c(v1, v2, · · · ) is a function that combines the
values of v1, v2 etc. such that given the re-
sult and all but one of the operands, the re-
maining operand can be trivially deduced. c()
should also be chosen such that, if the bits of
the operands are independent and unbiased,
the bits of the result will also be independent
and unbiased. The XOR function is a sim-
ple example of such a combinatorial function.
c() should also ideally be the function that
can be used to trivially deduce the remain-
ing operand, as is the case with XOR, that
is: v1 = c

(
c(v1, v2, · · · ), v2, · · ·

)
.

A common model for all the constructions will be
presented in Section 4.5, but it is clearer to intro-
duce each scheme on its own terms first.

4.1 Bi-Directional Hash Chain
(BHC)

The bi-directional hash chain construction only
proves to be secure in a limited form, but we persist
in describing it as the limited version forms the ba-
sis of a later scheme. There may also be scenarios

where the unlimited form is of use that the authors
haven’t imagined. The key sequence is constructed
as follows:

1. The sender randomly generates two initial seed
values, v(0, 0) & v(0, 1). As a concrete exam-
ple, we will take these values as 128 bits wide.

2. The sender decides on the required maximum
key sequence length, H.

3. The sender repeatedly applies the same blind-
ing function to each seed to produce two seed
chains of equal length, H. The values are
therefore v(0, 0) to v(H − 1, 0) and v(0, 1) to
v(H − 1, 1). As the term H − 1 appears fre-
quently, for brevity, we will introduce another
constant G = H − 1. Thus formally,

v(h, 0) = bh
(
v(0, 0)

)
; v(h, 1) = bh

(
v(0, 1)

)
.

(1)

4. To produce key, k0, the sender combines the
first seed from chain zero, v(0, 0), with the last
from chain one, v(G, 1).

To produce key, k1, the sender combines the
second seed from chain zero, v(1, 0), with the
penultimate from chain one, v(G − 1, 1)
etc. Formally,

kh = c
(
v(h, 0), v(G − h, 1)

)
. (2)

Strictly, the stream cipher in use may not re-
quire 128b keys, therefore a shorter key may
be derived from the result of this combination
by truncation of the most (or least) significant
bits, typically to 64b. The choice of stream
cipher is irrelevant as long as it is fast and se-
cure.

5. The sender starts multicasting the stream, en-
crypting ADU0 (application data unit 0) with
k0, ADU1 with k1 etc. but leaving at least the
ADU sequence number in the clear.

6. If the sender delegates key management, it
must privately communicate the two initial
seed values to the key managers. New initial
seed pairs can be generated and communicated
to key managers in parallel to streaming data
encrypted with keys calculated earlier.

A receiver reconstructs a portion of the sequence as
follows:

1. When a receiver is granted access from ADUm

to ADUn, the sender (or a key manager) uni-
casts seeds v(m, 0) and v(G − n, 1) to that re-
ceiver.
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2. That receiver produces seed chains v(m, 0) to
v(n, 0) and v(G − n, 1) to v(G − m, 1) by re-
peatedly applying the blinding function to the
seeds sent using (1).

3. The receiver produces keys km to kn, using (2)
as the sender did.

However, any seeds v(h, 0) where (h < m) or
v(h, 1) where (h > n), cannot feasibly be know
by this receiver without an exhaustive search
of the blinded seeds that ‘precede’ those the
sender has revealed. Therefore, keys outside
the range kn to km cannot feasibly be calcu-
lated by this receiver.

4. Any other receiver can be given access to a
completely different range of ADUs by sending
the relevant seeds at the bounds of that range;
the ‘start’ seed from the first chain and the
‘end’ seed from the second chain.

The creation of this key sequence is graphically rep-
resented in Fig 2.

The ranges of seeds with a dark grey background
represent those blinded from the first mentioned
receiver. This leads to the keys with a dark grey
background also being blinded from this receiver.

Therefore, each receiver can be given access to any
contiguous range of keys by sending just two seeds
per receiver per session. Unfortunately, this con-
struction is of limited use unless each receiver can
be restricted to only ever having one range of keys
revealed within one sender sequence. If a receiver is
granted access to an early range then another later
range (say k0 to k1 then kG−1 to kG) it can then
calculate all the values between the two (k0 to kG).
This is because seeds v(0, 0), v(G−1, 1), v(G−1, 0)
and v(G, 1) will have had to be revealed, but v(0, 0)
and v(G, 1) alone reveal the whole sequence.

One way round this restriction is to regularly
restart the second chain with a new seed value (i.e.
keeping H low) and to disallow two accesses for
one receiver within H ADUs of each other. How-
ever, this requires holding per customer state at
the key manager. There may be niche applications
where this scheme is appropriate, such as commer-
cial models where customers can only extend a sub-
scription, not withdraw then re-instate it. In such
cases, this would be an extremely efficient scheme.

A second way round this restriction is to note that
two disjoint chains are only possible if there is room
for a gap between two minimally short chains. In
other words, a chain with H < 4 will always be
secure. Such a short chain doesn’t seem much use,
but later we will use this feature to build a hybrid
construction from short BHC fragments.

4.2 Binary Hash Tree (BHT)

The binary hash tree requires two blinding func-
tions, b0() and b1(), to be well-known. We will term
these the ‘left’ and the ‘right’ blinding functions.
Typically they could be constructed from a single
blinding function, b(), by applying one of two sim-
ple one-to-one functions, r0() and r1() before the
blinding function. As illustrated in Fig 3.

two blinding functions from one
r0 r1

b b

s1,0 s1,1

s0,0

b0 b1

Figure 3: Two blinding functions from one

Thus:

b0(s) = b
(
r0(s)

)
; b1(s) = b

(
r1(s)

)
.

For instance, the first well-known blinding function
could be a one bit left circular shift followed by
an MD5 hash, while the second blinding function
could be a one bit right circular shift followed by
an MD5 hash. Other alternatives might be to pre-
cede one blinding function with an XOR with 1 or
a concatenation with a well-known word. It seems
advantageous to choose two functions that consume
minimal but equal amounts of processor resource
as this balances the load in all cases and limits the
susceptibility to covert channels that would other-
wise appear given the level of processor load would
reveal the choice of function being executed. Alter-
natively, for efficiency, two variants of a hash func-
tion could be used, e.g. MD5 with two different
initialisation vectors. However, it seems ill advised
to tamper with tried-and-tested algorithms.

This key sequence is constructed as follows:

1. The sender randomly generates an initial seed
value, s(0, 0). Again, as a concrete example,
we will take its value as 128 bits wide.

2. The sender decides on the required maximum
tree depth, D, which will lead to a maximum
key sequence length, N0 = 2D before a new
initial seed is required.

3. The sender generates two ‘left’ and ‘right’ first
level intermediate seed values, applying respec-
tively the ‘left’ and the ‘right’ blinding func-
tions to the initial seed:

s(1, 0) = b0

(
s(0, 0)

)
; s(1, 1) = b1

(
s(0, 0)

)
.

c© British Telecommunications plc, 1999 9 of 36



MARKS

bi-directional hash chain
v0,0

⊕
vG,1

=
k0

v1,0

⊕
vG-1,1

=
k1

v2,0

⊕
vG-2,1

=
k2

vm,0

⊕
vG-m,1

=
km

vi,0

⊕
vG-i,1

=
ki

vn,0

⊕
vG-n,1

=
kn

vG-1,0

⊕
v1,1

=
kG-1

vG,0

⊕
v0,1

=
kG

…

…

…

…

…

…

…

…

v0,0 v1,0 represents v(1,0) = b(v(0,0))

v0,0  ⊕  vG,1 = k0 represents  k0 = c  ( v(0,0) , v(G,1) )

Figure 2: Bi-directional hash chain

The sender generates four second level inter-
mediate seed values:

s(2, 0) = b0

(
s(1, 0)

)
; s(2, 1) = b1

(
s(1, 0)

)
;

s(2, 2) = b0

(
s(1, 1)

)
; s(2, 3) = b1

(
s(1, 1)

)
,

and so on, creating a binary tree of intermedi-
ate seed values to a depth of D levels.

Formally, if s(d, i) is an intermediate seed that
is d levels below the initial seed, s(0, 0):

s(d, i) = bp

(
s(d − 1, bi/2c)

)
, (3)

where p = 0 for even i and p = 1 for odd i (see
Appendix C for notation)

4. The key sequence is then constructed from the
seed values across the leaves of the tree or trun-
cated derivations of them as before. That is,
if D = 5, k0 = s(5, 0); k1 = s(5, 1); · · · k31 =
s(5, 31). Formally,

ki = s(D, i) (4)

5. The sender starts multicasting the stream, en-
crypting ADU0 with k0, ADU1 with k1 etc.
but leaving at least the ADU sequence num-
ber in the clear.

6. If the sender delegates key management, it
must privately communicate the initial seeds
to the key managers. New initial seeds can be
generated and communicated to key managers
in parallel to streaming data encrypted with
keys calculated earlier.

A receiver reconstructs a portion of the sequence as
follows:

1. When a receiver is granted access from ADUm

to ADUn, the sender (or a key manager) uni-
casts a set of seeds to that receiver (e.g. us-
ing SSL). The set consists of the intermediate

seeds closest to the tree root that enable calcu-
lation of the required range of keys without en-
abling calculation of any key outside the range.

These are identified by testing the indexes, i,
of the minimum and maximum seed using the
fact that an even index is always a ‘left’ child,
while an odd index is always a ‘right’ child.
A test is performed at each layer of the tree,
starting from the leaves and working upwards.
A ‘right’ minimum or a ‘left’ maximum always
needs revealing before moving up a level. If a
seed is revealed, the index is shifted inwards
by one seed, so that, before moving up a layer,
the minimum and maximum are always even
and odd respectively. To move up a layer, the
minimum and maximum indexes are halved
with the maximum rounded down. This en-
sures the difference between them predictably
reduces to half the previous difference rounded
down. The odd/even tests are repeated on the
new indexes, revealing a ‘right’ minimum or
‘left’ maximum as before. The process contin-
ues until the minimum and maximum cross or
meet. They can cross after either or both have
been shifted inwards. They can meet after they
have both been shifted upwards, in which case
the seed where they meet needs revealing be-
fore terminating the procedure.

This procedure is described more formally, in
C-like code in Appendix A

2. Clearly, each receiver needs to know where
each seed that it is given resides in the tree.
The seeds and their indexes can be explicitly
paired when they are revealed. Alternatively,
to reduce the bandwidth required, the protocol
may specify the order in which seeds are sent
so that each index can be calculated implicitly
from the minimum and maximum index and
the order of the seeds. This is possible because
there is only one minimal set of seeds that al-
lows re-creation of any one range of keys.

Each receiver can then repeat the same pairs of
blinding functions on these intermediate seeds
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as the sender did to re-create the sequence of
keys, km to kn. (Equations (3) & (4))

3. Any other receiver can be given access to a
completely different range of ADUs by being
sent a different set of intermediate seeds.

The creation of a key sequence with D = 4 is graph-
ically represented in Fig 4.

As an example, we circle the relevant intermediate
seeds that allow one receiver to re-create the key
sequence from k3to k9. The seeds and keys that
remain blinded from this receiver are shown on a
grey background. Of course, a value of D greater
than 4 would be typical in practice.

Note that each layer can be assigned an arbitrary
value of d as long as it uniquely identifies the layer.
Nothing relies on the actual value of d or D. There-
fore it is not necessary for the sender to reveal how
far the tree extends upwards, thus improving secu-
rity.

Often a session will have an unknown duration
when it starts. Clearly, the choice of D limits
the maximum length of key sequence from any one
starting point. The simplest work-round is just to
generate a new initial seed and start a new binary
hash tree alongside the old if it is required. If D is
known by all senders and receivers, a range of keys
that overflows the maximum key index, 2D, will be
immediately apparent to all parties. In such cases
it would be sensible to allocate a ‘tree id’ for each
new tree and specify this along with the seeds for
each tree.

Another way to avoid this upper limit, is to make
D variable instead of constant, e.g. D = D0 + f(i).
Fig 5 shows such a continuous BHT where D0 = 4
and where D rises by one every M keys. In this
example M takes a fixed value of 7. However, there
is little point in adding this complexity as the only
seeds common to the different branches of the tree
are those along the far right-hand branch of the
tree, s(d, 2)d. If any of these were ever revealed the
whole future tree would have been revealed. There-
fore, this ‘improvement’ can never be used to add
efficiency when revealing arbitrary ranges of keys to
receivers and all it saves is the sender very occasion-
ally passing a new initial seed in a trivial message
to the key managers. On the contrary, it introduces
a security weakness, as it creates a set of seeds of
‘infinite’ value for which any amount of exhaustive
searching will be worthwhile. On the other hand,
regularly having to generate a new initial seed, as
in the first work-round, sets a ceiling on the vulner-
ability of the BHT to attack.

4.3 Binary Hash Chain-Tree Hybrid
(BHC-T)

This construction is termed hybrid because a bi-
nary hash tree (BHT) is built from fragments of bi-
directional hash chains (BHCs) that are just two
seeds long. For understanding only we will start
the explanation building the tree in the root to leaf
direction in order to construct a BHC fragment, as
shown in Fig 6. This is for explanation only. Later
we will recommend the best way to build the tree
is from the side rather than the root.

1. Let us assume we have two initial seed values
generated randomly, s(0, 0) and s(0, 1). Again,
as a concrete example, we will take their values
as 128 bits wide.

2. We now apply the same blinding function to
each seed to produce two blinded seeds v(1, 0)
and v(1, 1).

3. To produce child seed, s(1, 0), we combine the
first seed, s(0, 0), with the blinded second seed,
v(1, 1).

To produce child seed, s(1, 1), we combine the
second seed, s(0, 1), with the blinded first seed,
v(1, 0).

4. If we now randomly generate a third initial
seed, s(0, 2) and blind it to produce v(1, 2),
we can combine the second and third initial
seeds and their opposite blinded values in the
same way to produce two more child seeds,
s(1, 2) and s(1, 3). This means that every
parent seed produces four children, two when
combined (incestuously) with its sibling to one
side and the other two when combined with its
half-sibling to the other side. In consequence,
this construction produces a binary tree if new
child seeds are blinded and combined as their
parents were because the number of seeds dou-
bles in each generation. However, the tree only
branches under the middle of the top row of
seeds (assuming more than two initial seeds are
created along this row). The edges of the tree
‘wither’ inwards if built from the top (but see
later).

Formally, to allow us to keep the notation con-
sistent with later more general models, we give
the blinded values, v(h, j), a tree height index,
h, one more than twice the depth index, d, of
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binary hash tree
s2,2s2,1s2,0 s2,3

s1,0 s1,1

s0,0

s4,0

=
k0

s4,1

=
k1

s4,2

=
k2

s4,3

=
k3

s4,4

=
k4

s4,5

=
k5

s4,6

=
k6

s4,7

=
k7

s4,8

=
k8

s4,9

=
k9

s4,10

=
k10

s4,11

=
k11

s4,12

=
k12

s4,13

=
k13

s4,14

=
k14

s4,15

=
k15

b0 b1

s3,0 s3,1 s3,2 s3,3 s3,4 s3,5 s3,6 s3,7

Figure 4: Binary hash tree

continuous binary hash tree
D0

M

Figure 5: Continuous binary hash tree
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their corresponding seed value:

v(h, j) = b
(
s((h − 1)/2, j)

)
.

Then

s(d, i) = c
(
s(d − 1, i/2),

v(2d − 1, i/2 + 1)
)

for even i

= c
(
v(2d − 1, (i − 1)/2),

s(d − 1, (i + 1)/2)
)

for odd i.
(5)

Fig 6a) illustrates two pairs of parent seeds
of the BHC-T hybrid,

(
s(0, 0), s(0, 1)

)
and(

s(0, 1), s(0, 2)
)
. The rings identify the parent

seed that is common to each pair, although the
outer values in the outer rings fall off the edge of
the diagram, because we focus on the descendants
of just the central parent seed, s(0, 1). Fig 6b)
shows the same three parents producing the same
four children. In order to better illustrate how a
binary tree is being formed, the blinded seeds are
hidden from view as they are never communicated.
The ringed parent seeds in the lower diagram rep-
resent the same three ringed seeds shown in the
upper diagram. The two dotted arrows that con-
tinue the sequence to the right show how parent
seed s(0, 2) would produce another two children if
there were another parent to the right. The dotted
lines joining each pair of arrows represent the fact
that both parents above this line combine to pro-
duce both children below it. We will represent this
construction in later diagrams using the simplified
form.

Fig 7 shows how three initial seeds would construct
a binary tree in the centre with the edges withering
inwards. The indexes are not meant to be readable.
Fig 8 shows a magnified part of the same tree. To be
consistent with the common model given later, the
index, i, of every ‘right’ child is set to zero modulo
the degree of the tree. That is, for a right child in
a binary tree, i mod 2 = 0. This convention applies
to all the constructions where children are derived
by combining parents. For the BHT the opposite
applies; i mod 2 = 0 for a ‘left’ child.

As with the binary hash tree, the keys used to en-
crypt successive ADUs are the sequence of seeds at
the leaves of the tree or truncated derivations of
them. The figure shows how to reveal an example
range of keys, k3 to k9 by revealing the ringed seeds
to a particular receiver.

We now move to a further twist in this construction
in order to explain how to build the tree from the
side rather than the root. It was noted earlier that
the XOR function was chosen because if the XOR
of two operands produces a third value, any two of
these three values may be XORed to produce the

third. This is illustrated in Fig 9, where the values
of all the seeds are the same as in Fig 6. If s(0, 1) is
initially unknown, but s(0, 0) and s(1, 1) are known,
s(0, 1) then s(1, 0) may be derived because of this
‘twist’ property:

s(0, 1) = c
(
s(1, 1), b

(
s(0, 0)

))
then s(1, 0) = c

(
s(0, 0), b

(
s(0, 1)

))
.

hash chain-tree twist
s0,0

⊕
v1,1

=
s1,0

s0,1

=
v1,0

⊕
s1,1

Figure 9: Hash chain-tree twist

Fig 10 shows how a sender can build the BHC-T
hybrid construction from the ‘side’. The order of
seed creation is shown by numbered circles. Seeds
that can be created in any order are all allocated the
same number followed by a distinguishing letter.
The darker circles next to ringed nodes represent
seeds that have to be randomly generated. We shall
call these primary seeds. These fix the values of all
subsequent intermediate seeds until the next ringed
node.

1. The sender randomly generates the 128 bit
value of seed 1.

2. Seeds 2 & 3 are then generated. They form the
diagonal corners of a box of four seeds, thus
setting the opposite corner values, 4 then 5 by
the ‘twist’ algorithms:

Formally, either of these formulae may be used
depending on which neighbouring seed values
are known:

s(d, i) = c
(
s(d + 1, 2i), v(2d + 1, i + 1)

)
= c

(
v(2d + 1, i − 1), s(d + 1, 2i − 1)

)
.

(6)

where v(h, j) = b
(
s((h − 1)/2, j)

)
as before.

To be consistent with the common model given
later, seed 1 should have i = 1 as for the BHC-
T built from the top.

Note that if d = 0 for the root seed, d becomes
increasingly negative in the leaf to root direc-
tion.

3. Seed 6 must then be generated, forming an-
other pair of diagonal corners with 3.
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hash chain-tree hybrid element
s0,0

⊕
v1,1

=
s1,0

s0,1

⊕
v1,0

=
s1,1

s0,1

⊕
v1,2

=
s1,2

s0,2

⊕
v1,1

=
s1,3

s0,0  ⊕  v1,1 = s1,0 represents  s(1,0) = c ( s(0,0) , b( s(0,1) ) )

s0,0 v1,0 represents v(1,0) = b( s(0,0) )

a)

s1,0 s1,1 s1,2 s1,3

s0,0 s0,1 s0,2

b)

Figure 6: Binary hash chain-tree hybrid elements

hash chain-tree hybrid
s2,2s2,1s2,0 s2,3

s1,1 s1,2

s0,1

s4,0

=
k0

s4,1

=
k1

s4,2

=
k2

s4,3

=
k3

s4,4

=
k4

s4,5

=
k5

s4,6

=
k6

s4,7

=
k7

s4,8

=
k8

s4,9

=
k9

s4,10

=
k10

s4,11

=
k11

s4,12

=
k12

s4,13

=
k13

s4,14

=
k14

s4,15

=
k15

s3,0 s3,1 s3,2 s3,3 s3,4 s3,5 s3,6 s3,7

s4,16

=
k16

s3,8

s2,4

s1,0

s0,0

s2,5

s4,17

=
k17

s3,9

s1,3

s0,2

Figure 7: Binary hash chain-tree hybrid (zoomed out)

hash chain-tree hybrid
s2,2s2,1s2,0 s2,3

s1,1 s1,2

s0,1

s4,0

=
k0

s4,1

=
k1

s4,2

=
k2

s4,3

=
k3

s4,4

=
k4

s4,5

=
k5

s4,6

=
k6

s4,7

=
k7

s4,8

=
k8

s4,9

=
k9

s4,10

=
k10

s4,11

=
k11

s4,12

=
k12

s4,13

=
k13

s4,14

=
k14

s4,15

=
k15

s3,0 s3,1 s3,2 s3,3 s3,4 s3,5 s3,6 s3,7

s4,16

=
k16

s3,8

s2,4

s1,0

s0,0

s
=

k

s

Figure 8: Binary hash chain-tree hybrid
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4. This reveals the opposite corners, seeds 7 then
8 by equation (6).

5. Seeds 8 and 3 then form the top corners of
another box of four, setting seeds 9a & 9b by
equations (5).

6. The pattern continues in a similar fashion af-
ter seed 10 has been randomly generated. An
advantage of this construction is that the tree
can grow indefinitely — it is not necessary to
decide any limits in advance.

7. The sender starts multicasting the stream, en-
crypting ADU1 with k1, ADU2 with k2 etc.
but leaving at least the ADU sequence num-
ber in the clear. That is,

ki = s(D, i) where D = 0 (7)

8. If the sender delegates key management, it
must privately communicate the primary seeds
to the key managers. New primary seeds can
be generated and communicated to key man-
agers in parallel to streaming data encrypted
with keys calculated earlier.

A receiver reconstructs a portion of the sequence as
follows:

1. When a receiver is granted access from ADUm

to ADUn, the sender (or a key manager) uni-
casts a set of seeds to that receiver. The
set consists of the smallest set of intermedi-
ate seeds in the tree that enable calculation of
the required range of keys.

These are identified by testing the indices, i, of
the minimum and maximum seed in a similar
but mirrored way to the BHT. A ‘left’ mini-
mum or a ‘right’ maximum always needs re-
vealing before moving up a level. If a seed is
revealed, the index is shifted inwards by one
seed, so that, before moving up a layer, the
minimum and maximum are always even and
odd respectively. To move up a layer, the min-
imum and maximum indexes are halved with
the maximum rounded up. The odd/even tests
are repeated on the new indexes. The pro-
cess continues until the minimum and maxi-
mum are two or three apart. The values cannot
jump to less than two apart if they were more
than three apart on the previous loop. The
difference between the min and max always
predictably reduces to one more than half the
previous difference because the max is rounded
up. If they are two apart they are revealed
along with the seed between them. If they
are three apart, they are only revealed along
with both seeds between them if the minimum

is odd. If it is even, it will be worth moving
up one more layer so nothing is revealed and
one more round is allowed. Before the tests
start, exceptional initial conditions are tested
for; where the requested range is already less
than two wide.

This procedure is described more formally, in
C-like code in Appendix B

2. Clearly, each receiver needs to know where
each seed that it is given resides in the tree.
The seeds and their indexes can be explicitly
paired when they are revealed. Alternatively,
to reduce the bandwidth required, the proto-
col may specify the order in which seeds are
sent so that each index can be calculated im-
plicitly from the minimum and maximum in-
dex and the order of the seeds. For instance,
the algorithm in Appendix B will always reveal
the same seeds in the same order for the same
range of keys.

3. Each receiver can then repeat the same pairs of
blinding and combining functions on these in-
termediate seeds as the sender did to re-create
the sequence of keys, km to kn (Equations (5),
(6) & (7)).

4. Any other receiver can be given access to a
completely different range of ADUs by being
sent a different set of intermediate seeds.

Because the BHC-T can be built from the side, it
is ideal for sessions of unknown duration. The con-
tinual random generation of new intermediate root
seeds limits its vulnerability to attack but allows
continuous calculation of the sequence. To further
limit vulnerability, the sender could delay the gen-
eration of future seeds in order to deny any receiver
the ability to calculate keys beyond a certain future
point in the sequence. This would limit the time
available for a brute force search of the seed-space.
Nonetheless, building the tree from the side causes
the numbers of keys dependent on each new root
seed (and consequently the value of an attack on
that seed) to grow exponentially.

The value of a root seed can be bounded by regu-
larly incrementing the level defined to be the leaf
level, moving it one layer closer to the root after
each sequence of M keys (except the first).

Formally this requires equation (7) to be replaced
with:

ki = s(−bi/Mc, i) for i < M

ki = s(1 − bi/Mc, i) for i ≥ M (8)

This is illustrated in Fig 11 with M = 8. Of course,
in practice M would be a lot larger in order to
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Figure 10: Hash chain-tree growth
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Figure 11: Continuous binary hash chain-tree hybrid
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ensure all reasonable length receiver sessions could
be described efficiently without hitting the top left-
hand branch of the tree.

We noted earlier that a BHC was only intrinsically
secure when H < 4. The BHC fragments used
in this chain-tree hybrid have H = 2, which en-
sures the security of the hybrid scheme. This also
suggests that a binary chain-tree hybrid could be
constructed from chain fragments of length three
(H = 3) without compromising security. In this
case, each parent seed would produce six children
when paired with its sibling and half-sibling, giv-
ing a threefold growth in tree width at each level
(a ternary tree — BHC3-T). This construction is
shown in Fig 17 but a full analysis is left for future
work. It has the potential to be more efficient than
BHC-T, if a little more complex.

4.4 Binary Hash Tree II (BHT2)

We now present a further binary tree based con-
struction that combines the BHT and the BHC-T
approaches in a way that greatly tightens security
against brute force attack. We use the same nota-
tion for the seeds, sd,i, with the origin for d being at
the root as for BHT, its value rising as it approaches
the leaves. One element of the tree is shown in Fig
12. We use two blinding functions in this construc-
tion, b0() and b1(), which we will term ‘left’ and
‘right’ respectively, as was the case with the BHT.

1. Let us assume we have two randomly generated
initial seed values, s(0, 0) and s(0, 1). Again,
as a concrete example, we will take their values
as 128 bits wide.

2. The sender decides on the required maximum
tree depth, D.

We produce two blinded values from each of
these initial seeds, one with each of the blind-
ing functions.

v(1, 0) = b0

(
s(0, 0)

)
; v(1, 1) = b1

(
s(0, 0)

)
;

v(1, 2) = b0

(
s(0, 1)

)
; v(1, 3) = b1

(
s(0, 1)

)
.

3. To produce child seed, s(1, 0), we combine the
two left blinded seeds, v(1, 0) and v(1, 2).

To produce child seed, s(1, 1), we combine the
two right blinded seeds, v(1, 1) and, v(1, 3).

4. If we now randomly generate a third initial
seed, s(0, 2), we can combine the second and
third initial seeds in the same way to produce
two more child seeds, s(1, 2) and s(1, 3). As
with the BHC-T hybrid, this means that every
parent seed produces two children enabling us

to build a binary tree, but with the edges ‘with-
ering’ inwards. In fact, if layer d contains nd

seeds, n(d+1) = 2nd − 2. As long as more than
two initial seeds are used, the tree will tend
towards a binary tree. Formally:

s(d, i) = c
(
v(2d − 1, i), v(2d − 1, i + 2)

)
, (9)

where

v(h, j) = b0

(
s
(
(h − 1)/2, j/2

))
for even j

= b1

(
s
(
(h − 1)/2, (j − 1)/2

))
for odd j.

5. The key sequence is then constructed from the
seed values across the leaves of the tree. For-
mally,

ki = s(D, i). (10)

6. The sender starts multicasting the stream, en-
crypting ADU0 with k0, ADU1 with k1 etc.
but leaving at least the ADU sequence num-
ber in the clear.

Fig 12a) illustrates two parent seed-pairs of the
BHT2,

(
s(0, 0), s(0, 1)

)
and

(
s(0, 1), s(0, 2)

)
. The

rings identify the parent seed that is common to
each pair in both parts a) and b) of the figure, in
exactly the same fashion as was used to illustrate
the BHC-T hybrid. As before, Fig 12b) shows how
a tree of seeds built with BHT2 can be represented,
hiding the intermediate blinded values from view
for clarity. Once these internal values are hidden,
the resulting BHT2 looks identical to the BHC-T
hybrid in Fig 8.

The algorithm to calculate which seeds to reveal in
order to reveal a range of keys is also identical to
that for the BHC-T hybrid in Appendix B, thus the
ringed seeds in Fig 8 would still reveal k3 to k9 to
a particular receiver.

The maximum number of keys across the leaves of
a BHT2 built from three initial seeds (at layer 0) to
depth D is 2D + 2. If a continuous tree is required,
the keys can be defined to step down the layers
of intermediate seeds rather than stay level across
them, similar to the continuous BHT shown in Fig
5, but with similar security problems too.

We have shown how to build a binary tree only
using two of the combinations of the four blinded
values in (9).
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Figure 12: Binary hash tree II elements

Taking the four values two at a time, gives six pos-
sible combinations:

c1 = c
(
v(1, 0), v(1, 1)

)
c2 = c

(
v(1, 2), v(1, 3)

)
c3 = c

(
v(1, 0), v(1, 2)

)
c4 = c

(
v(1, 1), v(1, 3)

)
c5 = c

(
v(1, 0), v(1, 3)

)
c6 = c

(
v(1, 1), v(1, 2)

)
.

c1 and c2 are dependent on only one parent seed
each. Therefore, revealing the parent alone reveals
a child, ruling out the use of either. Further, c6 =
c(c3, c4, c5) and c5 = c(c3, c4, c6) etc. Therefore
revealing any three of these combinations implicitly
reveals the fourth. Nonetheless, any three of these
combinations can be used rather than just the two
used in the BHT2. Analysis of the resulting ternary
tree (BHT3) is left for future work.

4.5 Common Model

Having presented four key sequence constructions,
we now present a common model, which allows all
of these schemes and others like them to be de-
scribed in the same terms.

We define two co-ordinate planes

• a ‘blinding’ plane with discrete values, v, sit-
ting at co-ordinates (h, j) such that, in general,
values at one h co-ordinate are blinded to pro-
duce the values at h+1, the specific mappings
depending on the scheme;

• a ‘combining’ plane with discrete values, s, sit-
ting at co-ordinates (d, i), which are the result
of combining values from the blinding plane in
ways that again depend on the scheme

Each construction is built from elementary mathe-
matical ‘molecules’ in the blinding plane. Fig 13–17
show these molecules as a collection of thick black
arrows representing the blinding functions mapping
from one value of v to the next, starting from the
h = 0 axis. To show how the construction grows in
the direction of the j axis, the thick but very light-
grey arrows represent blinding of adjacent values
that complete the next molecule. A molecule is de-
fined by three constants:

• H, the height of one molecule along the h axis
of the blinding plane

• P , the number of blinding functions used
within one molecule

• Q, the number of values that are combined
from each molecule in the blinding plane to
produce each value in the combining plane

The initial values, v, of one molecule in the blinding
plane map directly from the previous values, s, in
the combining plane (shown as chain dashed lines
in Figs 13–17):

if h mod H = 0; v(h, j) = s(h/H, j). (11)
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Subsequent values in a blinding plane molecule are
blinded from previous values (shown as thick ar-
rows):

if h mod H 6= 0; v(h, j) = bp

(
v
(
(h − 1), bj/P c

))
(12)

where p = j mod P .

The resulting final values in the blinding plane
molecule are then combined to produce the next
values in the combining plane (shown as thin lines):

s(d, i) = c
(
v(h0, j0), ···v(hq, jq), ···v(h(Q−1), j(Q−1))

)
.

(13)

Where hq are jq are defined for each construction
as functions of the parameter q.

Thus, d increments one in the combining plane for
every H along the h axis in the blinding plane.

Table 1 gives the values of H, P and Q and the
formulae for hq are jq that define each construction
introduced in the earlier sections. It also refers to
the figures that illustrate each construction using
this common model. Note that constructions with
Q > 2 have not been analysed. The last column
of the table shows that the one-way function tree
(OFT) [18] also falls within the scope of this gen-
eral class of constructions, with n being the number
of receivers. It is also briefly discussed below. The
final row gives the minimum number of initial seed
values that each construction needs to get started.
Other initial values might be used to produce dif-
ferent constructions.

In all cases, unless a continuous construction is de-
sired, the keys constructed from the sequence can
be defined by:

ki = s(D, i), (14)

where D = log N0

where N0 is the maximum number of keys required.

If a continuous construction is required, this can be
replaced with an equation such as (8).

The formulae for the BHT2 and BHT are fairly
straightforward. The h co-ordinate in the blind-
ing plane increases at double the rate of the d co-
ordinate in the combining plane (i.e. H=2) and the
combination in the BHT2 increments simply and
equally across the i and j axes.

Note that the BHT is the degenerate case of this
model. It involves no combination, therefore the
combination plane is redundant. Consequently,
equations (11) and (13) are redundant and the h
co-ordinates in the blinding plane could be halved
(rounding up) to remove the gaps between the

molecules. This was the approach taken in section
4.2, but the formulae in Table 1 preserve consis-
tency with the model common to all the construc-
tions.

The BHC always has only one molecule, of height
H. Fig 15 shows a BHC with H = 5. The combin-
ing plane is always just one deep, with all the seeds
arranged along the i axis.

The molecules of the BHC-T (Fig 16) are two high
(H = 2) along the h axis. Those of the BHC3-
T (Fig 17) have H = 3 and start to relate visu-
ally to the longer BHC. In particular, the map-
ping from the long molecule in the blinding plane to
the wide one in the combining plane can be clearly
seen. The BHC-T formula for hq appears complex,
but it is simply arranged to hold the base value of
each molecule constant while a BHC-like molecule
is built, before moving on to the next molecule.

The one-way function tree (OFT) [18] in Fig 18
happens to conform to the same mathematical
model as the constructions in this paper. However,
OFT is used very differently; instead of generating
a large number of seeds from a few initial seeds,
the purpose is to calculate a single group key. The
group controller combines the individual keys it al-
locates to each member, recalculating the group key
whenever any one member changes. When mem-
bership changes, a new leaf key is generated and
everyone is multicast the blinded values from this
leaf to the root, each encrypted with the keys at
the complementary nodes along this branch of the
tree. If the number of members of the group is not
a power of two, the balance of the members are
added at the appropriate layer (value of d) instead
of at d = 0. Thus the initial conditions change
as members join and leave. In summary, in con-
trast to the current work, the group key is changed
every membership change rather than changing it
systematically and the tree starts from the leaves
and moves towards the root rather than vice versa.

5 Discussion

5.1 Storage and Processing Costs

In all the MARKS constructions, a small number
of seeds is used to generate a larger number of keys,
both at the sender before encryption and at the re-
ceiver before decryption. In either case, there may
be limited memory capacity for the key sequence,
which appears to require exponentially more mem-
ory than the seeds. As has already been noted, the
bi-directional hash chain with H > 3 is extremely
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BHT2 BHT BHC BHC − T BHC3 − T OFT

Fig 13 14 15 16 17 18

H 2 2 H 2 3 2

P 2 2 1 1 1 1

Q 2 1 2 2 2 2

hq Hd − 1 H(d − 1) + q(H − 1) + (1 − Qq)(i mod H) Hd − 1

jq i + Pq bi/Hc + q Qi + q

min set of initial
conditions

s(0, 0),
s(0, 1),
s(0, 2)

s(0, 0)
s(0, 0),
s(0, 1)

s(0, 0),
s(0, 1),
s(0, 2)

s(0, 0),
s(0, 1),
s(0, 2)

s(0, 0),
· · · ,

s(0, n)

Table 1: Coefficients and formulae of the common model defining each key sequence construction
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Figure 13: BHT2 — Binary hash tree II

BHT

h

j

d

i v(h, j)

s(d, i)

2

1

0
0

1

2

0
0
1

2
3
4

3

1

4

2

b0

b1

Figure 14: BHT — Binary hash tree
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Figure 15: BHC — Bi-directional hash chain
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Figure 16: BHC-T — Bi-directional hash chain-tree hybrid
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Figure 17: BHC3-T — Bi-directional hash chain-tree hybrid III
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Figure 18: OFT — One-way function tree
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efficient in messaging bandwidth terms, but inse-
cure. Therefore we will confine discussion to the
tree-based constructions.

We will now show that all the tree constructions re-
quire minimal memory and minimal processing at
either the sender or the receiver as each new key in
the sequence is calculated. We assume the keys are
used sequentially and once a key has been used it
will never be required again. After this we will dis-
cuss the trade-offs between storage and processing
that key managers may make, given that they have
to be able to serve seeds from arbitrary points in
the future tree at any time. We will concentrate on
the BHT first then expand the scope to cover the
BHT2 or BHC-T.

For senders and receivers using the BHT, it is most
efficient to only store the seeds on the branch of
the tree from a root to that key following the one
currently in use. Note that there may be mul-
tiple roots, particularly for receivers, where each
revealed seed is a root. In practice this principle
translates into being able to deallocate memory for
a parent seed immediately it has been hashed to
produce its right child. If leaf seeds are also deal-
located as soon as the next in the sequence is in
use, this will ensure the tree only holds log N seeds
in memory on top of any revealed seeds being held
to generate the rest of the tree to the right of the
current key.

Re-using the earlier example, shown again in Fig
19, we will now follow the key calculation sequence
step-by-step. For brevity we will assume keys are
synonymous with their corresponding leaf seeds:

1. s(4, 3) is immediately available as one of the
revealed seeds.

2. s(4, 4) requires two hash operations from
s(2, 1). The value of s(3, 2) calculated on the
way should be stored.

3. s(4, 3) may be deallocated once s(4, 4) is in use

4. s(4, 5) requires one hash of the stored s(3, 2)

5. s(4, 4) and s(3, 2) may then be deallocated

6. s(4, 6) requires two hashes from s(2, 1). Again
the value of s(3, 3) calculated on the way
should be stored.

7. s(2, 1) may be deallocated as soon as it has
been hashed

8. s(4, 5) may be deallocated as soon as s(4, 6) is
in use.

Here, we reach the point in the process illus-
trated in Fig 19. The initial seeds are shown
ringed. The seeds in memory are the dark

blobs and those seeds that have been used and
then deallocated are the light blobs.

9. The process continues along similar lines until
s(4, 9) is finished with, when it is deallocated
leaving no further seeds in memory.

It will be noted that, if the above seed storage strat-
egy is adopted, one hash operation is required per
key on the seeds in the penultimate layer, one hash
every two keys on the next layer up, one hash ev-
ery four keys on the next layer and so on. In other
words, no branch of the tree ever requires the hash
to be calculated more than once. Therefore:

(mean no. of hashes per key) =
(no. of branches)
(no. of leaves)

= (2(D+1) − 1)/2D

< 2

The same principles apply for analysing the stor-
age and processing requirements of the BHC-T and
BHT2 constructions. The only difference is that the
pairs of parents down to the key following that in
use must be stored, rather than just single parents.
Also, the left parent of a pair can be deallocated
once its two children have been found, but the right
parent is needed for another pair of children to the
right. It is also worth caching the blinded value(s)
of the right-hand parent for when they are required
again. Fig 20 shows a snapshot of the same exam-
ple BHC-T or BHT used earlier. s(4, 9) is about
to be calculated, therefore s(3, 4) and s(3, 5) have
just been calculated and stored. When s(3, 5) was
calculated s(2, 2) was no longer required. As soon
as s(4, 8) was in use, s(4, 7) was deallocated. As
the procedure is similar to the BHT, it will not be
described in full.

Similarly, the mean hash processing required per
key for the BHC-T or BHT is found using the same
analysis as for the BHT.

If memory is extremely scarce (e.g. an embedded
device) but some clock cycles are spare, storage
can be traded off against processing. With all the
tree constructions, any intermediate seeds down the
branch of the tree to the current key need to be cal-
culated, but they don’t all need to be stored. Those
closest to the leaves should be stored (cached), as
they will be needed soonest to calculate the next
few keys. As intermediate seeds nearer to the root
are required, they can be recalculated as long as the
seeds originally sent by the key manager are never
discarded until the sequence has left them behind.

Unlike senders or receivers, a key manager cannot
guarantee to only access the key-space sequentially.
It will have to respond to requests for seeds from
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BHT processing & storage
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Figure 19: BHT storage and processing
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Figure 20: BHC-T or BHT2 storage and processing
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anywhere in the tree. However, for most scenarios it
is likely that requests will tend not to be randomly
distributed. Therefore, a key manager can use an
identical approach to the device with scarce mem-
ory. It can calculate seeds in any part of the tree
from the initial seeds, but cache those being most
frequently used. This simply requires a fixed size
cache memory allocation and discard of the least
recently used values in the store.

5.2 Efficiency

Table 2 shows various performance parameters of
BHT, BHC-T and BHT2 per secure multicast ses-
sion, where:

• R, S and KM are the receiver, sender and key
manager, respectively, as defined in Section 3

• N(= n−m+1) is the length of the range of keys
that the receiver requires, randomly positioned
in the key space

• ws is the size of a seed (typically 128b)

• wh is the size of the key management protocol
header overhead

• ts is the processor time to blind a seed
(plus one relatively negligible circular shifting
and/or combining operation)

The unicast message size for each receiver’s session
set-up is shown equated to the minimum amount
of storage each receiver requires. This is the stor-
age required before starting the session, not once
keys have started to be calculated. The minimum
sender storage row has the same meaning. The pro-
cessing latency is the time required for one receiver
to be ready to decrypt incoming data after hav-
ing received the unicast set-up message for its ses-
sion. Note that there is no latency cost when other
members join or leave, as in schemes that cater
for unplanned eviction. The figures for processing
per key assume sequential access of keys and the
caching strategies described in Section 5.1. Only
the sender (or a group controller if there are mul-
tiple senders) is required to generate random bits
for the initial seeds. The number of bits required
is clearly equal to the minimum sender storage of
these initial seeds.

It can be seen that the only parameters that depend
on the size of the group membership are those that
are per receiver. The cost of two of these (storage

1The exceptional cases for BHC-T when N ≤ 3 are not
shown (in all these cases the number of seeds is just N).
The exceptional cases when a session starts or ends are not
included in the figures for per key processing.

and processing latency) is distributed across the
group membership thus being constant per receiver.
Only the unicast message size causes a cost at a key
manager that rises linearly with group membership
size, but the cost is only borne once per receiver
session. Certainly, none of the per receiver costs
are themselves dependent on the group size as in
all schemes that allow unplanned eviction. Thus,
all the constructions presented are highly scalable.

Comparing the schemes with each other, perhaps
surprisingly, the hybrid BHC-T and BHT2 are very
nearly as efficient as the BHT in messaging terms.
They both only require an average of one more seed
per receiver session set-up message. If N is large,
this is insignificant compared to the number of keys
required per receiver session. On average BHC-T
requires twice as much processing and BHT2 four
times as much as BHT. However, we shall see that
the security improvements are well worth the cost.

5.3 Security

BHT With the BHT, each seed in the tree is po-
tentially twice as valuable as its child. Therefore,
there is an incentive to exhaustively search the seed
space for the correct value that blinds to the cur-
rent highest known seed value in the tree. For the
MD5 hash, this will involve 2127 MD5 operations
on average. It is possible a value will be found that
is incorrect but blinds to a value that collides with
the known value (typically one will be found every
264 operations with MD5). This will only be ap-
parent by using the seed to produce a range of keys
and testing one on some data supposedly encrypted
with it. Having succeeded at breaking one level, the
next level will be twice as valuable again, but will
require the same brute-force effort to crack. Note
that one MD5 hash (portable source) of a 128b in-
put takes about 4us on a Sun SPARCserver-1000.
Thus, 2128 MD5s would take 4e25 years.

BHC-T With the BHC-T hybrid, the strength
against attack depends on which direction the at-
tack takes. If we take a single element of the BHC-
T, it has four seed values — two parents and two
children as shown in Table 3 and also illustrated in
Fig 21. Given only any one of the four values, none
of the others can ever be calculated as there is insuf-
ficient information to test correctness. Given three
of the four values, the fourth can always be calcu-
lated with just one blinding operation. Given just
two of the values, the table lists how difficult it is
to calculate the other two, depending on which two
are given. The letter ‘i’ represents an input value
and the values in the cells represent the number of
blinding function operations necessary to guarantee
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BHT BHC − T BHT2

(unicast msg size)/ws min 1 3 3
per R −wh or max 2

(
log(N + 2) − 1

)
2 log N 2 log N

(min storage)/ws mean O
(
log(N) − 1

)
O(log N) O(log N)

min 0 0 0
per R (processing latency)/ts max log N 2

(
log(N) − 1

)
4
(
log(N) − 1

)
mean O

(
log(N)/2

)
O

(
log(N) − 1

)
O

(
2(log(N) − 1)

)
min 1 1 2

per R or S (processing per key)/ts max log N log(N) − 1 2
(
log(N) − 1

)
mean 2 2 4

per S or KM (min storage)/ws 1 3 3
per S (min random bits)/ws

Table 2: Various parameters of BHT, BHC-T and BHT2 per secure multicast session1

parents s(0, 0) i 1 + 2(w+1) i 1 + 2w i 2
s(0, 1) i 1 + 2w i 2 i

children s(1, 1) 2 i i 1 + 2w i

s(1, 2) i 1 + 2w i i 2

Table 3: Revealing and blinding seed pairs in BHC-T

revealing and blinding pairs in
BHC-Ts1,0 s1,1

s0,0 s0,1

Figure 21: Revealing and blinding seed pairs in BHC-T
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finding the pair of output values given the inputs.
w is the number of bits in the number-space (128 for
MD5). Fig 21 shows the same information graph-
ically, with input values ringed and blinded values
shown over a grey background.

If a parent and child down one side of the ‘square’
are given, the opposite parent can be searched ex-
haustively, with each value tested by blinding it and
comparing it with the XOR of the two given val-
ues. Thus, success is guaranteed after 2w blinding
operations for a ‘sideways’ attack.

If only the two child values are given, the exhaus-
tive search for one of the parents is slightly more in-
volved. That is, one parent value, s(0, 1) is guessed,
and it is only correct if the following is true:

c
(
s(0, 1), b

(
c
(
s(1, 1), b(s(0, 1))

)) )
= s(1, 2)

Thus, success is guaranteed after 2(w+1) blinding
operations for an ‘upwards’ attack.

The probability of finding two unknown values that
are compatible with the two given values but are
also not the correct pair of values (a double colli-
sion) is small in this construction. If such a pair
does turn up, they can only be tested by producing
keys with them and testing the keys on encrypted
data. The lesser probability of a double collision
therefore slightly reduces the complexity of the at-
tacker’s task.

A sideways attack can only gain at most one seed at
the same level as the highest seed already known.
An attack to the right ends at an even indexed child
as only one value is known in the next ‘box’ to the
right. Similarly, attacking to the left is blocked by
an odd indexed child. An upward attack is then
the only remaining option. One successful upward
attack gives no extra keys, but when followed by a
sideways attack reveals double the keys of the last
sideways attack.

BHT2 The strength of the BHT2 against attack
takes a similar form to that of the BHC-T hybrid,
except the strength against upward attack is de-
signed to be far greater. As with BHC-T, just one
known value from a ‘square’ of four can never re-
veal any of the others. However, unlike BHC-T,
three values do not necessarily immediately give the
fourth. If only one parent is unknown, 2w blind-
ing operations are required to guarantee finding it.
Given just two of the values, Table 4 lists how dif-
ficult it is to calculate the other two, depending
on which two are given. As before, the values in
the cells represent the number of blinding function
operations necessary to guarantee finding the pair
of output values given the inputs. Fig 22 shows

the same information graphically, with input val-
ues ringed and blinded values shown over a grey
background.

If a parent and either child down one side of the
‘square’ are given, the opposite parent can be
searched exhaustively, with each value tested by
blinding it and comparing it with the XOR of the
two known values. Thus, success is guaranteed af-
ter 2w blinding operations for a ‘sideways’ attack.
The same applies if a parent and the opposite child
are given.

If only the two child values are given, the exhaustive
search for the parents is designed to be much more
involved in BHT2. For each guess at the right par-
ent value, s(0, 1), it must be left blinded then the
left parent value has to be exhaustively searched
to find a left blinded value which, when combined
with the first left blinded guess gives the given value
of the left child. However, when these two parent
guesses are right blinded, they are unlikely to com-
bine to give the correct right child. Thus, the next
guess at the right parent has to be combined with
an exhaustive search of the blinded values of the left
parent and so on. This is equivalent to solving the
following simultaneous equations, given only s(1, 1)
and s(1, 2):

c
(
b0

(
s(0, 0)

)
, b0

(
s(0, 1)

) )
= s(1, 1)

c
(
b1

(
s(0, 0)

)
, b1

(
s(0, 1)

) )
= s(1, 2)

To guarantee success therefore requires an exhaus-
tive search of the square matrix of combinations of
the two parents, that is 22w blinding operations.
The greater strength against brute force attack in
the child to parent direction is shown in the figure
by a darker grey background. An alternative would
be to store all the left and right blinded values of
one parent to save keep recalculating them. How-
ever just the unindexed left blinded values of every
possible value of one parent would consume more
than 5e27TB of storage, the cost of which makes
other means of attack more economically worth-
while!

The same comments about double collisions apply
to BHT2 as did to BHC-T, except the wrong pair
of values would only appear if four hash collisions
were stumbled upon simultaneously — an event
with vanishingly small probability.

Sideways attacks in BHT2 are confined to at most
one ‘box’ either way as they are in BHC-T. There-
fore, to gain any significant number of keys, an up-
ward attack soon has to be faced. 2w blinding oper-
ations for a sideways attack will probably be more
expensive than legally acquiring the keys being at-
tacked. Once an upward attack has to be faced,
22w blinding operations are definitely an incentive
to find another way.
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parents s(0, 0) i 22w i 3 + 2w i 3 + 2w

s(0, 1) i 3 + 2w i 3 + 2w i

children s(1, 1) 4 i i 3 + 2w i

s(1, 2) i 3 + 2w i i 3 + 2w

Table 4: Revealing and blinding seed pairs in BHT2

revealing and blinding pairs in
BHT2s1,0 s1,1

s0,0 s0,1

Figure 22: Revealing and blinding seed sub-sets in BHT2

General Security Generally, the more random
values that are needed to build a tree, the more it
can contain sustained attacks to within the bounds
of the sub-tree created from each new random seed.
However, for long-running sessions, there is a trade-
off between security and the convenience of a con-
tinuous key-space, as discussed in the parts of sec-
tions 4.2, 4.3 and 4.4 on continuous trees. The ran-
domness of the randomly generated seeds is another
potential area of weakness that must be correctly
designed.

All the MARKS constructions are vulnerable to col-
lusion between valid group members. If a sub-group
of members agree amongst themselves to each buy
a different range of the key space, they can all share
the seeds they are sent so that they can all access
the union of their otherwise separate key spaces.
Arbitrage is a variant of member collusion that has
already been discussed. This is where one group
member buys the whole key sequence then sells por-
tions of it more cheaply than the selling price, still
making a profit if most keys are bought by more
than one customer. Protection against collusion
with non-group members is discussed in Section 6.3
on watermarking.

Finally, the total system security for any particular
application clearly depends on the strength of the
security used when setting up the session. The ex-
ample scenario in Section 3 describes the issues that
need to be addressed and suggests standard cryp-
tographic techniques to meet them. As always, the
overall security of an application using any of the
MARKS constructions is as strong as the weakest
part.

6 Requirement Variations

The key management schemes described in the cur-
rent work lend themselves to modular combination
with other mechanisms to meet the additional com-
mercial requirements described below.

6.1 Multi-Sender Multicast

A multi-sender multicast session can be secured us-
ing the MARKS constructions as long as all the
senders arrange to use the same key sequences.
They need not all simultaneously be using the same
key as long as the keys they use are all part of the
same sequence. Receivers can know which key to
use even if each sender is out of sequence with the
others as long as the ADU index is transmitted in
the clear as a header for the encrypted ADU. The
example scenario in Section 3 described how multi-
ple senders might synchronise the ADU index they
were all using if this was important to the commer-
cial model of the application.

If each sender in a multi-sender multicast uses dif-
ferent keys or key sequences, each sender is creating
a different secure multicast session even if they all
use the same multicast address. This follows from
the distinction between a multicast session and a
secure multicast session defined in Section 2.1. In
such cases each secure multicast session must be
created and maintained separately from the oth-
ers. However, there may be some scope for what
is termed amortised initialisation [3]. That is, dis-
tinct secure multicast sessions can all use the same
set-up data to save messaging. For instance, the
commercial model might be that customers always
have to buy the same ADUs from every one of a set
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of related senders if they buy any at all from each.
In such a scenario, each sender might combine a
MARKS sequence of keys common to all senders
with a long-term key specific to that sender. The
customer could buy the relevant seeds for the com-
mon range of keys, then buy an additional long-
term key for each sender she wished to decrypt.

6.2 Non-Sequential and Multi-Sequ-
ential Key Access

The MARKS constructions are designed to be ef-
ficient when giving each receiver access to a key
sequence that is an arbitrary sub-range of a wider
sequence, but not where the data isn’t sequential or
where arbitrary disjoint parts of a sequence are re-
quired. Thus MARKS is targeted at data streams
that are naturally sequential in one dimension, such
as real-time multimedia streams.

However, once a receiver has access to a range of
keys, clearly there is no compulsion to access them
in sequential order. For instance, the receiver may
store away a sub-range of a stream of music be-
ing multicast over the Internet encrypted using one
of the MARKS key sequences. Using an index of
the tracks downloaded, the receiver could later pick
out tracks to listen to in random order, using the
relevant keys taken out of order from the MARKS
sequence.

MARKS can also be used to restrict access to
data that is sequential but in multiple dimensions.
Some examples of such applications are described
in Fuchs et al [12]. A two dimensional key sequence
space is shown in Fig 23.

multi-dimensional key sequences
k'0,0  k'0,1  k'0,2  k'0,3  k'0,4  k'0,5  k'0,6  k'0,7

k'1,0  
k'1,1  
k'1,2  

k'1,3  
k'1,4  
k'1,5  
k'1,6  
k'1,7

k0,0   k0,1   k0,2   k0,3   k0,4  k0,5   k0,6   k0,7

k1,0   k1,1   k1,2   k1,3   k1,4  k1,5   k1,6   k1,7

k2,0   k2,1   k2,2   k2,3   k2,4  k2,5   k2,6   k2,7

k3,0   k3,1   k3,2   k3,3   k3,4  k3,5   k3,6   k3,7

k4,0   k4,1   k4,2   k4,3   k4,4  k4,5   k4,6   k4,7

k5,0   k5,1   k5,2   k5,3   k5,4  k5,5   k5,6   k5,7

k6,0   k6,1   k6,2   k6,3   k6,4  k6,5   k6,6   k6,7

k7,0   k7,1   k7,2   k7,3   k7,4  k7,5   k7,6   k7,7 

⊕

Figure 23: Multi-dimensional key sequences

For instance, access to multicast stock quotes could
be sold both by the duration of the subscription
and by the range of futures markets subscribed to.
Each quote would then need to be encrypted with
two intermediate keys XORed together. Thus the
‘final keys’ actually used for encryption would be:

ki,j = c(k′
0,i, k

′
1,j).

One intermediate key would be from a sequence k′
0,i

where i increments every minute. The other inter-
mediate key could be from a sequence k′

1,j where
j represents the number of months into the future
of the quote. A trader specialising in one to two
year futures would not only buy the relevant sub-
range of k′

0,i depending on how long she wanted
to subscribe, but she would also buy the range of
intermediate keys k′

1,12 to k′
1,24.

6.3 Watermarked Audit Trail

An approach such as Chameleon [1] (described ear-
lier) can be used to watermark the keys used to de-
crypt the stream of data. Thus, the keys generated
by any of the MARKS constructions are treated as
intermediate keys. The sender creates a sequence of
final keys by combining each intermediate key with
a long-term key block (512kB in the concrete ex-
ample) as described in Section 2.2. Each receiver is
given a long-term watermarked version of the same
block to produce a watermarked sequence of final
keys from her sequence of intermediate keys, thus
enforcing watermarked decryption.

However, this approach suffers from a general flaw
with Chameleon. It creates an audit trail for any
keys or data that are passed by a traitorous au-
thorised receiver to a completely unauthorised re-
ceiver — that is a receiver without a long-term key
block. In such cases the traitor who revealed the
keys or data can be traced if the keys or data are
traced. However, intermediate keys, rather than fi-
nal ones, can be passed to any receiver who has, at
some time, been given a long-term key block that
is still valid. Thus a receiver not entitled to cer-
tain of the intermediate keys (which are not wa-
termarked) can create final keys watermarked with
her own key block and hence decrypt the cipher-
stream. Although the keys and data produced are
stamped with her own watermark, this only gives
an audit trail to the target of the leak, not the
source. Hence, there is little deterrent against this
type of ‘internal’ traitor.

Returning to the specific case of the MARKS con-
structions, this general flaw with Chameleon means
that either the intermediate seeds or the interme-
diate keys can be passed around internally without
fear of an audit trail. For instance, in the above net-
work game example, a group of players can collude
to each buy a different game-hour and share the
intermediate seeds they each buy between them-
selves. To produce the real keys, each player can
then use her own watermarked long-term key block
that she would need to play the game. No audit
trail is created to trace who has passed on unwa-
termarked intermediate seeds. However, there is
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an audit trail if any of the players tries to pass the
watermarked keys or data to someone who has not
played the game recently and therefore doesn’t have
a valid long term key block of their own. Similarly,
there is an audit trail if, instead, one of the play-
ers passes on their long-term key block, as it also
contains a watermark traceable to the traitorous
receiver.

6.4 Unplanned Eviction

As already pointed out, the MARKS constructions
allow for eviction from the group at arbitrary times,
but only if planned at the time each receiver ses-
sion is set up. If pre-planned eviction is the com-
mon case, but occasionally unplanned evictions are
needed, any of the MARKS schemes can be com-
bined with another scheme, such as LKH++ [8]
to allow the occasional unplanned eviction. To
achieve this, as with watermarking above, the key
sequences generated by any of the MARKS con-
structions are treated as intermediate keys. These
are combined (e.g. XORed) with a group key dis-
tributed using for example LKH++ to produce
a final key used for decrypting the data stream.
Thus both the MARKS intermediate key and the
LKH++ intermediate key are needed to produce
the final key at any one time.

Indeed, any number of intermediate keys can be
combined (e.g. using XOR) to meet multiple re-
quirements simultaneously. For instance, MARKS,
LKH++ and Chameleon intermediate keys can
be combined to simultaneously achieve low cost
planned eviction, occasional unplanned eviction
and a watermarked audit trail against leakage out-
side the long-term group.

Formally, the final key, ki,j,... = c(k′
0,i, k

′
1,j , · · · ),

where intermediate keys k′ can be generated from
sequences using MARKS constructions or any other
means such as those described in the previous two
sections on watermarking and multi-dimensional
key sequences.

In general, combination in this way produces an
aggregate scheme with storage costs that are the
sum of the individual component schemes. How-
ever, combining LKH++ with MARKS where most
evictions are planned cuts out all the re-keying mes-
sages of LKH++ unless an unplanned eviction is
actually required.

6.5 Other Group Key Management
Scenarios

This paper has so far used multicast data distribu-
tion for all the example scenarios. We now present

two alternative group keying scenarios to illustrate
solutions for a potentially wider set of problem do-
mains.

Virtual Private Network (VPN) A large
company may allow its employees and contractors
to communicate with other parts of the company
from anywhere on the Internet by setting up a
VPN. One way to achieve this is to give every
worker a group key used by the whole company.
Consequently, every time a worker joins or leaves
the company, the group key has to be changed. In-
stead the key should be changed regularly in a se-
quence determined by one of the MARKS construc-
tions, whether or not workers join or leave. As each
new employment contract is set up, seeds are given
to each worker that allows her to calculate the next
keys in the sequence until her contract comes up
for renewal. Any worker that leaves prematurely is
treated as an unplanned eviction (see Section 6.4).

Digital Versatile Disk (DVD) DVD originally
stood for digital video disk, because its capacity was
suited to this medium. However, it can clearly be
used to store less hungry media like software or au-
dio. Instead of pressing a different sparsely filled
DVD for each selection of audio tracks or software
titles, each DVD could be produced filled to capac-
ity with many hundreds of related tracks or titles
(the ADUs). Each ADU could be encrypted with a
different key from a sequence created using one of
the MARKS constructions. These DVDs could be
mass-produced and given away free (e.g. as cover
disks on magazines). Anyone holding one of these
DVDs could then buy seeds over the Internet that
would give access to a range of keys to unlock some
of the ADUs on the DVD. MARKS is ideally suited
to such scenarios because the encryption key cannot
be changed once the DVD is pressed, so commer-
cial models that use physical media don’t tend to
rely on unplanned eviction. This scheme could use-
fully be combined with Chameleon to watermark
the keys and data (as described in Section 6.3).

7 Limitations and Further
Work

Each construction presented has strengths and
weaknesses in terms of its efficiency and security.
The trade-offs between these have already been dis-
cussed. Here we confine ourselves to inherent limi-
tations suffered by all the schemes.

Duplication of information costs so little that sell-
ing multiple copies at a unit price much greater
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than the cost of duplication always results in an
economic incentives for potential buyers to collude.
We discuss receiver collusion and arbitrage in Sec-
tions 5.3 & 6.3 but the best solution we can of-
fer without requiring smartcards or the complexity
of ‘watercasting’ only offers the possibility of de-
tecting collusion between a group member and a
non-member. Detecting intra-group collusion with-
out requiring specialist hardware is left for further
work.

In the BHT and BHT2 constructions, we have
assumed that knowledge of more than one value
blinded in different ways from the same starting
value doesn’t lead to an analytical solution to cal-
culate the original value. Until proofs exist showing
any blinding function is resistant to analytical (as
against brute force) attack, it won’t be possible to
prove whether an analytical attack has been made
easier by our techniques.

Finally, through pressure of time, we have avoided
analysis of trees of degree three and above. They
potentially offer greater efficiency at the expense
of additional complexity. For instance the exper-
iments in Wong et al recommend a tree of degree
four, but the pattern of usage that their tree is sub-
jected to is only tenuously related to the present
work.

8 Conclusion

We have presented solutions to manage the keys of
very large groups. It preserves the scalability of re-
ceiver initiated Internet multicast by completely de-
coupling senders from all receiver join and leave ac-
tivity. Senders are also completely decoupled from
the key managers that absorb this receiver activ-
ity. We have shown that many commercial appli-
cations have models that only need stateless key
managers, in which cases unlimited key manager
replication is feasible. When one of a replicated set
of stateless key managers fails it has no effect on
transactions in progress on sister servers, thus iso-
lating the overall system from problems, improving
resilience. We have presented a worked example of
a large-scale network game charged per minute to
illustrate these points.

These gains have been achieved by the use of sys-
tematic group key changes rather than receiver
join or leave activity driving re-keying. Decou-
pling is achieved by senders and key managers pre-
arranging the unit of financial value in the multi-
cast data stream (the ‘application data unit’ with
respect to charging). A systematic key change can
then be signalled by incrementing the ADU index
declared in the data. Using this model, there is zero

side effect on other receivers (or on the senders)
when one receiver joins or leaves. We also ensure
multicast is not used for key management, only for
bulk data transfer. Thus, re-keying isn’t vulnerable
to random transmission losses, which are complex
to repair scalably when using multicast.

Traditional key management solutions have suc-
cessfully improved the scalability of techniques to
allow unplanned evictions of group members, how-
ever the best techniques are still costly in mes-
saging terms. In contrast we have focussed on
the problem of planned eviction. That is, evic-
tion per receiver after some arbitrary future ADU,
but planned at the time the receiver requests a ses-
sion. We have asserted that many commercial sce-
narios based on pre-payment or subscription don’t
require unplanned eviction but do require arbitrary
planned eviction. Examples are pay-TV, pay-per-
view TV or network gaming.

To achieve planned but arbitrary eviction we have
designed a choice of key sequence constructions that
are used by the senders to systematically change
the group key. They are designed such that an
arbitrary sub-range of the sequence can be recon-
structed by revealing a small number of seeds (16B
each). All the practical schemes can reveal N keys
to each receiver using O(log N) seeds. The schemes
differ in the processing load to calculate each key,
which is traded off against security. The heaviest
scheme requires on average just O

(
2(log(N) − 1)

)
fast hash operations to get started, then on aver-
age no more than just four more hashes to calculate
each new key in the sequence, which can be done
in advance. The lightest scheme requires half this
already low processing load, implying under 10us
of processing time to generate each ADU key with
today’s technology.

Of the constructions presented, the binary hash tree
(BHT) is the simplest. The binary hash chain-
tree hybrid (BHC-T) is slightly more complex and
slightly more secure but equally as efficient as the
BHT. However, the BHC-T is better suited for ses-
sions where the duration is open-ended. Finally
the binary hash tree II (BHT2) emulates double
the key strength of the BHT with about half the
efficiency. Given the BHT security is probably suf-
ficient in most circumstances, we recommend it for
its simplicity.

To put this work in context, for pay TV charged
per second with 10% of ten million viewers tuning
in or out within a fifteen minute period, the best
alternative scheme (Chang et al) might generate a
re-key message of the order of tens of kB every sec-
ond multicast to every group member. The present
work requires a message of a few hundred bytes
unicast just once to each receiver at the start of
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perhaps four hours of viewing. This comparison
is not strictly fair as, unlike the present scheme,
Chang et al and the other schemes of its class al-
low for unplanned eviction from the group, thus
allowing accurate charging for serendipitous view-
ing. However, the purpose of this work is to present
a far more scalable solution for commercial scenar-
ios where unplanned eviction is not required. An-
other way of putting this is that the cost of scenar-
ios requiring unplanned eviction might make them
economically unviable compared to those that can
make do with planned eviction.

Nonetheless, if unplanned eviction is occasionally
required, we have shown how to combine our
scheme with Chang’s to get the best of both worlds.
Combining schemes sums the storage requirements
of each, but both are very low in this respect.
We also show how to further combine with the
Chameleon watermarking scheme to give rudimen-
tary detection of information leakage outside the
group.

Finally we have briefly described how our key se-
quence constructions could be used in other group
key management scenarios such as for VPNs or for
information distribution on DVD.
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A Algorithm for Identifying Minimum Set of Intermediate
Seeds for BHT

In the following C-like code fragment

• the function odd(x) tests whether x is odd

• and the function reveal(d, i) reveals seed s(d, i) to the receiver

min=m; max=n;
if (min > max) error(); // reject min > max
for(d=D; ; d--) { // working from leaves of tree...

// move up the tree one level each loop
if (min == max) { // min \& max have converged...

reveal(d,min); // ...so reveal root of sub-tree...
break; // ...and quit

}
if odd(min) { // odd min values are never left children...

reveal(d,min); // ...so reveal odd min seed
min++; // and step min inwards one seed to right

}
if !odd(max) { // even max values are never right children...

reveal(d,max); // ...so reveal even max seed
max--; // and step max inwards one seed to left

}
if (min > max) break; // min \& max were cousins, so quit
min/=2; // halve min ...
max/=2; // ... and halve max ready for...

} // ... next level up round loop

B Algorithm for Identifying Minimum Set of Intermediate
Seeds for BHC-T and BHT2

In the following C-like code fragment

• the function odd(x) tests whether x is odd

• and the function reveal(d, i) reveals seed s(d, i) to the receiver

min=m; max=n;
if (min > max) error(); // reject min > max
d=D; // working from leaves of tree
if (max <= min+1) { // requested min \& max are adjacent/the same...

reveal(d,min); // ...so reveal left...
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if (max <> min) // requested min \& max are not the same...
reveal(d,max); // ...so reveal right too...

quit(); // ...and quit
}
for(d=D; ; d--) { // move up the tree one level each loop

if (max <= min+3) { // min \& max are two or three apart...
if (max < min+3) { // min \& max were two apart...

reveal(d,min); // ...so reveal left,...
reveal(d,max); // ...right
reveal(d,min+1); // ...and centre...
break; // ...and quit

} else { // min \& max were three apart, so...
if (odd(min)) { // ...only if min is odd...

reveal(d,min); // ...reveal left...
reveal(d,min+1); // ...left centre...
reveal(d,max-1); // ...right centre...
reveal(d,max); // ...and right...
break; // ...and quit

} // (if min even, reveal nothing)
}

}
if odd(min) { // odd min values are never right children...

reveal(d,min); // ...so reveal odd min seed
min++; // and step min inwards one seed to right

}
if !odd(max) { // even max values are never left children...

reveal(d,max); // ...so reveal even max seed
} else // odd max values need rounding up when halved...

max++; // ...so step max outwards one seed to right
min/=2; // halve min and ...
max/=2; // ... halve max ready for...

} // ... next level up round loop

C Notation

O(x) is notation for ‘of order x’.

bj/P c is notation for the value of j/P rounded down to the nearest integer (the floor function).

j mod P is notation for the remainder of j/P .
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