Comparing Genetic Programming Approaches for Non-Functional Genetic Improvement Case Study: Improvement of MiniSAT's Running Time

Aymeric Blot Justyna Petke

University College London, UK UK EPSRC grant EP/P023991/1

EuroGP (EvoStar) — 15 April 2020

Genetic Improvement (GI)

Automated software improvement:

- Program repair / bug fixing
- Feature transplantation
- Running time
- Memory/energy consumption

Non-functional GI in practice:

- Start from original software
- Accumulate sequences of edits
- Deletion/replacement/insertion
- Lines/statements/data

Non-Functional GI So Far: Success Stories

Non-functional GI literature usually:

- Focuses on software and final improvements
- Fine tunes GI approach to the application
- Only reports positive results

Motivation: focus on the evolutionary process

Focus on the Evolutionary Process

Case study:

- Pre-existing GI scenario: MiniSAT
- Running time \rightarrow CPU instructions
- Eight GP approaches; four random approaches
- k-fold cross-validation

Research Questions:

- Effectiveness? (*how often*)
- Efficiency? (how good)
- Robustness? (*how sensible to parameters*)
- Consistency? (impact of data)

Experimental Protocol

Training:

- To find improved software variants
- Using the search process (GP)
- Until budget exhaustion

Validation:

- To avoid overfitting
- Filter out potentially harmful mutations

Test:

To assess generalisation

Experimental Protocol

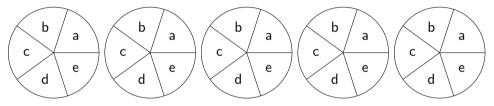
Some issues in some previous GI work:

- Report a single GI run
- Do not report intermediary results
- Reuse training data in validation and test steps
- Use a single random data split
- Use different types of data between steps

k-fold cross-validation:

- \blacktriangleright Report k GI runs
- Use disjoint data on three steps
- Assess generalisation on the same type of data

Data is separated into k disjoint "folds" Then labelled in k different ways:



Test: (X)

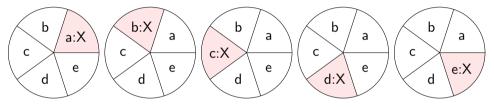
- Single fold
- Sequentially

Validation: (V)

- Single fold
- Uniform at random

- ▶ k-2 folds
- All remaining

Data is separated into k disjoint "folds" Then labelled in k different ways:



Test: (X)

Single fold

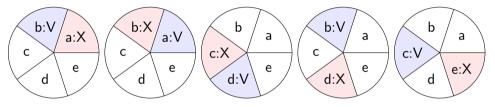
Sequentially

Validation: (V)

- Single fold
- Uniform at random

- ▶ k-2 folds
- All remaining

Data is separated into k disjoint "folds" Then labelled in k different ways:



Test: (X)

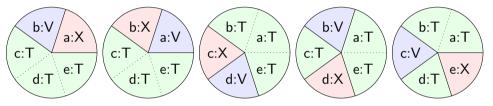
- Single fold
- Sequentially

Validation: (V)

- Single fold
- ► Uniform at random

- ▶ k-2 folds
- All remaining

Data is separated into k disjoint "folds" Then labelled in k different ways:



Test: (X)

- Single fold
- Sequentially

Validation: (V)

- Single fold
- Uniform at random

- ▶ k-2 folds
- ► All remaining

Training: Random Search (Baseline), GP, GP_e

Rand(m**):** with m = 1, 2, 5, 10

- Generate sequences of up to m mutations
- Independent; uniformly at random

GP(*n*): with n = 10, 20, 50, 100

- Population: fixed size n
- Initialisation: single random mutation
- \blacktriangleright Offspring: 50% crossover, 50% mutation

GP_e(n): (new) with n = 10, 20, 50, 100

- GP(n) with elitism
- Best 10% forwarded (+ 45% crossover, 45% mutation)

Genetic Programming Main Loop

Selection:

Filter invalid individuals and sort by fitness

Elitism: (new)

 \blacktriangleright Forward best p_e individuals to offspring

Crossover:

 \blacktriangleright Select best p_c individuals, 1-point crossover with a random parent

Mutation:

• Select best p_m individuals, append a random mutation

Regrow:

 \blacktriangleright If not enough offspring, add new random individuals of size 1

After every generation, update the fitness function

Validation: Filtering

First pass: (new)

- Sequentially remove edits with no impact
- ▶ To reduce size of edit sequences and shorten the second pass

Second pass:

- Evaluate every edit independently
- Sort them by fitness
- Sequentially re-add them, keep if improving

Experimental Setup

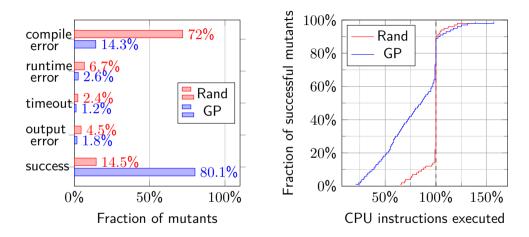
MiniSAT: (% http://minisat.se/)

- Award winning SAT solver, still relevant today
- Designed to be simple, modular, and extensible.
- minisat2-070721 (2007), minisat-2.2.0 (2008, latest version)
- ▶ Search-related code in a single C++ file (428 AST nodes)

12 search processes: Rand $\times 4$, GP $\times 4$, GP_e $\times 4$

130 CIT instances: from previous GI work

Training Overall Analysis



Training budget: 10000 SAT instances Average execution time: Rand: 2 hours << GP: 10 hours

Experimental Results (Fold 1)

Training			Validation				Test
Search	Size	CPU	Size'	CPU	$Size^{\star}$	CPU*	CPU*
Rand(1)	1	66.5%	1	114.0%	0		
Rand(2)	2	67.0%	2	114.5%	0	_	
Rand(5)	1	75.0%	1	109.0%	0	_	
Rand(10)	2	74.9%	2	107.2%	1	100.0%	100.0%
GP(10)	16	99.9%	11	99.9%	7	99.9%	99.9%
GP(20)	32	92.7%	12	123.4%	5	93.5%	67.4%
GP(50)	23	69.6%	11	102.6%	3	99.4%	99.6%
GP(100)	16	63.8%	13	111.3%	4	99.9%	99.9%
$GP_e(10)$	1304	33.5%	26	114.4%	13	90.8%	62.8%
$GP_e(20)$	268	57.7%	21	105.5%	4	91.0%	63.0%
$GP_e(50)$	15	78.2%	7	123.6%	5	96.7%	98.5%
$GP_e(100)$	6	64.8%	6	107.1%	2	100.0%	100.0%

Experimental Results (Fold 4)

Training			Validation				Test
Search	Size	CPU	Size'	CPU	$Size^{\star}$	CPU*	CPU*
Rand(1)	1	57.4%	1	77.2%	1	77.2%	122.8%
Rand(2)	1	77.1%	1	75.4%	1	75.4%	92.0%
Rand(5)	3	57.7%	3	99.9%	1	99.8%	96.1%
Rand(10)	1	77.1%	1	75.4%	1	75.4%	92.0%
GP(10)	26	93.8%	9	91.6%	6	91.6%	126.9%
GP(20)	54	22.2%	13	55.0%	6	50.2%	124.7%
GP(50)	9	82.8%	7	91.0%	6	54.0%	115.8%
GP(100)	7	57.8%	5	75.4%	3	75.4%	92.0%
$GP_e(10)$	2	99.8%	2	99.9%	2	99.9%	99.8%
$GP_e(20)$	49	22.2%	9	54.9%	8	49.8%	123.8%
$GP_e(50)$	6	82.8%	6	99.7%	4	99.7%	130.6%
$GP_e(100)$	10	48.9%	9	119.6%	5	50.1%	124.7%

Results Overview

GP as search process:

- Much more successful than random search
- Not very parameter-sensitive
- Large overfits

Repeated experiments:

- Very variable results
- Highly heterogeneous dataset

Research Questions

Effectiveness: (how often)

- \triangleright > 5% after *training*: almost always
- \blacktriangleright > 5% after *either validation or test*: half of the time
- \blacktriangleright > 5% after validation AND test: only 5/40 GP, 2/20 Rand

Efficiency: (how good)

- **>** Down to 36% CPU instructions (64% faster) on some unseen folds
- Two-third of improvements > 25% (validation or test)

Robustness: (how sensible to parameter)

Inconclusive (due to dataset?)

Consistency: (*impact of data*)

Inconclusive as revealed by protocol

Conclusion

What we did:

- Re-used existing GI scenario
- Much more rigorous experimental protocol

What we obtained:

- Consistent results for fixed data
- Inconsistent results when controlling data
- Some very good mutants

What we learned:

- Many potential hidden flaws
- Controlling data is essential
- Potential for better approaches

Final Words

Take-home message:

- ► GI exists, and GI works!
- But it can work better!
- Success stories \rightarrow standardisation
- First step towards future investigation

Selected References

Niklas Eén and Niklas Sörensson.

An extensible SAT-solver.

In Theory and Applications of Satisfiability Testing (SAT 2003), volume 2919 of Lecture Notes in Computer Science, pages 502–518.

Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon, David Robert White, and John R. Woodward.

Genetic improvement of software: A comprehensive survey.

IEEE Transactions on Evolutionary Computation, 22(3):415–432, 2018.