
Automated Reasoning with Epistemic
Graphs using SAT solvers

Anthony HUNTER
Department of Computer Science,

University College London, London, UK
(anthony.hunter@ucl.ac.uk)

Abstract. Epistemic graphs have been developed for modelling an agent’s degree
of belief in an argument and how belief in one argument may influence the belief in
other arguments. These beliefs are represented by constraints on probability distri-
butions. In this paper, we present a framework for reasoning with epistemic graphs
that allows for beliefs for individual arguments to be determined given beliefs in
some of the other arguments. We present and evaluate algorithms based on SAT
solvers.

Keywords.Probabilistic argumentation; Argumentation algorithms; Bipolar argumentation.

1. Introduction

Epistemic graphs are a generalization of the epistemic approach to probabilistic argu-
mentation [1]. In epistemic graphs, the graph is augmented with a set of constraints on
probability distributions. These constraints restrict the belief we have in each argument
and they capture how beliefs in arguments influence each other. The aim is that a set of
constraints captures the subjective, and possibly imperfect way, that an agent views the
beliefs in the arguments and their interactions. The graphs can model both attack and
support (see for example Figure 1) as well as relations that are neither positive nor nega-
tive (see for example Figure 3) with the label denoting the type of influence (e.g. positive
(supporting), negative (attacking), and mixed). Both the label and the constraints provide
information about the argumentation. In this paper, we focus on the constraints.

There are some similarities between epistemic graphs and graded and ranking–based
semantics proposed for a number of argumentation frameworks [2,3,4,5,6,7,8,9,10,11,12]
but there are also substantial differences. Most assign a value in the unit interval to ar-
guments without further clarification of the meaning of the number. Furthermore, many
of the postulates in these approaches are not really applicable in the epistemic approach,
even though they can be perfectly suitable in other scenarios (e.g. in the epistemic ap-
proach, an increase or decrease in beliefs in attackers (or supporters) does not necessarily
invoke an decrease or increase in the belief of the target argument).

Epistemic graphs have some similarities with abstract dialectical frameworks (ADFs)
[13] and weighted ADFs (WADFs) [14]. However, differences include epistemic graphs
allow for a finer-grained probabilistic evaluation of arguments, allowing unattacked ar-
guments to be disbelieved, and long-distance effects between arguments that do not have

A = Has DiseaseB = Has Alternative Disease

D = Has Symptom 1 E = Has Symptom 2C = LowHeartRate

−

+ +− +

Figure 1. Example of an epistemic graph concerning diagnosis of a disease based on belief in symptoms
and a differential diagnosis which in turn is based on a symptom and a test. The + (resp. −) label denote
support (resp. attack) relations. Assume that if B is strongly believed, and D or E is strongly disbelieved,
then A is strongly disbelieved, whereas if B is believed, and D or E is disbelieved, then A is disbelieved. Fur-
thermore, if D and E are believed, then A is believed. These constraints could be reflected by the follow-
ing formulae: '1 ∶ p(B) > 0.8 ∧ p(D∨ E) < 0.2 ⇒ p(A) < 0.8; '2 ∶ p(B) > 0.5 ∧ p(D∨ E) < 0.5 ⇒ p(A) < 0.5;
'3 ∶ p(D∧E) > 0.5⇒ p(A) > 0.5; '4 ∶ p(C) > 0.5⇒ p(B) ≤ 0.5; And '5 ∶ p(C) ≤ 0.5⇒ p(B) > 0.5.

an arc connecting them. For more detailed comparison of ADFs with epigraphs, see [1].
Also see [1] for coverage of substantial differences with Bayesian networks.

In previous work, we presented a model-based theorem prover which can be used to
check whether one constraint entails another that was based on enumerating all the mod-
els [15], and an approach based on calculating probability distributions satisfying the con-
straints using numerical optimization methods [16]. These methods only work for small
numbers of arguments. Yet, there is a need for a scalable theorem prover that allows us to
query the constraints of an epistemic graph in order to draw inferences about the belief
in specific arguments. To address this need, we present a new proposal in this paper for
taking a knowledgebase of constraints and optionally further assumptions, and drawing
inferences from them. The approach involves representing the constraints as clauses, and
then uses an off-the-shelf SAT solver (see [17] for an introduction to SAT solvers). We do
this by defining a set of axioms, which we call a completion, of an epistemic graph which
we add to the constraints when querying the SAT solver. By assuming these axioms, we
can obtain a sound and complete inferencing algorithm.

2. Epistemic Graphs: A Simplified Version

In this paper, we present a simpler version of epistemic graphs than presented in [1]. Let
 denote a graph where Nodes() be the set of nodes in , and Arcs() be the set of arcs
in . We consider a probability distribution P ∶℘(Nodes(G))→ [0,1] as being a prob-
ability assignment to each subset of the set of arguments such that this sums to 1 (i.e.
∑

Γ⊆Nodes(G)P (Γ) = 1). We denote the set of all probability distributions on Nodes() by
Dist(). The constraints restrict the set of probability distributions that satisfy the argu-
ments (as we explain in the rest of this subsection).

Based on a given graph, we can now define the epistemic language. In this paper,
we will only consider a sublanguage of that defined in [1]. The simplified epistemic
language based on graph is defined as follows: an epistemic atom is of the form p(A)#x
where # ∈ {<,≤,=,≥,>}, x ∈ [0,1] and A ∈ Nodes(); and an epistemic formula is a
Boolean combination of epistemic atoms. For example, from the epistemic atoms p(A) ≤
0.5 and p(B) ≥ 0.5, an epistemic formula is p(A) ≤ 0.5→ p(B) ≥ 0.5.

The semantics for constraints come from probability distributions P ∈Dist(). Each
Γ ⊆ Nodes() corresponds to a possible world where the arguments in Γ are true. The
probability of an argument being acceptable is defined as the sum of the probabilities of

A = Alice doesn’t go to
the party if Bob goes.

B = Bob doesn’t go to
the party if Chris goes.

C = Chris doesn’t go to
the party if Alice goes.

−

−

−

Figure 2. The epistemic graph has constraints {p(B) > 0.5 ⇒ p(A) ≤ 0.5, p(C) > 0.5 ⇒ p(B) ≤ 0.5,
p(A) > 0.5⇒ p(C) ≤ 0.5}. Given these constraints, we see that at most one argument can be believed.

A = It tastes good.B = It tastes salty. C = It tastes sweet.
∗ ∗

Figure 3. The epistemic graph has constraints {p(B) > 0.5 ∧ p(C) ≤ 0.5 ⇒ p(A) > 0.5,
p(C) > 0.5 ∧ p(B) ≤ 0.5 ⇒ p(A) > 0.5, p(B) > 0.5 ∧ p(C) > 0.5 ⇒ p(A) ≤ 0.5}. Given these constraints, the
influence of B and C on A is not simply a positive or a negative one. Consider some an item of food. If it is
believed to be tasting salty and not believed to be tasting sweet, or it is not believed to be tasting salty and
believed to be tasting sweet, then it is believed to be good tasting, and if it is believed to be tasting salty and
believed to be tasting sweet, then it is not believed to be good tasting.

the worlds containing it: P (A) =
∑

Γ⊆Nodes() s.t. A∈ΓP (Γ). We say that an agent believes
an argument A to be acceptable if P (A) > 0.5, disbelieves A to be acceptable if P (A) <
0.5, and neither believes nor disbelieves A to be acceptable when P (A) = 0.5.

For an epistemic atom p(A)#v, where # ∈ {<,≤,=,≥,>}, the satisfying distribu-
tions, or equivalently models, of p(A)#v are defined as Sat(p(A)#v) = {P ′ ∈ Dist() ∣
P ′(A)#v}. The set of satisfying distributions for a given epistemic formula is as fol-
lows where � and are epistemic formulae: Sat(�∧) = Sat(�)∩Sat(); Sat(�∨) =
Sat(�) ∪ Sat(); and Sat(¬�) = Sat(⊤) ⧵ Sat(�). For a set of epistemic formulae Φ =
{�1,… ,�n}, the set of satisfying distributions is Sat(Φ) = Sat(�1) ∩…∩Sat(�n). A set
of epistemic formulae is consistent iff its set of models is non-empty.

Example 1. Consider the set of formulae {p(A) > 0.5→ ¬(p(B) > 0.5), p(A) = 0∨p(A) =
0.5∨p(A) = 1, p(B) = 0∨p(B) = 0.5∨p(B) = 1}. Examples of probability distributions that
satisfy the set include P1 s.t. P1(∅) = 1, P2 s.t. P2(∅) = P2({A}) = 0.5, P3 s.t. P3({A}) =
1, or P4 s.t. P4({A}) = P3({A,B}) = 0.5 (omitted sets are assigned 0). The probability
distribution P5 s.t. P5({A,B}) = 1 does not satisfy the formula.

For the arguments in graph , and probability function P , an epistemic extension is
the set {A∈Nodes() ∣ P (A)> 0.5}. So the extension is determined from the probability
function rather the structure of the graph. For example, for Figure 2, if P (A) = 0.1, P (B) =
0.9, and P (C) = 0.1, then the epistemic extension is {B}.

We define an entailment relation, denoted ⊧, as follows, where Γ is a set of epistemic
formulae, and � is an epistemic formula: Γ ⊧ � iff Sat(�) ⊆ Sat(Γ)

Example 2. Let Γ= {p(C)> 0.9, p(B) = 0.3, p(C)≥ 0.8∧p(B)< 0.6→ p(A)> 0.5}. Hence,
Sat(p(A) ≥ 0.5) ⊆ Sat(Γ), and so Γ ⊧ p(A) ≥ 0.5.

The simplified epistemic language does not incorporate features of the full epistemic
language (as presented in [1]) such as terms that are Boolean combinations of arguments
(e.g. P (B∨C) > 0.6 which says that the probability argument B or argument C is greater

than 0.6) or summation of probability values (such as P (A) +P (B) ≤ 1 which says that
the sum of probability A and probability B is less than or equal to 1). Nonetheless, the
restricted epistemic language is a useful sublanguage and it simplifies the presentation
and evaluation in this paper.

An epistemic constraint is an epistemic formula ∈ Formulae(). An epistemic
graph is a tuple (,,) where (,) is a labelled graph, and ⊆ Formulae() is a set
of epistemic constraints associated with the graph.

In general, the graph (and its labellings) is not necessarily induced by the constraints
and therefore it contains additional information. The actual direction of the edges in the
graph is also not necessarily derivable from . For example, if we have two arguments A
and B connected by an edge, a constraint of the form p(A) < 0.5∨ p(B) < 0.5 would not
tell us the direction of this edge. The constraints may also involve unrelated arguments,
similar to [18], e.g. ¬p(C)> 0.5∨¬p(D)> 0.5when there is no arc between C and D. So the
assignment of a label to an arc (by the function) is an extra piece of information. The
assignment is intended to denote the kind of influence of the source node on the target
node. If we use the labels {+,∗,−}, then the assignment of + is intended to denote a form
of support, the assignment of − is intended to denote a form of attack, and ∗ is intended
to denote an influence that is neither support nor attack. So ∗ could denote that under
some conditions behaves as an attack and under some conditions behaves as a support
as illustrated in the arc in Example 3. As investigated in [1], there are various ways that
we can formalize the relationships between labels and constraints. We will not consider
labels further in this paper, and we will focus on the constraints.

For this paper, we also require the notion of an observation which is an epistemic
formula. The difference between constraints and observations is that we assume the con-
straints always hold, whereas observations only hold in some situations or for some peri-
ods. For example, if a debater uses an epistemic graph to model what opponents believe,
the observations would be specific beliefs for a specific opponent.

Example 3. Returning to Figure 2, suppose we have the observation p(C) ≥ 0.8, then we
want to draw the conclusions p(B) ≤ 0.5 and p(A) ≤ 0.5.

Example 4. Returning to Figure 3, suppose we have the observations p(B) = 0.7 and
p(C) = 0.2, then we want to draw the conclusion p(A) > 0.5. Or suppose we have the
observations p(B) > 0.7 and p(C) ≥ 0.8, then we want to draw the conclusion p(A) ≤ 0.5.

In the following, we will use the term knowledgebase, denoted , to refer to the
union of a set of constraints and a set of observations.

3. Reasoning with Epistemic Graphs

In this paper, our approach to inference with constraints and observations is to use SAT
solvers. So we will need to represent constraints and observations as clauses (i.e. a dis-
junction of literals). Any formula of propositional logic (and similarly any epistemic for-
mula) can be rewritten in conjunction normal form, and then conjunction elimination
applied, to obtain a set of clauses that are logically equivalent to the original epistemic
formula. So we do not lose any expressibility if we represent our epistemic formulae as
clauses. Note, clauses can be rewritten as implications. So �1 ∨…∨ �n−1 ∨ �n can be
represented as ¬�1 ∧…∧¬�n−1 → �n.

We will also restrict the probability values that the formulae can take by using a
restricted value set, denoted Π, which is a subset of the unit interval such that 0,1 ∈ Π,
and for all x,y ∈ Π, if x+y ∈ [0,1], then x+y ∈ Π, and if x−y ∈ [0,1], then x−y ∈ Π.
For example, {0,0.5,1} and {0,0.1,0.2,… ,0.9,1} are restricted value sets. In this paper,
we will assume Π = {0,0.1,0.2,… ,0.9,1} unless explicitly stated otherwise.

Definition 1. The restricted language based on graph and a restricted value set Π
is defined as follows: a restricted atom of the form p(A)#x where # ∈ {<,≤,=,≥,>},
x ∈ Π and A ∈ Nodes(); a restricted clause of the form �1∨…∨�n∨�n+1 where each
�i in {�1,… ,�n,�n+1} is a restricted literal (i.e. a restricted atom, or its negation).

Example 5. Let Π = {0,0.5,1}. In the restricted language w.r.t. Π, we can only have
atoms of the form p(A)#0, p(A)#0.5, and p(A)#1, where A ∈ Nodes() and # ∈ {<,≤,=,≥
,>}. From these atoms we compose epistemic formulae, using the Boolean connectives,
such as p(A) ≤ 0.5→ ¬(p(B) ≥ 0.5).

We also require some subsidiary definitions. Literals � and are logically comple-
mentary iff � is ¬ or is ¬�. (e.g. the literals P (A) > 0.8 and ¬(P (A) > 0.8) are log-
ically complementary); And the literals � and are probabilistically complementary
iff Sat(�) ∩ Sat() = ∅ and � and are not logically complementary (e.g. P (A) > 0.8
and P (A) < 0.8 are probabilistically complementary, and when Π = {0,0.1,… ,0.9,1.0},
P (A) > 0.9 and ¬(P (A) = 1) are probabilistically complementary).

To reason with a knowledgebase (i.e. a set of constraints and observations), we pro-
pose a proof theoretic approach based on adding extra axioms to the knowledgebase to
capture the implicit probabilistic information that is required. For this we introduce the
notion of equality completion to reduce our knowledgebase and query to disjunctions in-
volving only equality and the restricted value set Π. For example the atom p(A) > 0.6
implies p(A) is one of 0.7, 0.8, 0.9, or 1 as captured by the following clause.

¬(p(A) > 0.6)∨p(A) = 0.7∨p(A) = 0.8∨p(A) = 0.9∨p(A) = 1.0

In the following definition of completion, we also include the constraint that an argu-
ment cannot have two values. So for all arguments A, for all x,y ∈ {0,0.1,0.2,… ,0.9,1},
s.t. x ≠ y, ¬(p(A) = x)∨¬(p(A) = y).

Definition 2. For a graph , the set of completion clauses is the following set of clauses

Complete() =
⋃

A∈Nodes()

((

⋃

k∈{1,…,8}
Ck(A)

)

∪Exclusion(A)

)

where Exclusion(A) = {¬(p(A) = x)∨¬(p(A) = y) ∣ x ≠ y} and

C1(A) = {p(A) > x∨p(A) = y1 ∨…∨p(A) = yn ∣ x ≤ y1,… ,yn}
C2(A) = {¬(p(A) > x)∨p(A) = y1 ∨…∨p(A) = yn ∣ x > y1,… ,yn}
C3(A) = {p(A) < x∨p(A) = y1 ∨…∨p(A) = yn ∣ x ≥ y1,… ,yn}
C4(A) = {¬(p(A) < x)∨p(A) = y1 ∨…∨p(A) = yn ∣ x < y1,… ,yn}
C5(A) = {¬(p(A) ≤ x)∨p(A) = y1 ∨…∨p(A) = yn ∣ x ≤ y1,… ,yn}
C6(A) = {p(A) ≤ x∨p(A) = y1 ∨…∨p(A) = yn ∣ x > y1,… ,yn}
C7(A) = {¬(p(A) ≥ x)∨p(A) = y1 ∨…∨p(A) = yn ∣ x ≥ y1,… ,yn}
C8(A) = {p(A) ≥ x∨p(A) = y1 ∨…∨p(A) = yn ∣ x < y1,… ,yn}

The size of Complete() is a linear function of the number of arguments in the graph
, as there are 198 axioms in Complete() per argument.

Proposition 1. If |Nodes()| = n, then |Complete()| = 198n.

Proof. For each argument inA∈Nodes(), there is 11 axioms for each of Com1 to Com8
(there are 11 axioms since there is one axiom per value of x), and there are 110 exclusion
axioms (since, for ¬(p(A) = x)∨¬(p(A) = y), there are 11 choices for x and therefore 10
choices for y, which is 110 choices), giving a total of 198 axioms per argument.

The axioms given in the completion are sound. In other words, they are satisfied by
all probability distributions, and are therefore entailed by any knowledgebase.

In the following definition, we present the resolution proof rule as part of the resolu-
tion proof relation. This proof rule takes a pair of clauses where one has a disjunct, and
the other has a disjunct that is its negation, and returns a clause where the disjuncts are
all the disjuncts from the original clauses except the disjunct in the first clauses that is
negated in the second clause.

Definition 3. Let � and �′ be clauses where � is of the form �∨� and �′ is of the form
 ∨�, and � and are logically complementary literals (i.e. � is ¬ or ¬� is), then �∨�
is a resolvent of � and �′. The resolution proof relation, denoted ⊢resolution, is defined
as follows where Δ is a set of clauses and is a clause where the proof rules are: (1)
Resolution; (2) Reflexivity; (3) Associativity; and (4) Contradiction.

1 Δ ⊢resolution � ∨� if Δ ⊢resolution �∨� & Δ ⊢resolution ∨ � & � is ¬
2 Δ ⊢resolution � if � ∈ Δ
3 Δ ⊢resolution �1 ∨…∨�m if Δ ⊢resolution �1 ∨…∨�n & {�1,… ,�m} = {�1,… ,�n}
4 Δ ⊢resolution ⊥ if Δ ⊢resolution � & Δ ⊢resolution ¬�

We now consider resolution with a knowledgebase and completion. Consider two
clauses and two literals (one in each clause) that are either logically complementary or
probabilistically complementary. For entailment, there is no probability distribution that
satisfies both literals, and so the inference follows. In contrast, the resolution proof rule
only deals with logically complementary literals, and so the completion is required to treat
probabilistically complementary literals as logically complementary literals, and thereby
obtain the inference. We illustrate this in the following example.

Example 6. Consider �1 = p(A) > 0.8 ∨ p(B) > 0.5 and �2 = p(A) < 0.2 ∨ p(B) > 0.5.
Clearly, p(A) > 0.8 and p(A) < 0.2 are probabilistically complementary literals, and that
{�1,�2} ⊧ p(B) > 0.5 holds. The following axioms are from the completion.

�1 = ¬(p(A) > 0.8)∨p(A) = 0.9∨p(A) = 1 �4 = ¬(p(A) = 1)∨¬(p(A) = 0)
�2 = ¬(p(A) < 0.2)∨p(A) = 0∨p(A) = 0.1 �5 = ¬(p(A) = 0.9)∨¬(p(A) = 0.1)
�3 = ¬(p(A) = 0.9)∨¬(p(A) = 0) �6 = ¬(p(A) = 1)∨¬(p(A) = 0.1)

We now show that p(B) > 0.5 can be obtained using the resolution proof relation with the
completion of the knowledge. We use the names of clauses rather than the clauses in the
premises to save space. The name of each clause generated by resolution is given on the
right after the clause.

1 {�1,�1} ⊢resolution P (A) = 0.9∨P (A) = 1∨P (B) > 0.5 (!1)
2 {�2,�2} ⊢resolution P (A) = 0∨P (A) = 0.1∨P (B) > 0.5 (!2)
3 {!1,�3} ⊢resolution ¬(P (A) = 0)∨P (A) = 1∨P (B) > 0.5 (!3)
4 {!3,�4} ⊢resolution ¬(P (A) = 0)∨P (B) > 0.5 (!4)
5 {!1,�5} ⊢resolution ¬(P (A) = 0.1)∨P (A) = 1∨P (B) > 0.5 (!5)
6 {!5,�6} ⊢resolution ¬(P (A) = 0.1)∨P (B) > 0.5 (!6)
7 {!2,!4} ⊢resolution P (A) = 0.1∨P (B) > 0.5 (!7)
8 {!6,!7} ⊢resolution P (B) > 0.5 (!8)

In the following lemma, we generalize the above example by showing that if a clause
is entailed by a pair of clauses, then that inference can be obtained from the completion
of the clauses using only the resolution proof rule.

Lemma 1. For graph , if �,�′, are clauses where � is of the form �1 ∨…∨�n, �′ is
of the form �1∨…∨�m, is of the form �1∨…∨�n−1∨�1∨…∨�m−1, and {�,�′} ⊧ ,
then {�,�′}∪Complete() ⊢resolution .

Proof. Assume {�,�′} ⊧ . So for all P ∈ Sat({�,�′}), P ̸⊧ �n or P ̸⊧ �m. So either
�n and �m are logically complementary literals (i.e. syntactically, �n is ¬�m or ¬�n is
�m) or �n and �m are probabilistically complementary literals (i.e. �n is of the form
p(A1)#1v1 and �m is of the form p(A2)#2v2 and there is no assignment for w1 and w2
where P (A1) = w1 and P (A2) = w2 that would satisfy �n and �m). In the case that
�n and �m are logically complementary literals, then {�,�′} ⊢resolution holds, and
hence {�,�′} ∪Complete() ⊢resolution holds. In the case that �n and �m are proba-
bilistically complementary literals, then the disjunct �n in � is resolved with a com-
pletion axiom and so exchanged for a disjunction of p(A1) = y1 ∨…∨ p(A1) = yn, and
the disjunct �n in �′ is resolved with a completion axiom and so exchanged for a dis-
junction of p(A2) = y′1 ∨…∨ p(A2) = y′n. So together with the exclusion axioms, there
is no assignment for w1 and w2 in p(A1) = w1 and p(A2) = w2 that would satisfy
p(A1) = y1 ∨…∨p(A1) = yn and p(A2) = y′1 ∨…∨p(A2) = y′n. So each of these incom-
patible assignments is removed by resolution until none of them remain. So via a number
of resolution steps, {�,�′}∪Complete() ⊢resolution .

The following correctness result shows that a literal � is entailed if and only if the
negation of the query together with the knowledgebase and completion results in a con-
tradiction using the resolution consequence relation

Proposition 2. For all epistemic graphs (,,), and literals �, ⊧ � iff ∪Complete()
∪ {¬�} ⊢resolution ⊥.

Proof. (⇒) Assume ⊧ �. Therefore Sat(∪ {¬�}) = ∅. Therefore there is a subset
Γ ⊆ ∪{¬�} such that Sat(Γ) = ∅ and for all Γ′ ⊆ Γ, Sat(Γ′) ≠ ∅. So for all � ∈ Γ, and
for all � ∈ Disjuncts(�), Γ ⧵ {�} ⊧ ¬�. Moreover, for all �,�′ ∈ Γ, and for all such
that is a resolvent of � and �′, Γ ⊢ , and by Lemma 1, Γ∪Complete() ⊢resolution
 . Since Sat(Γ) = ∅, Γ ⊢ ⊥, and by Lemma 1, Γ ∪ Complete() ⊢resolution ⊥. So ∪
Complete() ∪ {¬�} ⊢resolution ⊥. (⇒) Assume ∪Complete() ∪ {¬�} ⊢resolution ⊥. So
Sat(∪Complete() ∪ {¬�}) = ∅. Since all � ∈ Complete() are satisfied by all P ∈
Dist() (i.e. for all P ∈ Dist(), P ⊧ �), we have Sat(Complete()) = Dist(). Therefore,
Sat(∪{¬�}) = ∅. Hence, ⊧ � holds.

Algorithm 1 Clausal inference for knowledgebase , query �, and graph
function INFERENCE(,�,)

if � is a positive literal then
return NOT SAT(∪Complete()∪{¬�})

else
return NOT SAT(∪Complete()∪{�}) where � is of the form ¬�

Algorithm 2 Bounds for argument A w.r.t knowledgebase, graph , and increments �.
function TIGHTINFERENCE(,A,�,)

n = 0
while INFERENCE(, p(A) ≥ n), do

n = n+�
m = 1
while INFERENCE(, p(A) ≤ m), do

m = m−�
return (n,m)

4. Algorithms

The inference algorithm (Algorithm 1) calls the SAT solver with a knowledgebase, and
its completion, plus the negation of the query. If the SAT solver returns True, then the set
of formulae is consistent, and hence the query does not follow from the premises, whereas
if the SAT solver returns False, then the set of formulae is inconsistent, and hence the
query does follow from the premises.

Proposition 3. For a knowledgebase , and restricted literal �, INFERENCE(,�,) =
True iff ⊧ �.

Proof. INFERENCE(,�,) = True iff ∪Complete()∪{¬�} ⊢SAT ⊥ iff ⊧ �.

We also give an algorithm for obtaining bounds on a query (Algorithm 2). It obtains
the tightest bounds n,m∈Π such that ⊧ p(A)≥ n and ⊧ p(A)≤m hold. The parameter
� specifies the restricted value set. For example, � = 0.5whenΠ= {0,0.5,1} and � = 0.1
when Π = {0,0.1,0.2,… ,0.9,1}.

Example 7. Given the constraints {p(A) ≥ 0.4), p(A) < 0.7∨ p(B) < 0.5} and the obser-
vations {p(B) ≥ 0.5}, we obtain (0.4,0.6) from Algorithm 2 (i.e. 0.4 as the lower bound
for p(A) and 0.6 as the upper bound for p(A)).

The algorithms (i.e. Algorithms 1 and 2) were implemented on Python. The imple-
mentation1 uses the PySAT implementation [19] that incorporates SAT solvers such as
Glucose3. The implementation includes code to randomly generate sets of epistemic con-
straints and queries. For a given number of arguments, and an upper limit on the num-
ber of disjuncts in each clause, the code randomly selects the argument, comparator and
probability value for each atom in the clause. Each query is generated in the same way.

1http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/episat.zip

(2,10) (2,100) (4,10) (4,100) (6,10) (6,100)
25 0.22 0.27 0.44 0.18 0.18 0.45
50 0.40 0.43 0.87 0.38 0.39 0.82
75 0.65 0.62 0.88 0.63 0.65 0.88
100 0.92 0.87 0.96 0.93 0.90 0.94
125 1.19 1.17 1.17 1.19 1.17 1.28
150 1.56 1.52 1.50 1.42 1.52 1.56
175 1.82 2.15 2.38 1.87 1.81 3.05
200 2.10 1.98 3.76 2.19 2.12 2.67
225 2.46 2.48 2.52 2.52 2.55 2.59
250 3.02 4.17 3.03 3.04 2.82 3.04

Table 1. Experiments with the INFERENCE algorithm (Algorithm 1). Each column is for a pair (d,c) where
d is the upper limit of disjuncts (taking the value 2, 4, or 6 disjuncts) and c is cardinality of knowledgebase
(taking the value of 10 or 100 clauses). Each row is the number of arguments in the range 25 to 250. For each
combination of column and row, we obtained the average time taken (seconds) obtained over 10 runs.

Combination (a = 10, c = 10) (a = 20, c = 20) (a = 30, c = 30) (a = 40, c = 40)
Average time 1.47 3.25 5.61 7.55

Table 2. For each combination, where a is the number of arguments, and c is the number of clauses, we obtained
the average time taken (seconds) obtained over 20 runs for each number of arguments.

The main purpose of the evaluation was to determine how the inference algorithm
performs with the number of arguments (propositional letters), disjuncts per clauses, and
clauses per knowledgebase. We considered the values 2, 4, and 6 for the number of dis-
juncts as this reflects what might be common values in applications, we considered 10
and 100 for the number of clauses, and similarly between 25 and 250 arguments, as they
represent the numbers that might be found in small and larger applications. Table 1 shows
that for each row, the time taken was similar for each column. So increasing the number
of disjuncts per clause (i.e. d), or increasing the number of clauses (i.e. c), does not sub-
stantially affect the time taken. In contrast, the number of arguments does substantially
increase the time taken. This can be clearly seen in each column.

The algorithm for bounds involvesmore computation since repeated queries aremade
to the inference algorithm. As a result the average time to obtain bounds were slower than
for entailment as indicated by the results in Table 2. A simple improvement to the algo-
rithm to decrease the time would be to only form the completion once (rather than form
the completion each time the inference algorithm is called) and then use this completion
each time the SAT solver is called.

The conclusion that we draw from the evaluations is that by basing the algorithms on
off-the-shelf SAT solvers, we are able to have scalable reasoning with epistemic graphs.
Given a set of constraints for an epistemic graph together with a set of observations, we
are able to quickly determine the belief in any of the arguments. In other words, the belief
on some arguments can be efficiently propagated through the graph to determine the belief
in the others. We can claim that this is scalable because we see that even with 100s of
arguments with clauses of up to 6 disjuncts, and a set of constraints plus observation
of 100 clauses, the time taken is a few seconds. For instance, with 200 arguments, a
maximum of 5 disjuncts, and 500 clauses in the knowledgebase, the average time is 2.71
seconds.

5. An Application of Automated Reasoning

Wenow consider an extended example (which has been adapted from [1]) to illustrate how
we can use the automated reasoning as part of an automated persuasion system. Assume
we have the graph presented in Figure 4 and that through, for instance, crowdsourcing
data, we have learned which constraints should be associated with a given user profile.
So now we assume we are dealing with a user of an automated persuasion system whose
profile leads to the selection of the following constraints in order to predict his or her
attitudes.

(1) p(B) > 0.5∧p(C) < 0.5∧p(D) < 0.5→ p(A) > 0.5
(2) p(B) > 0.7∧p(C) < 0.5∧p(D) < 0.5→ p(A) > 0.8
(3) p(B) > 0.9∧p(C) < 0.5∧p(D) < 0.5→ p(A) > 0.9
(4) p(C) ≥ 0.9→ p(A) < 0.25
(5) p(D) ≤ 0.5→ p(A) ≥ 0.25
(6) p(D) > 0.75→ p(A) < 0.75
(7) p(E) > 0.9→ p(B) < 0.5
(8) p(E) ≤ 0.5∧p(F) > 0.5→ p(B) > 0.5
(9) p(G) > 0.5→ p(C) < 0.5
(10) p(H) > 0.5→ p(D) < 0.5
(11) p(I) > 0.75→ p(D) ≤ 0.5
(12) p(J) > 0.5→ p(E) < 0.5
(13) p(J) > 0.5→ p(B) > 0.5
(14) p(J) > 0.5∧p(F) > 0.5→ p(B) > 0.9

We explain these constraints as follows: (1) If B is believed, and C and D are disbelieved,
then A is believed; (2) This refines above so if B is strongly believed, then A is strongly
believed; (3) This refines above so if B is very strongly believed, then A is very strongly
believed; (4) If C is very strongly believed, then A is strongly disbelieved; (5) If D is not
believed, then A is not strongly disbelieved; (6) If D is strongly believed, then A is not
strongly believed; (7) If E is strongly believed, then B is disbelieved; (8) If E is not believed,
and F is believed, then B is believed; (9) If G is believed, then C is disbelieved; (10) If H is
believed, then D is disbelieved; (11) If I is strongly believed, then D is not believed; (12)
If J is believed, then E is disbelieved; (13) If J is believed, then B is believed; And (14)
If J is believed, and F is believed, then B is strongly believed;

We can use these constraints together with any specific observations we have about
an individual (perhaps a lapsed patient at a dental surgery) to predict the belief in the per-
suasion goal (i.e. argument A)). For instance, if we know that a given individual strongly
believes F and G, e.g. p(F) = 0.8 and p(G) = 0.8, then we can infer that C is disbelieved
(i.e. p(C) < 0.5). However, it is not possible to infer whether the individual believes or
disbelieves the persuasion goal.

Next, we could consider presenting an argument to the individual in order to see
whether (according to the epistemic graph) the persuasion goal is believed or even
strongly believed. For instance, if we present H and J, we may assume that the patient
believes the arguments (i.e. p(H) > 0.5 and p(J) > 0.5). This assumption could be based
on analyzing the crowdsourced data to see which arguments are believed after being pre-
sented. Then from p(H)> 0.5 and p(J)> 0.5, together with the original information about

A = I should
book regular

dental check-ups.

B = Having a regular
check-up will help me
keep my teeth healthy.

E = It is daily brushing
and flossing that really
keeps my teeth healthy.

F = I like to be healthy.

C = I don’t have
the money to

pay for a dentist.

G = Dental care is free if
you have a low income.

D = I find having dental
check-ups painful.

H = If I let a dental
problem develop, it will
be much more painful.

I = The checkups are painful
because the teeth and gums are
in a bad shape, which is even

more a reason to go to the dentist.

J = Clinical studies show that
both daily brushing and flossing
are required for healthy teeth.

+

−

−

−

+

−

−

−

+
−

Figure 4. Epistemic graph (adapted from [1]) for the domain model for a case study on encouraging people to
take regular dental check-ups.

the patient (i.e. p(F) = 0.8 and p(G) = 0.8), we can infer B and A are very strongly believed
(i.e. p(B) > 0.9 and p(A) > 0.9).

Since it is possible to acquire substantial amounts of crowdsourced data, and apply
machine learning to generate constraints [20], we can easily acquire large numbers of
constraints on a topic that can be harnessed for user models in automated persuasion. The
above example only involved 14 constraints, and so the inferences can be made by hand,
but if we have 100s of constraints (which can easily arise if we have an argument graph
with 100 arguments), then we need automated reasoning such as the approach presented
in this paper (which was shown in the previous section to scale to 100s of clauses with
200 arguments) to be able to identify the implications of specific options for presenting
arguments.

6. Discussion

Epistemic graphs offer a rich and flexible formalism for modelling argumentation. The
approach provides subjective reasoning by allowing different agents to be modelled by
a different set of constraints (which can be useful in complex problem analysis where
different perspectives and the associated unncertainty is captured). This may be useful
for modelling how different decision makers make their decisions based on their beliefs
in the relevant arguments by each presenting an epistemic graph. Epistemic graphs also
allow for better modelling of imperfect agents, which can be important in multi–agent
application with dialogical argumentation (e.g. persuasion, negotiation, etc.).

The benefit of the work presented in this paper is that we can use the automated rea-
soning system to allow us to draw inferences about a situation modelled by an epistemic
graph, or about what inferences another agent would draw based on what we assume
about their epistemic graph. Off-the-shelf SAT solvers (which are available for a range
of programming languages) allow the reasoning to scale to large epistemic graphs, and
this allows us to deal with much larger numbers of arguments than possible with previous
proposals for automated reasoning with epistemic graphs [15,16]. The approach of using
the completion clauses can be adapted to a range of automated reasoning tasks. We will
explore these in future work. We will also consider generalizing the algorithms to handle
the general version of epistemic graphs that was presented in [1].

References

[1] Hunter A, Polberg S, Thimm M. Epistemic graphs for representing and reasoning with positive and
negative influences of arguments. Artificial Intelligence. 2020;281:103236.

[2] Amgoud L, Ben-Naim J. Ranking-Based Semantics for Argumentation Frameworks. In: Proceedings of
SUM’13. vol. 8078 of LNCS. Springer; 2013. p. 134-47.

[3] Amgoud L, Ben-Naim J, Doder D, Vesic S. Acceptability Semantics forWeightedArgumentation Frame-
works. In: Proceedings of IJCAI’17. IJCAI; 2017. p. 56-62.

[4] Bonzon E, Delobelle J, Konieczny S, Maudet N. A Comparative Study of Ranking-Based Semantics for
Abstract Argumentation. In: Proceedings of AAAI’16. AAAI Press; 2016. p. 914-20.

[5] Cayrol C, Lagasquie-SchiexM. Graduality in Argumentation. Journal of Artificial Intelligence Research.
2005;23:245-97.

[6] Leite J, Martins J. Social Abstract Argumentation. In: Proceedings of IJCAI’11. AAAI Press; 2011. p.
2287-92.

[7] Rago A, Toni F, Aurisicchio M, Baroni P. Discontinuity-Free Decision Support with Quantitative Argu-
mentation Debates. In: Proceedings of KR’16. AAAI Press; 2016. p. 63-73.

[8] da Costa Pereira C, Tettamanzi A, Villata S. Changing One’sMind: Erase or Rewind? Possibilistic Belief
Revision with Fuzzy Argumentation Based on Trust. In: Proceedings of IJCAI’11. AAAI Press; 2011.
p. 164-71.

[9] Baroni P, Romano M, Toni F, Aurisicchio M, Bertanza G. Automatic evaluation of design alternatives
with quantitative argumentation. Argument & Computation. 2015;6(1):24-49.

[10] Potyka N. Continuous Dynamical Systems for Weighted Bipolar Argumentation. In: Proceedings of
KR’18. AAAI Press; 2018. p. 148-57.

[11] Pu F, Luo J, Zhang Y, Luo G. Argument Ranking with Categoriser Function. In: Proceedings of
KSEM’14. vol. 8793 of LNCS. Springer; 2014. p. 290-301.

[12] Pu F, Luo J, Zhang Y, Luo G. Attacker and Defender Counting Approach for Abstract Argumentation.
In: Proceedings of CogSci’15. cognitivesciencesociety.org; 2015. p. 1.

[13] Brewka G, Woltran S. Abstract Dialectical Frameworks. In: Proceedings of KR’10. AAAI Press; 2010.
p. 102-11.

[14] Brewka G, Strass H, Wallner J, Woltran S. Weighted Abstract Dialectical Frameworks. In: Proceedings
of AAAI’18. AAAI Press; 2018. p. 1779-86.

[15] Hunter A, Polberg S. A Model-Based Theorem Prover for Epistemic Graphs for Argumentation. In:
Proceedings of ECSQARU’19. vol. 11726 of LNCSe. Springer; 2019. p. 50-61.

[16] Hunter A, Polberg S, Potyka N. Updating Belief in Arguments in Epistemic Graphs. In: Proceedings of
KR’18. AAAI Press; 2018. p. 138-47.

[17] Vizel Y, Weissenbacher G, Malik S. Boolean Satisfiability Solvers and Their Applications in Model
Checking. Proceedings of the IEEE. 2015;103(11):2021-35.

[18] Coste-Marquis S, Devred C, Marquis P. Constrained Argumentation Frameworks. In: Proceedings of
KR’06. AAAI Press; 2006. p. 112-22.

[19] Ignatiev A, Morgado A, Marques-Silva J. PySAT: A Python Toolkit for Prototyping with SAT Oracles.
In: Proceedings of SAT’18. vol. 10929 of LNCS. Springer; 2018. p. 428-37.

[20] Hunter A. Learning Constraints for the Epistemic Graphs Approach to Argumentation. In: Proceedings
of COMMA’20. vol. 326. IOS Press; 2020. p. 239-50.

