
Using default logic for lexical knowledge

Anthony Hunter

Department of Computer Science

University College London

Gower Street

London WC1E 6BT, UK

a.hunter@cs.ucl.ac.uk

Abstract. Lexical knowledge is knowledge about the morphology, gram-

mar, and semantics of words. This knowledge is increasingly important

in language engineering, and more generally in information retrieval, in-

formation �ltering, intelligent agents and knowledge management. Here

we present a framework, based on default logic, called Lexica, for captur-

ing lexical knowledge. We show how we can use contextual information

about a given word to identify relations such as synonyms, antinyms,

specializations, and meronyms for the word. We also show how we can

use machine learning techniques to facilitate engineering a Lexica knowl-

edgebase.

1 Introduction

Lexical knowledge is knowledge about the semantics, morphology, and usage, of

words. Handling words is central to many reasoning activities, and as a result

lexical knowledge is increasingly important in language engineering, and more

generally in information retrieval, information �ltering, intelligent agents and

knowledge management. Lexical knowledge can facilitate in the resolution of

ambiguity in information.

For example, if we know that a newspaper article is about oil, it is usually

reasonable to derive that it is about petroleum, with exceptions such as in

contexts about cooking.

Lexical knowledge can also facilitate in the identi�cation of synonyms, related

terms, antinyms, and specializations for a word. It can also be used to identify

meronymic relations, such as engine is part-of a car, and parts-of-speech such

as relating actors with actions: For example, for the actor terrorist an appro-

priate action is terrorism.

In this paper, we briey review the need for lexical knowledge | with partic-

ular emphasis on intelligent agents | and then show the need for a new approach

to providing lexical knowledge. To address this need, we present a framework

called Lexica for providing context-dependent lexical knowledge. The Lexica

framework is based on default logic. We show how grammatical and semantic

knowledge can be captured in Lexica. We also show how machine learning can

be used to build Lexica knowledgebases.

1.1 An example of the need for lexical knowledge

Rapidly increasing amounts of information, particularly textual information, is

being made available electronically, though the Internet, newsfeed, electronic

databases, etc. This has created a pressing need to develop intelligent agents to

search these sources for information that meets a user's needs.

Current search engines for the Internet (for example Yahoo, Lycos, and Alta

Vista) use keywords given by the user to locate items that may be of interest

to the user. Unfortunately, these search engines are limited in their ability to

use background knowledge. They incorporate little knowledge on the meanings

of keywords, morphology of words, nor on related terms for particular contexts.

In particular, there is no way for users to provide background knowledge that

could improve the precision and recall.

Statistical techniques in information retrieval and �ltering o�er some solu-

tions for the Internet, but lack a systematic means for using background infor-

mation, and are lacking in facilities for users to specify background knowledge.

Statistical techniques are well suited to repositories of information where com-

prehensive statistical analyses can be undertaken (see for example [Cro93]), but

are less well suited to heterogeneous distributed sources, such as the Internet,

where the topics are so diverse, locally managed, and constantly evolving.

An increasingly important alternative is the approach of intelligent agents

(for example [Mae94,GLC

+

95,GF95,Lie95,BPK

+

96,FJ96,Mou96]). Some incor-

porate a limited amount of background knowledge and allow users to input some

background knowledge. However, they lack a systematic means for using large

amounts of complex background knowledge. This raises the need to incorporate

default knowledgebases as a repository for background knowledge. Using explicit

defaults o�ers a lucid representation for users, and it aids maintainability and

incrementality.

1.2 Lexicons

What is a lexicon? According to Trask [Tra93], a lexicon within the study of

grammar has traditionally been used as a repository of miscellaneous facts, with

little in the way of generalizations. This view has shifted and recent theories of

language are using lexicons for signi�cant proportions of linguistic knowledge

[Bri91]. A wide variety of machine-readable lexicons have been developed (for

reviews see [WSG96,GPWS96]), though many are oriented to speci�c approaches

or tasks, such as EDR [Yok95] and Acquilex [Bri91] for machine translation.

Yet there is a need to general purpose information about words, such as for

intelligent agents, information retrieval, information �ltering, and information

extraction. Perhaps the most signi�cant example of such a general purpose sys-

tem is WordNet [BFGM91,Mil95]. This is a semantic network containing lexical

knowledge on over 90,000 word senses and it is now found to be an increasingly

important resource on synonyms, generalizations, and specializations of words,

for applications in information systems. In WordNet, each set of words that are

strict synonyms (i.e. the words can be interchanged in a sentence) is called a

synset. The following is an example of a synset.

fMolotov-cocktail, petrol-bomb, gasoline-bombg

Whilst WordNet separates di�erent meanings of the same word by putting

the same word in more than one synset, there is no explicit machinery for deter-

mining in which context a particular wordsense should be used. Moreover, there

is no logical reasoning with the relations in the semantic network.

Another kind of problem with WordNet is that the knowledge is very gen-

eral. WordNet has been applied to information retrieval [Voo94] and information

�ltering [Eng96] and in these studies the utility of WordNet was limited by this

generality. Furthermore, WordNet was limited by the inability of the user to be

able to add context-dependent knowledge appropriate for the application do-

main.

1.3 Lexical knowledgebases

In order to build on the success of systems such as WordNet, and address some

shortcomings, we need to develop more sophisticated systems that incorporate

richer, more complex, knowledge about words. Essentially, we require knowledge-

bases containing structured knowledge about words. This calls for knowledge-

based systems technology that can extend the approach of lexicons by allowing

for automated identi�cation of contexts for a word, by selecting knowledge on a

context-dependent basis, and by supporting automated reasoning.

This need for lexical knowledge raises signi�cant knowledge representation

and reasoning questions. Lexical knowledge is default knowledge. This is knowl-

edge that is usually correct, though can have some exceptions. Representing

and reasoning with default knowledge in computing is di�cult, and in anything

other than small examples, it is necessary to adopt a logical approach in order

to minimize these di�culties.

We therefore require a formal approach to knowledge representation and rea-

soning that can handle the context-dependent default knowledge. In this work,

we explore the use of non-monotonic logics for building these more sophisticated

lexical knowledgebases.

2 Contextual information

A context is a setting for a word. If a word is polysemous, then the word is a

member of more than one context. Di�erent contexts can denote di�erent word

senses for a word. In this way, a context can be viewed as a boundary on the

meaning of a word. For example, the word bank can be described as being a

member of contexts including river and financial-institution.

In language, the words surrounding a particular word can indicate the context

for the word. For example, for a word in some text, the words in the same

paragraph can usually indicate the context for the word.

In this section, we show how we can use a classi�cation, or decision, tree to

test whether a set of words is in a particular context. We then show how we can

use machine learning techniques to generate such classi�cation trees.

2.1 Context classi�cation trees

Each classi�cation tree is developed to test for a single classi�cation. In this

work, each classi�cation is a context. Given a set of words, presence or absence

of particular words in the set of words, is used by a classi�cation tree to classify

the set of words as either a positive or negative example for the classi�cation.

Hence, a classi�cation tree determines whether the set of words is in a particular

context.

A classi�cation tree for a context C is a binary tree, where each node is a

word, except the leaves which are labelled either positive or negative. Given

a set of words, start at the root: If the root is in S, then take the left subtree,

otherwise take the right subtree. Upon taking the subtree, repeat the process,

until reaching a leaf. If the leaf is positive then S is in context C.

Consider the example of a classi�cation tree in Fig 1 for the classi�cation

aircraft-accident. Given the set S = fcrash; boeing; engine;runwayg, the

tree classi�es S as being in the context aircraft-accident.

Given a set of words S, there might be a number of classi�cation trees with

di�erent contexts, and the set S is found to be in each of the contexts using the

trees. To handle this see section 2.3.

2.2 Learning classi�cation trees

In this work, we have used the ID3 inductive learning algorithm developed by

Ross Quinlan [Qui86]. ID3 is an approach to machine learning based on con-

structing a classi�cation, or decision, tree for a set of training examples. Training

examples are presented as a table | each row is an example and each column

is an attribute of the examples. The last attribute is the classi�cation of the

example. For example, in learning a decision tree for determining whether a pa-

tient has a particular disorder, we use a table of patients | some who have the

disorder and some who do not. Each column refers to particular symptoms or

tests, and the �nal column states whether the patient has the disorder. Once a

decision tree has been constructed, and then tested successfully with examples

not used in the training, it can be used to classify further examples.

We have used ID3 to classify textual information. The methodology involves

taking an item of text, removing the stop words

1

, and then using the remaining

1

Stop words are words that usually o�er relatively little semantic information in a

sentence, such as for example, the, a, because, and what. They normally constitute

about 50% of the words in a sentence.

POSITIVE NEGATIVE

POSITIVE airbus

POSITIVE boeing

aircraft NEGATIVE

crash

�

�

�

�	

@

@

@

@R

�

�

�

�	

@

@

@

@R

�

�

�

�	

@

@

@

@R

�

�

�

�	

@

@

@

@R

Fig. 1. Classi�cation tree for aircraft-accident

words as a training (learning) example. Each item of text is a about at least

one topic. Topics are used as the classi�cations for the examples. Each attribute

in the table of training examples is a word. If a training example contains that

word, then \yes" is entered into the corresponding position in the table, and

\no" otherwise. Tables up to 236 attributes have been constructed containing

up to 60 examples (rows) [Sha96]. We equate the notion of topic with that of

context. So we can use these classi�cation trees as described in section 2.1.

2.3 Reasoning with contextual information

We assume a set of atomic contexts. These are disjoint and exhaustive. They are

the most focussed contexts we consider. We also allow contexts that are Boolean

combinations of atomic contexts. These non-atomic contexts may have alter-

native names for lucidity. A classi�cation tree can be trained for any Boolean

combination of the atomic contexts. For example, if the language includes the

non-atomic contexts personal-finance and business-finance, then the lan-

guage includes the Boolean combinations such as

personal-finance^ business-finance

personal-finance_ business-finance

The �rst is a more specialized context, whereas the second is a more gen-

eralized context. The second might have an alternative name such as finance.

In this way, we have a Boolean lattice of contexts built from the set of atomic

contexts. The higher a context is in the lattice, the more general it is. Since

we assume the set of atomic contexts is exhaustive, the top of the lattice is the

context anything and the bottom is the context nothing. If for a given set of

words S, we obtain contexts x

1

; :::; x

n

, using a set of classi�cation trees, then

x

1

^ :::^ x

n

is a context for S.

We can reason with contexts in the lattice by assuming inferences that hold: If

x

1

and ... and x

n

are contexts that hold for the source (according to the context

classi�cation trees), and y is a context higher in the lattice than x

1

^ :::^ x

n

,

then y is a context for the source.

3 Reminder on default logic

In the following sections, we consider default logic as a formalism for lexical

knowledge. Default logic was proposed by Reiter [Rei80], and good reviews are

available (see for example [Bes89,Bre91]).

In default logic, knowledge is represented as a default theory, which consists

of a set of �rst-order formulae and a set of default rules for representing default

information. A default rule is of the following form, where �, � and are

classical formulae,

� : �

The inference rules are those of classical logic plus a special mechanism to

deal with default rules: Basically, if � is inferred, and :� cannot be inferred, then

infer . For this, � is called the pre-condition, � is called the justi�cation, and

 is called the consequent. Informally, an extension is a maximally consistent

set of inferences (classical formulae) that follow from a default theory.

Basing the framework on default logic brings advantages. Default logic pro-

vides an e�cient representation for context-dependent reasoning and handling of

exceptions, and it is a well-understood formalism for representing uncertain in-

formation. In addition, there are prototype implementations of inference engines

for default logic that can be used for developing default logic knowledge-bases

[Nie94,LS95,Sch95].

4 Outline of Lexica framework

The Lexica framework is based on default logic. In this framework we represent

morphological, grammatical, and semantic relations using default logic. The user

queries the system to �nd information about a word. The information can include

synonyms, generalizations, specializations, meronyms, related terms, di�erent

lexical categories of the word, and so on.

A key feature of the Lexica framework is the identi�cation of the context for

a query. The context is identi�ed from the input that the user provides. The

interaction between a user and the system can be summarized as follows:

Input: A query word plus a source, de�ned as follows.

Query word. A word for which further information is required.

Source. A set of words used to help identify the contexts for a query word.

A source may be obtained in a number of ways. For example, it could

be given directly by a user seeking information about a query word, or

it could be obtained from a sentence containing the query word.

Output: Set of relations providing further information about the query word.

A Lexica knowledgebase is composed of the following three sets of knowledge

that are used to provide the output from the system.

1. A set of context classi�cation trees. Given a source S and a query word

q, the context classi�cation trees are used to identify contexts that hold for

S [fqg. Consider a tree T that tests whether S [fqg is in context x: If the

test is positive, then S [fqg is in context x.

2. A context lattice. A Boolean lattice generated from a set of contexts.

These atomic contexts are disjoint and exhaustive. Every context that can

be identi�ed by the set of context classi�cation trees is present in the context

lattice.

3. A set of default rules. These default rules represent context-dependent

lexical knowledge. Given a query word and a set of context propositions

derived from the source, these default rules are used to provide further in-

formation about the query word.

From input to output, reasoning with a Lexica knowledgebase is a three-stage

process.

1. From the source and query word, contexts are found using the set of context

classi�cation trees. These contexts are called primary contexts.

2. From the primary contexts, further contexts are inferred from the context

lattice. These further contexts are called inferred contexts. By reexivity

the inferred contexts include the primary contexts.

3. From inferred contexts, semantic relations that hold for the query word are

identifed by reasoning with the default rules.

As an example, consider the following sentence.

The bank of a river in a flood plain is usually low.

Suppose the query word is bank, and the set of stop words in this sentence

is the following.

fThe, of, a, in, is g

This leaves the following set as the source.

friver, flood, plain, usually, low g

Assuming that river can be identi�ed as a context by a context classi�cation

tree, and that valley can be identi�ed as a context by a context classi�cation

tree, then river and valley are primary contexts containing bank. As a result,

the following is an inferred context. We may choose to use an alternative name

such as river-bank for it.

river^ valley

In the next subsection, we show how we represent the input to the system. We

then show how we can represent lexical knowledge using default logic. Finally,

we show how we query the system.

4.1 Representing inputs

The input to a Lexica system is a query word q and a source S. Let C denote

the set of inferred contexts that hold for S [fqg. From the inputs, we form a

set Q of formulae that we use as part of the default theory to derive the output.

We now show how we form Q from the inputs.

S [fqg is in context x

i� context(x) is in Q.

We can restate this as follows, where in a Boolean lattice, the downset of x

is the set of all elements less than or equal to x in the lattice.

context(x) is in Q

i� the least element for the inferred contexts of S [fqg

is in the downset of x in the context lattice for S [fqg.

We also require the complement for the context relation.

:context(x) is in Q

i� the least element for the inferred contexts of S [fqg

is not in the downset of x in the context lattice for S [fqg.

The query word is the word for which further information is sought. Via the

relations that hold for the query word, we also seek information about further

words. For example, if the query word is bank, and the following relation holds,

we then seek further information about river-bank.

synonym(bank,river-bank)

These words for which we seek further information are called focus words,

and we denote this by the relation focus.

If q is the query word,

then we represent this as focus(q) in Q.

We propagate focus words by axioms of the following form. These capture

the transitivity of focus for particular relations such as synonym, related-term,

and meronym.

focus(x)^ synonym(x; y)! focus(y)

focus(x) ^ related-term(x,y)! focus(y)

focus(x)^ meronym(x; y)! focus(y)

The exact combination of axioms required in Q depends on which relations

are used in the knowledgebase.

4.2 Representing semantic and grammatical relations

We assume a semantic relation is a binary relation between a pair of words.

Types of relation include synonymy, antinymy, specialization, and meronymy.

We qualify semantic relations according to context. For example, in the con-

text of river, bank is a synomyn of river-bank, whereas in the context of

corporate-finance, bank is a synonym of merchant-bank.

focus(bank) : context(river)

synonym(bank; river-bank)

focus(bank) : context(corporate-finance)

synonym(bank; merchant-bank)

We now consider some defaults for �nding synonyms for car. The �rst says

that synonym(car,automobile) holds if context(road) holds. The second says

that in the more general situation where context(transport) holds, we also

need context(rail) to not hold. The third rule is a weaker alternative to the

second option: In the general situation where context(transport) holds, we

also need to check :context(road) does not hold. In the framework, we have

freedom as to whether we require a particular context (or negation of a context)

is needed as a precondition or justi�cation.

focus(car)^ context(road) : >

synonym(car; automobile)

focus(car)^ context(transport) : :context(rail)

synonym(car; automobile)

focus(car)^ context(transport) : context(road)

synonym(car; automobile)

In some situations, automobile is not an appropriate synonym for car, such

as in the case of wagon.

focus(car)^ context(rail) : :context(road)

synonym(car; wagon)

Another word sense for car is in the context of lisp. Here we consider the

specialization relation as consequent.

focus(car)^ context(lisp) : >

specialization(car,lisp-function)

If the context lisp cannot be determined, then the following default may be

appropriate.

focus(car)^ context(computing) : :context(transport)

specialization(car,lisp-function)

As another example, consider the polyseme case. Here we a provide default

for the baggage word sense.

focus(case) : context(transport)^ :context(legal)

synonym(case,baggage)

We now consider other semantic relations, including located and made-of,

that can hold for a given word.

focus(knife) : context(cooking)

located(knife; kitchen)

focus(hull) : context(ship)

made-of(hull,steel)

focus(hull) : context(sailing-ship)

made-of(hull,wood)

We can draw on a richer taxonomy of meronymic relations, in particular

[Cru86,WCH87], in order to develop further semantic relations. For example,

\member/collection", \portion/mass", \place/area", and \component/integral-

object".

Semantic information is also important in applying morphological and gram-

matical rules. Consider, for example, the following rules.

focus(bank) : context(finance)

category(bank; verb)_ category(bank; noun)

focus(bank) : context(river)

category(bank; noun)

Since many morphological and grammatical rules are context-dependent,

these can also be usefully presented in a Lexica knowledgebase.

4.3 Obtaining output

We now consider how we can reason with a Lexica knowledgebase in order to

derive lexical information about a query word. First we need to assume some

general Lexica knowledge, represented as a set of classical formulae, denoted

G. This includes formulae such as the following for generating further useful

semantic relations.

synonym(x; y)^ synonym(y; z)! synonym(x; z)

synonym(x; y)! synonym(y; x)

specialization(x;y)^ specialization(y; z)! specialization(x; z)

A Lexica knowledgebase is a default theory (D;W), where D is a set of

semantic rules (discussed in section 4.2), and W is the union of G (discussed

above) and Q (discussed in section 4.1). If E is an extension of (D;W), then E

contains a set of semantic relations concerning the query word.

Given an extension E, we need to extract the semantic relations concerning

E. Let R denote the set of semantic and grammatical relations in E. So for

example, if E includes synonym(happy,joyous), then synonym(happy,joyous)

is in R.

4.4 Using the Lexica framework

Reasoning with a Lexica knowledgebase is non-monotonic with respect to the

source: Taking a superset of the source may cause lexical inferences to be re-

tracted. This gives the context-dependent reasoning that is necessary for lexical

knowledge.

The de�nition of the Lexica framework does not exclude multiple extensions.

For a given query word and source, the generation of multiple extensions implies

that with respect to the source, the query word is ambiguous. This may be

because the context is underdetermined.

Abstracting from a Lexica knowledgebase (D;W), we can obtain a semantic

network | where the nodes are words and the arcs are semantic relations. We

obtain this semantic network by taking the consequents of all the default rules

in D. Call this network G. So G = (N;A) is a directed graph where N is a set

of nodes and A is a set of directed arcs. G is not necessarily a connected graph.

For example, consider the following set of three defaults:

focus(car) : context(road)

synonym(car; automobile)

focus(automobile) : context(road)

synonym(automobile;motor-car)

focus(road) : :context(sea)

synonym(road; street)

By abstracting from this Lexica knowledge, we obtain the semantic network

composed of the following arcs. This network does not form a connected graph.

synonym(car,automobile)

synonym(automobile,motor-car)

synomym(road,street)

However, observe that given a source and a query word, an extension E of

the corresponding Lexica knowledgebase will be such that the set of semantic

relations R in E form a connected subgraph. This results from the propagation

of the focus relation using the axioms in the Q subset of the default theory.

To continue the above example, suppose the source just contains the word car

and so the query word is car, then the extension contains the semantic rela-

tions synonym(car,automobile) and synonym(automobile,motor-car), but

not synomym(road,street).

5 Discussion

In this paper, we have presented an important problem| reasoning with lexical

knowledge | where default logic has much to o�er. We have shown how we can

use classi�cation trees to identify contexts for a word, and shown how we can

use the identi�ed contexts to reason with lexical knowledge about the word in

default logic. We have also shown that machine learning techniques can be used

to generate context classi�cation trees.

Our immmediate goal in developing the Lexica framework is to develop the

Lexica framework for goal-directed reasoning. For simplicity, we chose Reiter's

version of default logic. But, for e�ciency, a goal-directed form of default reason-

ing is more appropriate. In particular, we are investigating the use of the XRay

query answering system for default logics [Sch95].

For an application, it is possible that a relatively large number of default

rules would be required for an acceptable level of performance. To address this

viability problem, we aim to investigate a number of avenues: (1) Using the

framework in restricted domains that require a limited number of default rules;

(2) Using inductive logic programming ([Mug92]) to generate default rules for a

domain; (3) Using co-locational data for knowledge engineering; and (4) Using

machine-readable dictionaries and thesauri for knowledge engineering [Mei93].

The Lexica framework is complementary to formalizations of the notion of

\aboutness" such as [BH94,Buv95,Hun96]. A Lexica knowledgebase could po-

tentially be used in such frameworks to allow identi�cation of, and reasoning

with, relations such as \article A is about topic T".

Finally, we can consider the Lexica approach as a move towards reusable

knowledgebases or general knowledge systems. CYC is perhaps the best known,

and certainly the most intensively developed example of a general knowledge

system [Len95]. There are many problems with reuse of knowledge, as highlighted

during the development of CYC. It is likely that initial success will eminate from

more highly structured systems with constrained querying, such as in the Lexica

approach, than in more general systems, such as CYC, that have a wider range

of knowledge and querying.

Acknowledgements

I would like to thank an anonymous referee for some helpful suggestions.

References

[Bes89] Ph Besnard. An Introduction to Default Logic. Springer, 1989.

[BFGM91] R Beckworth, C Fellbaum, D Gross, and G Miller. WordNet: A lexical

database organized on psycholinguistic principles. In U Zernik, editor, Lex-

ical Acquisition: Exploiting On-line Resources to Build a Lexicon, pages

211{226. Lawrence Erlbaum Associates, 1991.

[BH94] P Bruza and T Huibers. Investigating aboutness axioms using information

�elds. In Proceedings of the 18th ACM SIGIR Conference on Research and

Development in InformationRetrieval (SIGIR'94), pages 112{121. Springer,

1994.

[BPK

+

96] U Borgho�, R Pareschi, H Karch, M Nohmeier, and J Schlichter. Constraint-

based information gathering for a network publication system. In Proceed-

ings of the First International Conference on the Practical Application of

Intelligent Agents and Multi-agent Technology. Pratical Applications Com-

pany, 1996.

[Bre91] G Brewka. Common-sense Reasoning. Cambridge University Press, 1991.

[Bri91] T Briscoe. Lexical issues in natural language processing. In E Klein and

F Veltman, editors, Natural Language and Speech, pages 39{68. Springer,

1991.

[Buv95] S Buvac. Resolving lexical ambiguity using a formal theory of context. In

K van Deemter and S Peters, editors, Semantic Ambiguity and Underspec-

i�cation, pages 101{124. CSLI Publications, 1995.

[Cro93] B Croft. Knowledge-based and statistical approaches to text retrieval. IEEE

Expert, pages 8{12, 1993.

[Cru86] D Cruse. Lexical Semantics. Cambridge University Press, 1986.

[Eng96] B Engleder. Filtering News Articles. MSc Thesis, Department of Comput-

ing, Imperial College, London, 1996.

[FJ96] A Falk and I Jonsson. PAWS: An agent for WWW-retrieval and �lter-

ing. In Proceedings of the First International Conference on the Practical

Application of Intelligent Agents and Multi-agent Technology. Practical Ap-

plications Company, 1996.

[GF95] B Grosof and D Foulger. Globenet and RAISE: Intelligent agents for net-

worked newsgroups and customer service support. Technical report, IBM

Research Division, T J Watson Research Center, New York, 1995.

[GLC

+

95] B Grosof, D Levine, H Chan, C Parris, and J Auerbach. Reusable architec-

ture for embedding rule-based intelligence in information agents. Technical

report, IBM Research Division, T J Watson Research Center, New York,

1995.

[GPWS96] L Gutherie, J Pustejovsky, Y Wilks, and B Slator. The role of lexicons

in natural language processing. Communications of the ACM, 39(1):63{72,

1996.

[Hun96] A Hunter. Intelligent text handling using default logic. In Proceedings of the

IEEE Conference on Tools with Arti�cial Intelligence, pages 34{40. IEEE

Computer Society Press, 1996.

[Len95] D Lenat. CYC:a large-scale investment in knowledge infrastructure. Com-

munications of the ACM, 38(11):33{38, 1995.

[Lie95] H Lieberman. Letizia: An agent that assists web browsing. In Proceedings

of the Fourteenth International Joint Conference on Arti�cial Intelligence.

Morgan Kaufmann, 1995.

[LS95] T Linke and T Schaub. Lemma handling in default logic theorem provers. In

Symbolic and Qualitative Approaches to Reasoning and Uncertainty, volume

946 of Lecture Notes in Computer Science, pages 285{292. Springer, 1995.

[Mae94] P Maes. Agents that reduce work and information overload. Communica-

tions of the ACM, 37(7):31{40, 1994.

[Mei93] W Meijs. Exploring lexical knowledge. In C Souter and E Atwell, editors,

Corpus-based Computational Linguistics, pages 249{260. Rodopi, 1993.

[Mil95] G Miller. WordNet: A lexical database for English. Communications of the

ACM, 38(11):39{41, 1995.

[Mou96] A Moukas. Amalthaea: Information discovery and �ltering using a multia-

gent evolving ecosystem. Technical report, MIT Media Laboratory, Cam-

bridge MA, 1996.

[Mug92] S Muggleton. Inductive Logic Programming. Academic Press, 1992.

[Nie94] I Niemel�a. A decision method for non-monotonic reasoning based on au-

toepistemic reasoning. In Proceedings of the Fourth International Confer-

ence Principles of Knowledge Representation and Reasoning, pages 473{484.

Morgan Kaufmann, 1994.

[Qui86] J Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.

[Rei80] R Reiter. Default logic. Arti�cial Intelligence, 13:81{132, 1980.

[Sch95] T Schaub. A new methodology for query-answering in default logics

via structure-oriented theorem proving. Journal of Automated Reasoning,

15:95{165, 1995.

[Sha96] A Shaikh. Data Mining Using Inductive Logic Programming. MSc Thesis,

Department of Computing, Imperial College, London, 1996.

[Tra93] R Trask. A Dictionary of Grammatical Terms in Linguistics. Routledge,

1993.

[Voo94] E Voorhees. Query expansion using lexical-semantic relations. In W Croft

and C van Rijsbergen, editors, Proceedings of the Seventeenth International

ACM-SIGIR Conference on Research and Developement in Information Re-

trieval, pages 61{69, 1994.

[WCH87] MWinston, R Cha�n, and D Herrman. A taxonomy of part-whole relations.

Cognitive Science, 11:417{444, 1987.

[WSG96] YWilks, B Slator, and L Guthrie. Electric Words: Dictionaries, Computers,

and Meanings. MIT Press, 1996.

[Yok95] T Yokoi. The EDR Electronic Dictionary. Communications of the ACM,

38(11):42{44, 1995.

