
Policing Congestion Response in an Internetwork using
Re-feedback

Bob Briscoe
BT Research & UCL

bob.briscoe@bt.com

Arnaud Jacquet
BT Research

arnaud.jacquet@bt.com

Carla Di Cairano-Gilfedder
BT Research

carla.dicairano-
gilfedder@bt.com

Alessandro Salvatori
Eurécom & BT Research

sandr8@gmail.com

Andrea Soppera
BT Research

andrea.2.soppera@bt.com

Martin Koyabe
BT Research

martin.koyabe@bt.com

ABSTRACT
This paper introduces a novel feedback arrangement, termed
re-feedback. It ensures metrics in data headers such as time
to live and congestion notification will arrive at each relay
carrying a truthful prediction of the remainder of their path.
We propose mechanisms at the network edge that ensure the
dominant selfish strategy of both network domains and end-
points will be to set these headers honestly and to respond
correctly to path congestion and delay, despite conflicting
interests. Although these mechanisms influence incentives,
they don’t involve tampering with end-user pricing. We de-
scribe a TCP rate policer as a specific example of this new
capability. We show it can be generalised to police various
qualities of service. We also sketch how a limited form of
re-feedback could be deployed incrementally around unmod-
ified routers without changing IP.

Categories and Subject Descriptors
C.2.0 [Computer-communication networks]: Security
and protection; C.2.1 [Computer-communication net-
works]: Network Architecture and Design

General Terms
Economics, Security

Keywords
Policing, congestion, QoS, characterisation, incentives

1. INTRODUCTION
The current Internet architecture trusts hosts to respond

voluntarily to congestion; a feature commonly put down to
the environment of mutual trust in which these algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05,August 21–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-4/05/0008 ...$5.00.

emerged. Limited evidence shows that the large majority
of end-points on the Internet comply with a TCP-friendly
response to congestion. But if they didn’t, it would be hard
to force them to, given path congestion is only known at the
last egress of an internetwork, but policing is most useful at
the first ingress.

Without knowing what makes the current co-operative
consensus stable, we may unwittingly destabilise it. At the
most alarmist, if this were to lead to congestion collapse [7]
there would be no obvious way back. But even now, ap-
plications that need to be unresponsive to congestion can
effectively steal whatever share of bottleneck resources they
want from responsive flows. Whether or not such free-riding
is common, inability to prevent it increases the risk of poor
returns, leading to under-investment in capacity.

In 2000, these capacity allocation and accountability prob-
lems helped to motivate a overhaul of the Internet archi-
tecture [1], but they remain unresolved. We believe their
solution lies in a realignment of the feedback architecture.

Changing the Internet’s feedback architecture seems to
imply considerable upheaval. But, perhaps surprisingly, we
believe a limited form of the new arrangement could be de-
ployed incrementally at the transport layer, around unmod-
ified routers using the existing fields in IP (v4 or v6). Pro-
tocol engineering isn’t the focus of the present paper—an
idealised numeric scheme is all that is necessary to explain
the concepts. However, to satisfy doubters, we sketch our
engineering and deployment ideas at the end.

Conceptually, the solution could hardly be simpler. We
propose collecting path information in packet header fields
as data traverses a path, just as can already be done with
time to live (TTL) or congestion notification (ECN [19]).
But previously, as each node added characterisation of its
local hop, the header values accumulated upstream path
knowledge. By a simple realignment, we arrange each field
to characterise the remaining downstream path. We aim to
reach a target for the metric at the destination, rather than
aligning the datum at the source. For example, TTL cur-
rently always starts at the datum 255. Instead we propose it
should arrive at the destination set to an agreed datum (say
16). To achieve this, each receiver will need to occasionally
feed back the TTL values arriving in packets, so the sender
can adjust the next attempt in order to continue to hit 16.
§2 expands on this basic explanation with more precision.

We term this pattern ‘re-feedback’, short for either receiver-
aligned or re-inserted feedback, although it is actually simi-
lar to the ordinary feedback found in other disciplines (elec-
tronics, hydraulics, etc.). Once re-feedback is in place, each
packet arrives at each network element carrying a view of
its own downstream path, albeit a round trip ago. So full
path congestion becomes visible at the first ingress, where a
rate policer is most useful.

But we still don’t seem to have solved the problem. It
seems näıve to police traffic by trusting fields that depend
on the honesty of both the sender and receiver—those with
most to gain from lying. However, in §3 we explain why
re-aligning feedback allows us to arrange for honesty to be
everyone’s dominant strategy—not only end-users, but also
networks. Building on the resulting trustworthiness of path
metrics, we describe how to build a rate equation policer,
using TCP as a concrete example. We generalise to any
rate equation, in particular Kelly’s [14], showing that we can
synthesise the same effect as quality of service mechanisms,
but only using an ingress policer. We also describe a passive
policer for inter-domain boundaries.

In §4 we sketch our incremental deployment ideas. Then
we end the body of the paper (§5) with the results of simu-
lations conducted to test whether the incentive mechanism
really is responsive enough to ensure truthful congestion re-
porting. We wrap up with related work and conclusions.

2. RE-FEEDBACK
Characterising paths through networks requires more than

one metric. We have chosen to explain how re-feedback
works using two: congestion and delay (that is, unloaded de-
lay not congestion delay). Re-feedback of just these two met-
rics helps solve a surprisingly large set of networking prob-
lems. But additional metrics might be useful in practice,
e.g. hop count, unloaded loss rate etc. Delay re-feedback is
a useful starting point because it is trivially simple to ex-
plain. Then we use congestion to highlight the similarities
and differences that are encountered between metrics.

A pre-requisite for re-feedback is the explicit declaration of
path metrics and their maintenance along the path. Setting
aside protocol details for now, it will suffice to consider a
multi-bit field for delay and another for congestion carried
in future network layer packet headers1. Also equivalent
fields will be necessary in the end-to-end back-channel from
receiver to sender—sent frequently enough to control the
most volatile metric (congestion). For instance, in future
TCP acks (or RTCP receiver reports, etc.)

Network layer headers will also need a ‘certain’ flag, which
the sender should clear at the start of a flow, when no feed-
back is yet available. Metric(s) carried in uncertain pack-
ets should not contribute to any bulk averaging at network
equipment (e.g. see §3.2.1), but the flag is not intended to
affect forwarding of the packet itself.

Fig 1 introduces our notation. Each path across the net-
work consists of a sequence of resources, ir; 0 ≤ ir < nr

indexed in the context of each path r from the sender S with
resource ir = 0 to resource ir = (nr − 1) just before the re-
ceiver R. Whenever a single path context makes it obvious,
we will drop the suffix r.

1We believe it is possible to apply re-feedback in a separate
control plane, or even where control information is analogue,
but for clarity we stick to one IP-based scenario.

notation: re-feedback

hn(t)

h0(t)
h0(t)

S m0

h0(t+T)

hi(t)
hi+1(t)

N mi R

hn(t)

N mn-1

h1,i

h2,i…

N
m1,i

m2,i…

delay
congestion
…

h1,i+1

h2,i+1…

Figure 1: Notation for path characterisation metrics
m and headers h.

15

a)

b)

– 242

N5

S1 R1

R2

N1 N2

29 24 23 16

S2

N3
N4

1

0
5

0

2

3

7

2
0

24

15
22

26

+ 255 + 16

N5

S1 R1

R2

N1 N2

255 250 249

254

242

245252

S2 N3
N4

255

1

0
5

0

2

3

7

10

25

16
23

2726

242

245

– 245

+ 255 + 16

Figure 2: Network flows carrying unloaded delay in
packet headers. a) With classic feedback, sources
initialise headers to 255. b) With re-feedback over
the same network, sources set headers so as to reach
16 at the destination.

The unloaded delay header, h1, is carried in packets from
resource to resource. Each relay N characterises its local
resource’s contribution to the delay—perhaps by echo tests
with the downstream neighbour. It contributes to the whole
path delay by combining its local contribution m1,i with the
incoming header value, h1,i, and forwarding the updated
result, h1,i+1 (Fig 1). The choice of combining function
depends on the metric in question. As unloaded delay is
additive, subtraction is an appropriate combining function
(like TTL processing), h1,i+1 = h1,i −m1,i.

Other packet header fields will require combining func-
tions appropriate to the metrics they represent. The inset
in Fig 1 shows packets carrying header fields for both delay
and congestion being combined with the local metrics for
each, as parallel, independent operations. Where the con-
text is obvious, we drop the suffix that distinguishes between
delay and congestion.

If we introduce feedback of unloaded delay, the receiver
will report the header values it receives back to the sender.
With classic feedback, the sender always initialises the un-
loaded delay header to a well-known value, say h0 = 255,
as shown in Fig 2a). The header will arrive at node j
with a value accumulated over all the upstream resources
hj = h0−

∑j−1
i=0 mi. We call the composition of all the local

metrics mi experienced by a packet the path metric
So, with classic feedback for delay, the path metric up-

unloaded delay congestion Eqn

combining function at resource i, hi+1 = g(hi, mi) hi −mi 1− (1− hi)(1−mi) (6)

header initialisation function at source, h0(t+T) = f(h0(t), hn(t)) h0(t) − hn(t) + hz 1− (1−hz)(1−h0(t))

1−hn(t)
(9)

downstream path metric at resource j, ρj(hj(t+T)) hj(t+T) − hz s
(
1− 1−hz

1−hj(t+T)

)
(10)

Table 1: The functions g(·) & f(·) required to implement re-feedback and ρ(·) to exploit it, summarising results
from §2 & Appendix A, where notation is formally defined.

stream of node j is
∑j−1

i=0 mi = h0 − hj . Node j can work
this out by examining hj in packets as they arrive, because
h0 is well-known. So the receiver (with j = n) can charac-
terise the whole path delay h0−hn. If it feeds back hn to the
sender using our notional end-to-end protocol (bent arrows
in Fig 2a)), the sender can know the path delay too. So
far, we have said nothing new, merely introducing notation
using a familiar example.

With re-feedback the trick is simply for the sender to
choose an initial header value such that, if the path met-
ric were to remain unchanged, the header would reach a
well-known value hz at the destination—rather than start-
ing from a fixed value. In our numerical example in Fig 2b)
we assume the industry has standardised hz = 16.

Although that is really all there is to it, we will now trace
through how re-feedback works step by step to be precise
about the differences:

1. For now, we will assume that the source bootstraps the
very first packet of a flow with the fixed value we used
with classic feedback, h0(t) = 255. (When we need
to distinguish between packets, we suffix each header
value with the time t at which it was originally sent.)

2. The source has to remember the initial value it chose,
as depicted by the curved boxes containing 255 at each
source in Fig 2b) and containing h0(t) in Fig 1.

3. The packet traverses the path r, combining each lo-
cal delay in turn into its header, using the combining
function (subtraction) already described above.

4. The receiver feeds back the resulting delay header value
hn(t) to the sender, which arrives a round trip Tr after
the first packet was sent, depicted by the bent arrows.

5. The sender initialises the delay field in the next packet
(dotted) to h0(t+Tr) = h0(t) − hn(t) + hz as well as
storing this new value in place of the last one. Each
initial delay header value only depends on the previ-
ous round’s initial value and the value fed back—both
known locally at the source.

Now we can see that this simple shift of datum has achieved
our original aim: as each packet arrives at a resource j any-
where in the network, it carries within its header hj a pre-
diction of its own downstream path delay, hj−hz, requiring
no path state on the relay because hz is well-known. Any
packet in Fig 2b) illustrates this point, in that subtracting
hz = 16 from any header value predicts the sum of the re-
maining downstream resources on that path.

The second column of Table 1 summarises the functions to
implement delay re-feedback that we have just derived. The
third column gives the equivalent functions for congestion,
derived in Appendix A.

As with delay, the combining function for each relay to
accumulate local congestion into headers (first row) must
be chosen to reflect the way congestion accumulates. In Ap-
pendix A.1 we define congestion as a probability, using ax-
iomatic definitions2. So, as shown, we must use the function
for combinatorial probability to combine congestion headers.

For either delay or congestion, the combining function at
relays can be the same as for classic feedback, as the pur-
pose is still to accumulate a path metric from local metrics.
By avoiding arbitrary changes to the classic combining func-
tions, re-feedback can be introduced incrementally, solely by
arrangement between corresponding endpoints.

Each initialisation function (second row) ensures the header
reaches hz at the destination, given the way it accumulates
along the path. Each function in the third row was derived
from the previous two in order to predict the downstream
path metric (DPM) from any node.

Note that neither prediction of DPM requires path state,
only the state arriving in the packet itself. Further note
that, for congestion, the DPM ρj also depends on the ef-
fective packet size s. For bit-congestible resources like links
s = actual packet size. For packet-congestible resources like
forwarding look-ups s = 1.

Fig 2 also illustrates how a change on a path affects the
predictions in packets traversing it. The increase in delay at
resource N3 between Figs 2a) & b) (highlighted as a star-
burst) causes packets in flight upstream to underestimate
their remaining downstream delay. Packets in flight down-
stream still correctly predict their downstream delay, but
when feedback from them releases further packets, these un-
derestimate their path delay.

With no further changes in local delays, packets in the
following round (dotted) correctly predict the path again.
Of course, changes in the unloaded delay at a node (e.g.
due to a lower layer re-route) are rare, at least in fixed net-
works. However, for more volatile metrics like congestion,
change is the norm. For delay, the prediction error will be∑n−1

i=0 (mi(t+T) −mi(t)). For congestion, it is given by Eqn
(11) in Appendix A.1. In both cases, the error depends on
the difference between the whole path metrics.

To put these errors in context, re-feedback causes a source
to suffer the same path prediction error as classic feedback—
for equivalent path changes within the last round trip. So
a re-feedback source transport can extract the same infor-
mation, with the same timeliness and apply the same rate
control algorithms with the same dynamics. For relays, it
can take up to an extra half round trip before path changes
reach them. But, for relays, any downstream path predic-
tion at all is an improvement over classic feedback, which

2In contrast to the proposed ECN standard [19] where con-
gestion is defined as the output of the RED algorithm—
leaving no objective basis for improving RED.

path
knowledge

align-
ment sender relay rcvr

up- sender n/a
[
0, T

2

] [
0, T

2

]

stream receiver n/a x x

down- sender
[

T
2
, T

]
x n/a

stream receiver
[

T
2
, T

] [
T, 3T

2

]
n/a

Table 2: Comparison of sender and receiver-aligned
feedback, by availability of path knowledge (x = not
available; n/a = not applicable) and by range of
timeliness (using symmetric delay).

offers none. And at the ingress, where policers are most
appropriate, responsiveness will be similar to that of the
source. Table 2 summarises the path knowledge that nodes
gain or lose from re-feedback. It also quantifies the range of
how long it can take for path changes to work through into
correct path predictions in each case.

Previously, to achieve such knowledge at every relay would
have required messages to be reverse routed hop by hop
from all destinations (cf. routing messages or congestion
back-pressure). Although re-feedback takes a little longer to
propagate (because it travels via the source), it updates at
the same rate as the ack rate—as often as TCP congestion
control and many orders of magnitude more often than a
typical routing message rate. Also, re-feedback piggy-backs
on existing data, requiring no extra packet processing.

3. INCENTIVES
We aim to create an incentive environment to ensure any-

one’s selfish behaviour (including lying and cheating) leads
to maximisation of social welfare.3 Throughout this section
we will focus primarily on characterisation of path conges-
tion. This will stress re-feedback incentive mechanisms to
the full in the face of conflict over scarce resources. Given
most forms of fairness, including TCP’s, also depend on
round trip time, we will then outline how a path delay metric
would be amenable to similar treatment.

Fig 3 sketches the incentive framework that we will de-
scribe piece by piece throughout this section. An internet-
work with multiple trust boundaries is depicted. The down-
stream path congestion seen in a typical packet is plotted as
it traverses an example path from sender S1 to receiver R1.
They are shown using re-feedback, but we intend to show
why everyone would choose to use it, correctly and honestly.

Two main types of self-interest can be identified:

• Users want to transmit data across the network as fast
as possible, paying as little as possible for the privilege.
In this respect, there is no distinction between senders
and receivers, but we must be wary of potential malice
by one on the other;

• Network operators want to maximise revenues from
the resources they invest in. They compete amongst
themselves for the custom of users.

Source congestion control: We want to ensure that
the sender will throttle its rate as downstream congestion in-
creases. Whatever the agreed congestion response (whether

3These mechanisms can lie dormant wherever co-operation
is the social norm.

incentive architecture
downstream
path
congest
-ion, ρi

i

N1
N2

N3

N4

N5

R1

S1

shaper/
policer dropper

bulk congestion pricingbulk congestion charging

routingtraffic eng

congestion
control

0

Figure 3: Incentive framework

TCP-compatible or some enhanced QoS), to some extent it
will always be against the sender’s interest to comply.

Edge ingress policing/shaping: But it is in all the
network operators’ interests to encourage fair congestion re-
sponse, so that their investments are employed to satisfy
the most valuable demand. N1 is in the best position to en-
sure S1’s compliance and it now has a choice of mechanisms
across a spectrum of customer autonomy. At one extreme,
N1 could give S1 complete autonomy, but encourage respon-
sible behaviour by charging for the downstream congestion
in packets. Or it can shape traffic directly itself, removing
all S1’s autonomy. Between the two extremes, it can police
a congestion response agreed upfront with S1 (§3.3).

Edge egress dropper: If the source has less right to a
high rate the higher it declares downstream congestion, it
has a clear incentive to understate downstream congestion.
But, if packets are understated when they enter the internet-
work, they will be negative when they leave. So, we intro-
duce a dropper at the last network egress, which drops pack-
ets in flows that persistently declare negative downstream
congestion (see §3.2).

Inter-domain traffic policing: But next we must ask,
if congestion arises downstream (say in N4), what is the
ingress network’s (N1) incentive to police its customers’ re-
sponse? If N1 turns a blind eye, its own customers benefit
while other networks suffer. This is why all inter-domain
QoS architectures (e.g. Intserv, Diffserv) police traffic each
time it crosses a trust boundary. Re-feedback gives trust-
worthy information at each trust boundary so the congestion
response can be policed in bulk.

Emulating policing with inter-domain congestion
charging: However, between high-speed networks, we would
rather avoid holding back traffic while it is policed. Instead,
once re-feedback has arranged headers to carry downstream
congestion honestly, N2 can contract to pay N4 in proportion
to a single bulk count of the congestion metrics ρ crossing
their mutual trust boundary (§3.4). Then N2 has an in-
centive either to police the congestion response of its own
ingress traffic from N1 or to charge N1 in turn on the ba-
sis of congestion counted at their mutual boundary. In this
recursive way, each flow’s response can be precisely incen-
tivised, despite the mechanism not recognising flows. If N1

turns a blind eye to its own upstream customers’ congestion
response, it will still have to pay its downstream neighbours.

No congestion charging to users: Bulk congestion
charging at trust boundaries is passive and extremely simple,

and loses none of its per-packet precision from one boundary
to the next. But at any trust boundary, there is no impera-
tive to use congestion charging. Traditional traffic policing
can be used, if the complexity and cost is preferred. In par-
ticular, at the boundary with end customers (e.g. between
S1 and N1), traffic policing will most likely be far more ap-
propriate. Policer complexity is less of a concern at the edge
of the network. And end-customers are known to be highly
averse to the unpredictability of congestion charging [15].
So note well: this paper neither advocates nor requires con-
gestion charging for end customers and advocates but does
not require inter-domain congestion charging.

Competitive discipline of inter-domain traffic engi-
neering: With inter-domain congestion charging, a domain
seems to have a perverse incentive to fake congestion; N2’s
profit depends on the difference between congestion at its
ingress (its revenue) and at its egress (its cost). So overstat-
ing internal congestion seems to increase profit. However,
smart border routing [10] by N1 will bias its multipath rout-
ing towards the least cost routes, so N2 risks losing all its
revenue to competitive routes if it overstates congestion. In
other words, N2’s ability to raise excess profits is limited by
the price of its second most competitive route.

Closing the loop: All the above elements conspire to
trap everyone between two opposing pressures (upper half
of Fig 3), ensuring the downstream congestion metric arrives
at the destination neither above nor below zero. So we have
arrived back where we started in our argument. The ingress
edge network can rely on downstream congestion declared
in the packet headers presented by the sender. So it can
police the sender’s congestion response accordingly.

3.1 The case against classic feedback
So why can’t classic congestion feedback (as used already

by standard ECN) be arranged to provide similar incentives?
Superficially it can. Given ECN already existed, this was the
deployment path Kelly proposed for his seminal work that
used self-interest to optimise social welfare across a system
of networks and users [14]. The mechanism was nearly iden-
tical to volume charging; except only the volume of pack-
ets marked with congestion experienced (CE) was counted.
However, below we explain why relying on classic feedback
meant the incentives traced an indirect path—the long way
round the feedback loop. For example, if classic feedback
were used in Fig 3, N2 would incentivise N1 via N4, R1 &
S1 rather than directly.

Inability to agree what happened: In order to po-
lice its upstream neighbour’s congestion response, the neigh-
bours should be able to agree on the congestion to be re-
sponded to. Whatever the feedback regime, as packets change
hands at each trust boundary, any path metrics they carry
are verifiable by both neighbours. But, with a classic, sender-
aligned path metric, they can only agree on the upstream
path congestion—its offset from its well-known datum at
the sender.

Inaccessible back-channel: The network needs a whole
path congestion metric to control the source. Classically,
whole path congestion emerges at the destination, to be
fed back from receiver to sender in a back-channel. But,
in any data network, back-channels need not be visible to
relays, as they are essentially communications between the
end-points. They may be encrypted, asymmetrically routed
or simply omitted, so no network element can reliably in-

tercept them. The congestion charging literature solves this
problem by treating the sender and receiver as entities with
aligned incentives. Although measuring classic ECN mark-
ing rates relative to their datum at the sender forces a ‘re-
ceiver pays’ model (at each trust boundary the downstream
neighbour pays), at least this incentivises the receiver to
refer the charges to the sender.

‘Receiver pays’ unacceptable: However, in connec-
tionless datagram networks, receivers and receiving networks
cannot prevent reception from malicious senders, so ‘receiver
pays’ opens them to ‘denial of funds’ attacks.

End-user congestion charging unacceptable: Even
if ’denial of funds’ were not a problem, we know that end-
users are highly averse to the unpredictability of congestion
charging and anyway, we want to avoid restricting network
operators to just one retail tariff. But with classic feedback,
we cannot avoid having to wrap the ‘receiver pays’ money
flow around the feedback loop, necessarily forcing end-users
to be subjected to congestion charging.

To summarise so far, with classic feedback, policing con-
gestion response requires congestion charging of end-users
and a ‘receiver pays’ model. Whereas, with re-feedback, in-
centives can be fashioned either by technical policing mech-
anisms (more appropriate for end users) or by congestion
charging (more appropriate inter-domain) using the safer
‘sender pays’ model.

Impractical traffic engineering: Finally, classic feed-
back makes congestion-based traffic engineering inefficient
too. Network N4 can see which of its two alternative up-
stream networks N2 and N3 are less congested. But it is N1

that makes the routing decision. This is why current traffic
engineering requires a continuous message stream from con-
gestion monitors to the routing controller. And even then
the monitors can only be trusted for intra-domain traffic en-
gineering. The trustworthiness of re-feedback enables inter-
domain traffic engineering without messaging overhead.

We now take a second pass over the incentive framework,
filling in the detail more formally.

3.2 Honest congestion reporting
An honest sender will declare a certain downstream path

metric (DPM) ρ0 in packets to aim for zero at the destina-
tion after allowing for path congestion. We define cheating
as the difference ∆ρ0c relative to this ideal, taking overstate-
ment as positive. To rely on the DPM packets carry, we
must discourage dishonesty, whether positive or negative. If
the sender declares a certain DPM, a certain rate response
will be permitted, which can be policed (§3.3). For any safe
congestion response, the higher the sender’s declared DPM,
to some degree the slower its data rate, and the lower the
value it derives. So, to the right of Fig 4 we can show the
sender’s utility strictly decreasing with overstatement.

So senders have an incentive to understate DPM, which
allows them a higher bit rate. But then DPM will turn neg-
ative before reaching the destination. If networks discard4

negative packets, the utility to the sender of the higher bit
rate will rapidly collapse, as shown to the left of the fig-
ure. Therefore honesty at ∆ρ0c = 0 will be the dominant
sender strategy that maximises its net utility. A receiver
that genuinely wants data to be sent as quickly as possible

4Various penalties short of discard, e.g. payload truncation,
can be imposed in order to preserve the feedback loop, given
a packet may be wrongly penalised.

incentive compatibility

net value to
end-points,∆U

overstatement
of downstream
path metric at

source, ∆ρ0c

practical
ideal

0

Figure 4: Truth telling incentives

has incentives aligned with the sender, so honest feedback
also returns the maximum net gain.

In fact, the position is complicated by continuous vari-
ability of path congestion; even honest traffic will arrive at
its destination spread around zero. Below we describe a
dropper that makes allowances for this variability but still
detects understatement of DPM. The best dropper we can
currently envisage suffers some false positives and negatives,
blunting the incentive to be absolutely honest (Fig 4).

3.2.1 Adaptive dropper
If congestion didn’t vary, a malicious source understating

congestion by ∆ρ0c (numerically negative) would cause a
proportionate understatement at the destination of ∆ρnc.

5

But congestion does vary, so if the probability distribution of
the DPM at the destination is Pn(ρn) for an honest sender,
it will be shifted to Pn(ρn−∆ρnc) for the malicious sender.

We propose a dropper4 at the last hop before the receiver.
The dropper builds a model of the prevailing pattern of
cheating for all packets leaving the same interface and as-
sumes that each new packet is characteristic of this recent
history; the more recent cheating, the stricter the dropper
becomes. But its strictness is further modulated by how
negative ρn is of each packet under scrutiny.

Conceptually, the bell curve in Figure 5 shows the proba-
bility distribution of arriving packets, exponentially weighted
to favour recent arrivals. We assume this will be the prob-
ability distribution of the DPM of the next packet. Su-
perimposed on a different vertical scale is a conjectured
penalty probability function, p(·) intended to allow through
as much negative DPM as positive, but no more. This can
be achieved by ensuring that the distribution remaining af-
ter applying the penalty function is symmetric about zero
(the unshaded cusp curve). So for ρn < 0:

(
1− p(·))Pn(ρn −∆ρnc) = Pn(ρn + ∆ρnc). (1)

Initially we choose to keep state and processing to a min-
imum by modeling prevailing conditions with just the expo-
nentially weighted moving average µ and EWM variance ν.
So we model the prevailing distribution Pn(ρn−∆ρnc) as if
it were the normal distribution N(µ, ν) reconstructed from
recent traffic, whatever the actual distribution (e.g. Fig 6).

At each packet, the EWMA & EWMV are updated:

µ ← γρn + (1− γ)µ (2)

ν ← γ(ρn − µ)2 + (1− γ)ν. (3)

5From Eqn (7) ∆ρnc =
(
1− ‖n−1

0 m
)
∆ρ0c

uncertainty

DPM
probability
distribution, Pn

0

penalty
probability, p

1

downstream path
metric (DPM)

at receiver,ρn

∆∆∆∆ρnc
p(·)

Pn(ρn-∆∆∆∆ρnc)

p(·)Pn(ρn-∆∆∆∆ρnc)

Pn(ρn+∆∆∆∆ρnc)(1 – p(·))Pn(ρn-∆∆∆∆ρnc) =

Figure 5: Penalising misbehaviour under uncer-
tainty

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

honest traffic
truncated

unaffected

penalty prob.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

dishonest traffic

Figure 6: Typical simulated distributions of DPM
at the destination from honest (top) and dishon-
est (bottom) sources, also showing proportion of pe-
nalised traffic (note log scale).

For attack traffic µ → ∆ρnc, converging faster by increas-
ing γ to weight recent values (0 < γ ≤ 1). In maintaining
the EWMA, positive packets with the ‘certain’ flag cleared
(see §2) are ignored, incentivising correct use of the flag.

Then, using the formula for a normal distribution,

Pn(ρn −∆ρnc) =
1√
2πν

e−
(ρn−µ)2

2ν . (4)

we can derive the required penalty probability function to
apply to each specific packet with DPM ρn, by re-arranging
(1) and substituting from (4):

p(ρn, µ, ν) = 0; µ ≥ 0 or ρn ≥ 0

= 1− Pn(ρn + µ)

Pn(ρn − µ)
; µ < 0, ρn < 0

= 1− e
−2ρnµ

ν (5)

As required, the penalty becomes stricter the worse the
EWMA becomes, but flattens to zero discards when hon-
est users keep the EWMA to zero.

Where a cheating flow is hidden in a large honest aggre-
gate, it causes a slightly negative EWMA, leading to some
dropping. After Floyd and Fall [7] we cache the flow identi-

fiers of penalised packets. Once any aggregate of destination
(and/or source) identifiers appears more often than would be
likely by chance, a second instance of the dropper is spawned
and traffic matching the identifier(s) is filtered into it. Each
instance of a focused dropper maintains its own EWMA6

and may spawn further droppers. These focused droppers
should be far more sensitive than the first, also shielding
honest traffic from the risk of false negatives.

Of course, if cheating negative traffic imitates identifiers
used in honest traffic, both will be filtered into the same
focused dropper, causing collateral damage to the honest
traffic. But by definition the cheating traffic will tend to be
more negative, which the above penalty function is designed
to discriminate against.

Having isolated suspect identifiers, an egress edge dropper
can send hints upstream. Any node can test hints because
they point to traffic measurably below an objective thresh-
old. And a node need only act on the hints if it has suffi-
cient resources. So the hints need not be authenticated (un-
like DoS filter push-back requests), avoiding vulnerability to
floods of bogus authentication requests. Also, the hints can
safely jump multiple domains without the need for a global
key management infrastructure. So push-back of hints does
not depend on the co-operation of high speed core networks,
where operators are more wary of any additional processing.

Even if explicit congestion marking were universally de-
ployed, buffers could still occasionally overflow. So irrespec-
tive of any hints, if a router must discard packets, clearly it
should bias against any with negative DPM.

3.2.2 Honest delay reporting
Congestion control and traffic engineering depend on path

delay as well as congestion, so we need header fields for both.
The framework we built above (§3.2 & Fig 4) to incentivise
honest congestion reporting relied on two properties of con-
gestion: it should not be negative; and rising path conges-
tion should lead to a drop in sending rate (whatever form of
fairness is chosen). Delay has exactly the same properties:
negative delay is physically impossible; and rising feedback
delay should lead to a lower sending rate.

So, we can use a similar incentive mechanisms to that
we used for congestion to ensure the sender neither over-
states nor understates delay. An adaptive dropper, like the
one above for the congestion field (§3.2.1), could detect and
remove any negative imbalance of delay headers at the in-
ternetwork egress. And at the ingress we can use a policer
like the TCP rate equation policer below (§3.3.1) that pun-
ishes sources sending faster than the TCP-fair rate, which
depends inversely on both congestion and feedback delay.

3.3 Fair congestion response

3.3.1 TCP rate equation policer
In the fastest phase of the TCP algorithm (congestion

avoidance), TCP converges to the rate x̄TCP ≈ ks/(T
√

p),

where k ≈
√

(3/2) and s, T & p are respectively the packet
size, round trip time and path marking (or loss) rate [17].
Re-feedback ensures that a policer at the network ingress

6From Eqn (5) an attacker can reduce dropping probability
by increasing variance, e.g. by alternating honest & zero
packets. So a focused dropper should use the EWMV of
the top level dropper. We are investigating variants with
varying degrees of statefulness and responsiveness.

can derive these parameters from the metrics each packet
truthfully declares. It can then calculate a compliant rate
against which to compare the source’s actual rate.

Previous policers had to be placed at every site of possible
congestion. With re-feedback, it is sufficient to place one po-
licer at each ingress to the internetwork. Here, downstream
congestion ρ2,1 can be assumed equal to path congestion,
p. The policer can approximate the round trip delay as
T ≈ T0 + 2ρ1,1, where the upstream round trip T0 can be
found by a previous echo test against each source and the
downstream delay ρ1,1 arrives in each packet7.

If the current TTL and ECN fields in IP were used to
implement re-feedback, as sketched in §4, an ingress po-
licer would have enough information to mirror the TCP al-
gorithm. As we explain later, binary congestion marking
takes a long time to convey a congestion level—indeed, a
ridiculously long time as flow rates increase over the years.
So, given the architectural nature of this paper, we prefer
to focus on multi-bit congestion and delay fields in future
packet headers. Quantifying how quickly a policer could de-
tect misbehaving flows using current IP, and the resulting
gain from more bits in headers, is planned for future work.

Below we outline one possible policing algorithm. It re-
quires per flow state, but this isn’t necessarily a scalability
problem at the edge of an internetwork, however it does lay
the policer open to resource depletion attacks. In a longer
version of this paper (in preparation) we describe a variant
with sub-linear scaling of flow state, but our goal here is
to give a clear implementation example that is concrete but
avoids gratuitous distractions.

The policer requires a token bucket per flow. It empties
the bucket by the size of each arriving packet and fills it at a
rate equivalent to that of a TCP compliant flow experiencing
the same path conditions. It calculates this by deriving p
and T from the re-feedback fields as above. In other words,
when a packet arrives, the policer subtracts the packet size
s from the bucket and adds ks∆t/(T

√
p), where ∆t is the

time since the flow’s previous packet.
If the bucket empties, sanctions are applied to the flow.

For instance, all future packets might be discarded, or the
policer could choose to take over rate control for the flow.
The depth of the bucket controls the flexibility allowed for
a flow to stray from its expected throughput; it is set to
αx̄TCP τ , where α is the threshold greediness for a flow to
be considered non-compliant over a time τ , and x̄TCP is an
EWMA of ks/(T

√
p). A flow with a throughput higher than

αx̄TCP will be detected in a time smaller than τ .
α is chosen so that a compliant flow is most unlikely to

trigger starvation of the bucket. For instance, when p=1%,
the average congestion should be 12.3 packets per round-
trip. The probability of getting a window larger than 42 is
smaller than 0.01%. Setting α to 42/12.3 = 3.4 and τ = T
would guarantee that less than one compliant flow in ten
thousand would be subjected to sanction. Increasing α and
τ would reduce false positives further.

3.3.2 Edge QoS
Our interest in solving the policing problem was not solely

to police a single response to congestion, such as TCP-

7For simplicity, we choose to ignore congestion delay, be-
cause simple scaling arguments [13, §2] show that as capacity
continues to grow, congestion delays will become insignifi-
cant relative to fixed propagation delays.

friendliness, although that alone is a major contribution.
Once timely, truthful downstream path information is visi-
ble to ingress network operators in data packets, they can
offer a spectrum of responses to incipient congestion. This is
equivalent to offering different levels of QoS, perhaps rang-
ing from a scavenger class, through best effort and premium
levels of differentiated service to admission controlled band-
width reservations (the right to zero congestion response)—
all without any differential treatment on network elements
beyond the first ingress (with the caveat below).

Kelly and co-workers [14] pioneered this approach, prov-
ing it optimises social welfare across a network. Further its
policing architecture solves the scalability problems inherent
in other QoS approaches, though this is seldom appreciated.

With traditional QoS some identification convention must
distinguish which traffic the edge has decided should be
given which preferential treatment as it passes to interior
domains. Using flow identification (like Intserv) preserves
precision, but scales badly. Using class identification (like
Diffserv) loses precision at scale.

With edge QoS, instead of the edge identifying the traf-
fic’s QoS for interior routers, interior routers identify the
traffic’s congestion for the edge. Because traffic already car-
ries end-point identifiers, regular packet forwarding carries
congestion marking to its source cause through aggregation
and deaggregation with absolute precision, with no need for
a separate QoS identification convention. The only unequal
treatment of different traffic identities is in the policer at
the first ingress to the internetwork, where customer or flow
identities have local significance.

Siris [20] has proven this approach through simulation.
But deployment was confined to a radio network controller
scenario where congestion feedback in the back-channel to
the sender could be intercepted—a constraint that can be
relaxed with re-feedback, giving general applicability.

Having sung the praises of closed-loop control, a caveat is
necessary. Unusual conditions (link failure or sudden traf-
fic shifts) can cause traffic in flight to overflow queues. So,
within a round trip, each resource must still be capable of
rudimentary local (open-loop) traffic class prioritisation un-
til the closed-loop restores order.

Adaptive policer: If one user creates multiple flows,
or runs flows for longer than another user (e.g. p2p file-
sharing), per-flow approaches like TCP cannot arbitrate
fairness between users. We can generalise to an adaptive
policer based on MulTCP [6] that gives each flow an equiv-
alent rate to w TCP flows. With the benefit of re-feedback,
it can maintain a per user count of congestion sent. But,
rather than levying an unpredictable charge for this conges-
tion [14], the policer can compare the count to whatever the
user chooses to pay. So a flat monthly rate would effectively
buy a congestion quota. The closer the internal congestion
count approached this quota, the more w would be squeezed.

3.3.3 Flow start incentives
At the start of each flow, a sender neither knows the state

of the path to the destination nor the relative change the
additional flow will cause. TCP’s slow-start phase incre-
mentally finds out both while also giving other flows time
to make room for the new flow.

The re-feedback incentive framework deliberately presents
a dilemma to a sender without recent path knowledge (e.g.
at the first packet, or after an idle period). Sending un-

derstated DPM increases the risk of discard at the egress
dropper. But sending overstated DPM increases the risk of
sanction at the ingress policer as the flow rises to full rate.
The strategies around this dilemma deserve a paper in their
own right, so here we merely provide an outline.

We should think of TCP’s exponential slow-start as de-
pendent on an implicit evolving estimate of path conges-
tion by the sender, starting pessimistically by assuming high
path congestion. Inverting TCP’s steady state rate equation
gives ρ ∝ 1

x̄2 to a first approximation. So rate doubling quar-
ters the implicit path congestion estimate every round trip.
To safely pass the policer and the dropper, the sender should
be consistent, also using this implicit estimate of path con-
gestion to set the DPM in each sent packet. If it reduces its
path congestion estimate too quickly (increasing its rate ac-
cordingly), it will undershoot the true path congestion and
risk being caught by the egress dropper.

So the re-feedback incentive framework encourages cau-
tion at the start of a flow in proportion to path uncertainty—
reminiscent of TCP’s slow start. However this claim greatly
depends on how quickly our mechanisms can detect and re-
move non-compliant behaviour.8

It is well-known that repeated binary congestion feedback
like ECN takes a long time to signal low congestion levels [9].
So ECN is not a good basis on which to build responsive
policing mechanisms. In the years it would take to deploy
the TCP modifications needed for our re-feedback extension
of ECN (§4), TCP will be hitting its own scalability limits.9

So although we believe re-ECN could start to solve policing
problems fairly quickly, we must emphasise that a multi-bit
congestion field will need to be considered anyway. It would
provide responsive policing even if short flows dominate the
future traffic mix. And at the same time, it would help fix
TCP/IP for high capacity scenarios.10

This still leaves the problem of whether the new flow will
push a currently uncongested path into congestion. If a
low priority scavenger class is available, the simple solution
would be to rise aggressively to full rate in that class, then
pace packets for the desired class at the resulting ack rate.

3.4 Inter-domain incentive mechanisms
The overview of our incentive framework explained why

bulk inter-domain congestion charging emulates policing with
per-flow precision. We now describe this mechanism.

At an inter-domain interface, only a single bulk counter
(and two temporary ones) per direction is needed. The main
counter merely accumulates the DPM ρ in every passing
packet over an accounting period Ta (e.g. a month). At
the end of the month, N1 should pay N2 the charge Ca =
λ

∑Ta ρ+, where λ is the fixed price of congestion agreed be-

8Nonetheless, we can ensure detection of misbehaviour car-
ries over from old flows to new: i) the above adaptive policer
remembers misbehaving senders; ii) during a DDoS attack
on a receiver, the dropper’s EWMA carries over from one
source to the next.
9The number of packets between binary congestion marks
scales O(x2) with TCP’s steady state rate—to sustain
10Gbps a flow would only sawtooth every 90mins between
marks. While marking rate only scales O(x) with Kelly’s
rate control algorithm, that still doesn’t solve the problem,
given x is currently doubling every 1.6 years or so.

10An extra multi-bit field in IP is proposed for the allowed
congestion window in XCP [12] and for the allowed sending
rate in Quick-Start [11].

tween them. To implement this with the re-feedback variant
of ECN described in §4.1, the meter would simply need to
increment or decrement by the size of packets marked with
the ECT(0) or CE code-points respectively.

To protect receiving domains from ‘denial of funds’ at-
tacks, any usage element of a charge should be ‘sender pays’.11

So λ ≥ 0 and persistently negative ρ should be ignored, given
negative congestion is physically impossible. To meter this,
packets with positive and negative ρ should be separately
accumulated in temporary counters with the two added ev-
ery few seconds, only accumulating a positive sum in the
main counter. Once neighbours agree that ‘no-one pays’
for persistent negative congestion, they are incentivised to
introduce the dropper (§3.2) to remove persistent negative
traffic, which no longer carries any ability to pay for further
downstream congestion. ‘Receiver pays’ can optionally be
arranged between edge operators without risk of ‘denial of
funds’ through an end-to-end clearinghouse [2].

We should clarify that we neither require nor expect uni-
versal inter-domain congestion charging. However, because
it exposes true costs, it is likely to emerge as the competi-
tive equilibrium [2]. Current tariffs such as 95th %ile peak
demand or volume charging may continue. But to compete,
manual price adjustments will be needed to track the conges-
tion price. So congestion charging is likely to predominate,
given it uses a simple, passive mechanism without regard to
flows, but automatically adjusts the price to give the correct
upstream incentives to the precise flows that deserve them.

The main alternative to usage charging is the service level
agreement, where a network contracts to keep metrics within
statistical limits. Currently, proving whether delay or loss
(impairment) budgets have been exceeded and by whom re-
quires a comprehensive system of trusted echo reflectors.
Re-feedback greatly simplifies these problems of SLA ac-
countability, because it ensures downstream metrics are vis-
ible at each inter-domain border.

3.5 Distributed denial of service mitigation
A flooding attack is inherently about congestion of a re-

source. Because re-feedback ensures the causes of network
congestion experience the cost of their own actions, it acts
as a first line of defence against DDoS. As load focuses on
a victim, upstream queues grow, requiring packets to be
pre-loaded with a higher congestion metric. If the source
does increase the initial metric, its own network’s ingress
policer will throttle the flow. If the source doesn’t increase
the initial metric, it will become negative at the congested
resource, which will bias its drop against negative traffic.

Inter-domain congestion charging ensures that any net-
work that harbours compromised ‘zombie’ hosts will have
to pay for the congestion that their attacks cause in down-
stream networks. Therefore, it is incentivised to deploy our
adaptive policer (§3.3.2). The adaptive policer limits hosts
that persistently causes congestion to only send very slowly
into congested paths. As well as protecting other networks,
the extremely poor performance at any sign of congestion
will incentivise the zombie’s owner to clean it up.

Note, however, that delay in detecting attacks does leave
re-feedback briefly vulnerable (§§3.3.3 & 5).

11A capacity charge made to the larger network, whatever
the direction of traffic, might well complement congestion
charging (or any form of usage charging).

4. PROTOCOL ENGINEERING
Although the goal of this paper is not to prove that re-

feedback is immediately deployable, it does seem possible
to deploy a limited form, described in detail in a paper in
preparation and summarised here. Re-feedback consists of
at least three protocol elements: i) a congestion field; ii) an
unloaded delay field; and iii) a certain flag (§2).

It is also necessary to flag that re-feedback is in use, but
the certain flag serves this purpose. There are no flags in
IPv6 so an extension header would be required. In IPv4, bit
49 is possibly available, but there are many other competing
claims on it. An alternative approach would be to assign
new protocol ids to re-feedback transports.

4.1 Re-ECN
Two bits in the IP protocol are assigned to the ECN

field [19]. The sender indicates an ECN capable transport
(ECT) using either of the two code-points 10 or 01 (ECT(0)
& ECT(1) resp.). Routers probabilistically set 11 if conges-
tion is experienced (CE). The choice of two ECT code-points
permitted future flexibility, optionally allowing the sender to
encode a nonce [21] in the packet stream.

To re-align congestion feedback, we use this flexibility in
a scheme we call re-ECN. Here we only discuss TCP/IP,
not other IP transports. No changes to the IP or TCP wire
protocols are required. Neither the IP handlers nor the TCP
receiver need changing, only the TCP sender. We define
what is effectively a virtual header field h, where hj = uj−zj

at any node j on the path. uj is the rate of CE and zj the
rate of ECT(0) traversing that node. As with current ECN,
no packets are sent with CE set: u0 = 0. And TCP feeds
back to the source any CE arriving at the destination in the
echo congestion experienced (ECE) field.

For re-feedback, the sender arranges the starting value h0

of this virtual header so that it will reach a standardised
datum at the destination hz = 0. So, we need zn = un,
which will result if the sender sets ECT(0) on the proportion
of packets z0 = un/(1− un).12

To set this proportion of ECT(0), the TCP sender’s ack
handler should set ECT(0) in the next packet after an ECE
arrives in an ack (treating drops equivalently). And it should
set an extra ECT(0) every (U − 1) ECEs, where U is the
EWMA of the number of packets between successive ECE.

From Eqn 10 in Table 1 the virtual header hj in pack-
ets arriving at any node j on the path is sufficient for the
node to derive a prediction of downstream path congestion
ρj = 1−1/(1−hj). For small hj ¿ 1; ρj ≈ −hj . In other
words, downstream congestion can be approximated simply
by subtracting the rate of ECT(0) from that of CE. As we
haven’t changed the rate of CE marking, it still represents
upstream congestion. So in 1.5 bits we have encoded down-
stream congestion −hj , upstream congestion uj and whole
path congestion zj .

We chose z as the rate of ECT(0) rather than ECT(1) de-
liberately. Existing ECN sources set ECT(0) at either 50%
(the nonce) or 100% (the default). So they will appear to
a re-feedback policer as very highly congested paths. When
policers are first deployed their threshold greediness α can
be configured permissively, allowing through both ‘legacy’
ECN and misbehaving re-ECN flows. Then, as the thresh-

12Details of what to do for high congestion beyond un > 1/2
and why it is safe are omitted for brevity.

old is set more strictly, the more legacy ECN sources will
gain by upgrading to re-ECN.

We emphasise that we believe a multi-bit congestion field
will eventually be needed if flow rates are to continue to rise
(§3.3.3). We propose an extension header for IPv6, including
a field to shadow TTL (like Quick-Start [11]). So, if the
whole path of routers doesn’t support the extension, the end-
points can fall back to re-ECN or drop. Transport protocols
would also all have to be updated for multi-bit fields.

4.2 Re-TTL
Delay re-feedback can be achieved by overloading the TTL

field, without changing IP or router TTL processing. A tar-
get value for TTL at the destination would need standardis-
ing, say hz = 16 (Fig 2). If the path hop count increased by
more than hz during a routing change, it would temporarily
be mistaken for a routing loop, so hz would need to be cho-
sen to exceed typical hop count increases. The TCP wire
protocol and handlers would need modifying to feed back
the destination TTL and initialise it as in Table 1.

It would be necessary to standardise the unit of TTL in
terms of real time. Precision could be improved in the longer
term if routers decremented TTL to represent exact prop-
agation delay to the next router. That is, for a router to
decrement TTL by, say, 1.8 time units it would alternate be-
tween 1 & 2 at a ratio of 1:4. Although this might sometimes
require a seemingly dangerous null decrement, a packet in a
loop would still decrement to zero after 255 time units.

5. DROPPER PERFORMANCE
The re-feedback incentive framework relies critically on

how quickly the dropper (§3.2.1) can detect and isolate flows
that are maliciously understating congestion, and how much
collateral damage is suffered by honest packets. The error in
an honest source’s prediction of congestion for re-feedback
(Eqn 11) depends on how well path congestion in one round
trip correlates with congestion the next. If the correlation is
weak, to avoid falsely dropping honest traffic the dropper has
to heavily smooth out all the variation, making it sluggish
to respond to a movement in the average due to an attack.
We chose to use ns2 to run a series of simulations with
highly demanding sets of flows arriving at the dropper, some
having traversed up to five potential bottlenecks. Below are
the highlights of the experiments. Details are in the longer
version of this paper.

We implemented the multi-bit variant of congestion re-
feedback carrying real numbers in TCP Reno using the ini-
tialisation and combining functions in Table 1. For the local
congestion metric at each router mi, we extracted the real
value of the marking probability, pb, used within the RED al-
gorithm [8, §4] before its transformation into a binary mark.
However, to be more demanding we still allowed TCP rate
control to respond in its usual sawtooth way to binary ECN
feedback and drops. We bounded headers h within [−1, 1].

We implemented the dropper within the RED module,
simulating packet truncation as its sanction—in order to
preserve the feedback loop. We omitted flow-focused drop-
ping as our initial aim was to assess feasibility. From Eqn
10 we approximated downstream congestion as ρn ≈ −hn,
using hz = 0.

Simulation model: We used a parking lot topology of
5 core nodes n1 to n5, connected by 10Mbps links. Queues
at all core routers were RED-ECN in the direction of traf-

Honest traffic RED queues:
wq=0.02, B=188B

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

0.0001 0.001 0.01
Dropper smoothing coefficient, γ (log scale)

T
ru

nc
at

io
n

ra
te

(f
al

se
 n

eg
at

iv
es

)

Low

Mid RTT

Upp

Figure 7: Effect of dropper smoothing on truncation
rate for honest flows from lower, mid & upper RTT
ranges (note: no focused dropper)

fic (n1 to n5), and DropTail in the reverse direction with
sufficiently large links to prevent ACK drops. The drop-
per ran on n5. Traffic entered the network from all nodes
n1–n4 and left it after a number of hops ranging across
(1,2,3, & 5). Transmission delays between core nodes were
3ms, while edge delays defined a range of RTTs between
90–500ms, averaging 2̃50ms. TCP flows through the drop-
per were grouped in three classes according to their typical
RTT: low (L), medium (M), and high (U) of the order of
100, 250 & 500ms.

The traffic model consisted of 400 sources of which 110
were TCP-ECN and the rest UDP, with TCP traffic con-
sistently > 90% of total bits. This reflected current [3]
not necessarily future Internet traffic (when reduced TCP
volume is expected). Packet sizes were all 1500B. We did
not explicitly model HTTP but defined 100 TCP sources as
FTP, uniformly varying sessions from small (20pkt) to large
(1500pkt), with sources’ average idle times exponentially
distributed. The remaining 10 FTP sessions transferred
infinite-sized files and traversed all core nodes. The UDP
sources were packet trains with both ON and OFF times
Pareto distributed with parameter 1.9. The resulting fre-
quent short-lived and sporadic long-lived sessions reflected
long-tailed Internet traffic. Traffic profiles were subject to
random variations with RED queue utilisation varying from
high 80s to low 100s percentages throughout. Traffic sources
were initially generated at random uniformly between 0 and
20s; statistics collection began 30s into the 300s simulation.
The (gentle) RED parameters were set to the currently rec-
ommended values relative to buffer size.

Simulation results: We used solely honest sources to
find the dropper’s baseline sensitivity under various condi-
tions. Fig 7 is typical, leading us to use smoothing coef-
ficients just below the knee of the curve for our later ex-
periments with dishonest flows. That is γ = 0.0005, 0.001
or 0.002. Even in the last case truncation rates were only
1–7:10,000. We expected the subset of flows with below av-
erage RTT (L) to be better at predicting congestion, given
it would have less time to change. In fact, they consistently
suffered about 50% worse truncation rates than flows with
average RTTs. Indeed, flows with average RTT were gen-
erally better at predicting the next round trip’s congestion
than both U and L flows either side of them. Closed loop
traffic behaviour at sub-RTT timescales is a developing field,

Upper RTT, γ=0.002 RED queues:
wq=0.02, B=188B

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

31 81 131 181 231 281

time/s

tr
un

ca
tio

n
ra

te

90% honest
truncation rate
10% dishonest
truncation rate
10% dishonest
sources ∆ρ

Lower RTT, γ=0.002 RED queues:
wq=0.02, B=188B

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

31 81 131 181 231 281

time/s

tr
un

ca
ti

on
 r

at
e

50% honest
truncation rate

50% dishonest
truncation rate

50% dishonest
sources ∆ρ

Figure 8: Truncation discrimination with a) 10%
and b) 50% of sources dishonest ∆ρ0c = −0.1 + 0.1
ramp (note: no focused dropper).

but we are not aware of any explanation for these results.
We introduced dishonest traffic as a step underdeclaring

congestion by 0.1 to see how fast a large change could be
detected, then ramping up to see when a small level of dis-
honesty became undetectable. Fig 8a) shows how if even
10% of flows are dishonest, high truncation peaks occur
that would mark out the flow for focused treatment by a
focused dropper. Note how, as levels of understatement de-
cline, the dishonesty is lost in random fluctuations. Fig 8b)
shows another example where 50% of flows are dishonest,
thus causing strong near-immediate discrimination.

6. RELATED WORK
Clark [5] proposed a decrementing field representing pay-

ment as a packet traversed a path, with receiver-initiated
messages able to meet it in the middle to make up any
shortfall. We argue that network layer fields should rep-
resent verifiable properties of the path. Then operators can
choose to apply pricing to them to determine cost or value
(or choose not to).

The ECN nonce [21] is an elegant mechanism for a sender
to detect feedback suppression by a receiver. However, senders’
interests often align more closely with their receivers’ than
with the welfare of all network users.

We borrowed ideas from policers in the literature [16, 7,
18] for our rate equation policer. However, without the ben-
efit of re-feedback they don’t police the correct rate for the
condition of their path. They detect unusually high ab-
solute rates, but only while the policer itself is congested,
because they work by detecting prevalent flows in the dis-

cards from the local RED queue. These policers must sit at
every potential bottleneck, whereas our policer need only be
located at each ingress to the internetwork. As Floyd & Fall
explain [7], the limitation of their approach is that a high
sending rate might be perfectly legitimate, if the rest of the
path is uncongested or the round trip time is short.

7. CONCLUSIONS & FURTHER WORK
We have argued for a re-alignment of the datum of path

characterisation metrics like TTL and congestion notifica-
tion. Moving the datum to the destination ensures that
each packet arrives at every relay carrying a view of the re-
maining path to be traversed by the packet, albeit a round
trip delayed. Despite overhauling the underlying feedback
architecture, we have briefly described a limited form of re-
feedback that could be deployed incrementally around un-
modified routers without changing IP.

Once downstream information is visible, inline equipment
can exercise control mechanisms that were previously im-
practical, such as rate policing or inter-domain traffic engi-
neering. We describe how to police TCP’s and other closed-
loop rate control algorithms. Not only is it now possible to
detect and remove traffic that exhibits a hostile response to
congestion. It is also possible to explicitly permit applica-
tions that require such a response, perhaps given suitable
payment in exchange for the enhanced quality of service.

We have introduced an incentive framework which ensures
that the dominant strategy of selfish parties around the feed-
back loop will be to declare re-feedback honestly. It relies
critically on whether malicious flows can be detected at the
egress, while minimising false negatives. We have simulated
an adaptive dropper to show this may indeed be feasible.

Re-feedback allows senders a view of route costs, and net-
works a view of downstream congestion. By democratising
access to path information, it enables a tussle over whether
network control lies with end-points or the network [4].

Having laid the foundations for this idea, much detail re-
mains to be filled in. In particular further experiment is
required to fully stress both the dropper and the policer,
particularly under dynamic attacks. Our other priority is
to assess whether responsive policing and dropping will be
possible with our binary re-ECN scheme.

Acknowledgements
Sébastien Cazalet contributed to the early ideas behind this
work. The following have all contributed useful review com-
ments: David Songhurst, Keith Briggs, Marc Wennink, Louise
Burness, Phil Eardley, Alexandru Murgu, Nigel Geffen (BT),
Jon Crowcroft (Cambridge Uni), Mark Handley, Stephen
Hailes (UCL), Sally Floyd (ICIR) & others at ICIR & UCL.

8. REFERENCES
[1] R. Braden, D. Clark, S. Shenker, and J. Wroclawski.

Developing a next-generation Internet architecture. White
paper, DARPA, July 2000.

[2] B. Briscoe and S. Rudkin. Commercial models for IP
quality of service interconnect. BTTJ, 23(2), Apr. 2005.

[3] k. claffy. The nature of the beast: Recent traffic
measurements from an Internet backbone. In Proc.
INET’98. ISOC, 1998.

[4] D. Clark, K. Sollins, J. Wroclawski, and R. Braden. Tussle
in cyberspace: Defining tomorrow’s Internet. Proc. ACM
SIGCOMM’02, CCR, 32(4), Aug. 2002.

[5] D. D. Clark. Combining sender and receiver payments in
the Internet. In G. Rosston and D. Waterman, editors,
Interconnection and the Internet. Lawrence Erlbaum
Associates, Mahwah, NJ, Oct. 1996.

[6] J. Crowcroft and P. Oechslin. Differentiated end to end
Internet services using a weighted proportional fair sharing
TCP. CCR, 28(3):53–69, July 1998.

[7] S. Floyd and K. Fall. Promoting the use of end-to-end
congestion control in the Internet. IEEE/ACM
Transactions on Networking, 7(4):458–472, Aug. 1999.

[8] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, Aug. 1993.

[9] A. Ganesh, P. Key, and L. Massoulié. Feedback and
bandwidth sharing in networks. In Proc. 39th Annual
Allerton Conference on Communication, Control and
Computing, 2001.

[10] D. K. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and
Y. Zhang. Optimizing cost and performance for
multihoming. Proc. ACM SIGCOMM’04, CCR,
34(4):79–92, Oct. 2004.

[11] A. Jain, S. Floyd, M. Allman, and P. Sarolahti. Quick-Start
for TCP and IP. Internet Draft draft-ietf-tsvwg-quickstart,
IETF, May 2005. (Work in progress).

[12] D. Katabi, M. Handley, and C. Rohrs. Congestion control
for high bandwidth-delay product networks. Proc. ACM
SIGCOMM’02, CCR, 32(4):89–102, Oct. 2002.

[13] F. P. Kelly. Models for a self-managed Internet.
Philosophical Transactions of the Royal Society, A358
(2000):2335–2348, 1999.

[14] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control
for communication networks: shadow prices, proportional
fairness and stability. Journal of the Operational Research
Society, 49(3):237–252, 1998.

[15] A. Odlyzko. A modest proposal for preventing Internet
congestion. Technical report TR 97.35.1, AT&T Research,
Florham Park, New Jersey, Sept. 1997.

[16] T. J. Ott, T. V. Lakshman, and L. H. Wong. SRED:
Stabilized RED. In Proc. IEEE Conf. on Computer
Comm’s (Infocom’99), pages 1346–1355, Mar. 1999.

[17] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: A simple model and its empirical
validation. Proc. ACM SIGCOMM’98, CCR, 28(4), 1998.

[18] R. Pan, L. Breslau, B. Prabhaker, and S. Shenker.
Approximate fairness through differential dropping. CCR,
33(2):23–40, Apr. 2003.

[19] K. K. Ramakrishnan, S. Floyd, and D. Black. The addition
of explicit congestion notification (ECN) to IP. RFC 3168,
IETF, Sept. 2001.

[20] V. A. Siris. Resource control for elastic traffic in CDMA
networks. In Proc. ACM Int’l Conf. on Mobile Computing
and Networks (MobiCom’02), Sept. 2002.

[21] N. Spring, D. Wetherall, and D. Ely. Robust explicit
congestion notification (ECN) signaling with nonces. RFC
RFC3540, IETF, June 2003.

APPENDIX

A. RE-FEEDBACK FUNCTIONS
Below, following the notation of §2, we derive the functions

required to implement re-feedback for congestion:

• the combining function on each relay, hi+1 = g(hi, mi),

• the function to initialise header values h0(t+T) = f(h0(t), hn(t))

• the downstream path metric from resource j, ‖n−1
j m(t+T).

We coin the notation ‖j
am for the path metric, which is the

composition of all the local metrics mi experienced by a packet
along the sequence of resources {a, . . . i, . . . j} using the combining
function appropriate to the metric in question.

A.1 Congestion re-feedback
Definition 1. The congestion, mi, caused by a packet at sin-

gle resource i is the probability that the event Xi will occur if the
packet in question is added to the load, given any pre-existing
differential treatment of packets. Where Xi is the event that an-
other selected packet will not be served to its requirements by
resource i during its current busy period.

So, at resource i, the contribution to congestion is mi = P (Xi) ∈
[0, 1], which is a function of local load.

Definition 2. The path congestion, ‖j
am, caused by a packet

traversing a sequence of resources, is the probability that the event
X will occur if the packet in question is added to the loads at
each resource along its path, given any pre-existing differential
treatment of packets. Where X is the event that another selected
packet will not be served to its requirements by any of the sequence
of resources {a, . . . i, . . . j} during their current busy periods.

From definition 1, the function that combines the local contribu-
tion with the incoming congestion notification field must emulate
combinatorial probability resulting in an outgoing header value

hi+1 = 1− (1− hi)(1−mi). (6)

∴ if the header is ha before resource a, after node j − 1 it will be

hj = 1− (1− ha)
∏j−1

i=a (1−mi). (7)

From definition 2 the path metric from resource a to j − 1,

‖j−1
a m = P (X) = 1−∏j−1

i=a (1− P (Xi))

= 1−∏j−1
i=a (1−mi)

= 1− 1− hj

1− ha
(8)

A source with perfect foresight would initialise a packet header
to h∗

0(t+T)
in order to reach its target value at the destination

hn(t+T) = 1− (
1− h∗0(t+T)

)(
1− ‖n−1

0 mi(t+T)

)

= hz

∴ h∗0(t+T) = 1− 1− hz

1− ‖n−1
0 mi(t+T)

A practical source will use the previous path metric as an esti-
mator for the next and set

h0(t+T) = 1− 1− hz

1− ‖n−1
0 mi(t)

= 1− (1− hz)(1− h0(t))

1− hn(t)

(9)

During sudden increases in congestion, hn → 1, but if protocol
fields are bounded the source will remain responsive, but under-
state congestion to the network, which is the safe way round.

With hindsight, the downstream path metric from resource j

‖∗n−1
j m(t+T) = 1−

∏n−1
i=0 (1−mi(t+T))∏j−1
i=0 (1−mi(t+T))

.

An efficient estimator for this metric is

‖n−1
j m(t+T) = 1−

∏n−1
i=0 (1−mi(t))∏j−1

i=0 (1−mi(t+T))

From (8) = 1− 1− hz

1− h0(t+T)

/
1− hj(t+T)

1− h0(t+T)

From (9) = 1− 1− hz

1− hj(t+T)

. (10)

The prediction error ‖n−1
j m(t+T) − ‖∗n−1

j m(t+T) is

∏n−1
i=0 (1−mi(t+T))−

∏n−1
i=0 (1−mi(t))∏j−1

i=0 (1−mi(t+T))
. (11)

