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Abstract. Automatic algorithm configuration (AAC) is becoming an
increasingly crucial component in the design of high-performance solvers
for many challenging combinatorial optimisation problems. This raises
the question how to most effectively leverage AAC in the context of build-
ing or optimising multi-objective optimisation algorithms, and specifi-
cally, multi-objective local search procedures. Because the performance of
multi-objective optimisation algorithms cannot be fully characterised by
a single performance indicator, we believe that AAC for multi-objective
local search should make use of multi-objective configuration procedures.
We test this belief by using MO-ParamILS to automatically configure a
highly parametric iterated local search framework for the classical and
widely studied bi-objective permutation flowshop problem. To the best
of our knowledge, this is the first time a multi-objective optimisation
algorithm is automatically configured in a multi-objective fashion, and
our results demonstrate that this approach can produce very good re-
sults as well as interesting insights into the efficacy of various strategies
and components of a flexible multi-objective local search framework.
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Permutation Flowshop Scheduling

1 Introduction

The performance of many single- and multi-objective optimisation methods
strongly depends on the setting of their parameters. For most classes of prob-
lem instances, to achieve good performance, the values of these parameters must
be specifically optimised. Thus, it is becoming increasingly common practice
to use automatic algorithm configuration (AAC) procedures, such as irace [14],
ParamILS [11] or SMAC [10]. While these configurators optimise a single per-
formance metric only, such as solution quality or running time of a given target
algorithm, recently, multi-objective AAC procedures, such as MO-ParamILS [2],



have become available and shown to be effective for optimising multiple perfor-
mance metric simultaneously, using a multi-objective approach.

The performance of multi-objective optimisation (MOO) algorithms is gen-
erally assessed using multiple performance indicators, in order to characterise
several distinct quality properties, such as convergence or diversity. However, so
far, the automatic configuration of multi-objective algorithms has used standard,
single-objective configurators to optimise either a single performance indicator
or an aggregation of several indicators [1].

The hypothesis we investigate here is that automatic configuration of multi-
objective optimisation algorithms is best achieved using a multi-objective config-
uration procedure, such as MO-ParamILS. To study this hypothesis, we consider
multi-objective local search algorithms, which are known to be very efficient for
a broad class of MOO problems, and specifically, multi-objective iterated lo-
cal search (MO-ILS), a metaheuristic known to achieve excellent performance if
its constituent components are chosen and configured carefully. We introduce a
flexible, highly parametric MO-ILS framework for the bi-objective permutation
flowshop scheduling problem (PFSP), a classic problem on which multi-objective
local search algorithms are known to achieve excellent performance [8]. Our re-
sults show that using an MO configuration approach, we achieve better results
than obtained from single-objective configuration approaches. Specifically, us-
ing the same configuration budget, we obtain a broader range of non-dominated
trade-offs between two performance indicators, hypervolume and∆ spread, with-
out significant loss in the quality of the configurations thus obtained. We also
report new insights into the components of our local search framework that are
effective for solving PFSP instances of different sizes.

2 Preliminaries

In multi-objective optimisation, multiple criteria (or objective functions) charac-
terising the quality of solutions to a given problem are optimised simultaneously.
The concept of Pareto dominance is used to capture trade-offs between those
criteria: solution s1 is said to dominate solution s2 if, and only if, (i) s1 is better
than or equal to s2 according to all criteria, and (ii) there exists at least one
criterion according to which s1 is strictly better than s2. A set S of solutions in
which there are no s1, s2 ∈ S such that s1 dominates s2 is called a Pareto set, a
Pareto front, or – in the context of multi-objective local search algorithms – an
archive.

It is not straightforward to assess or compare the performance of multiple
multi-objective algorithms. In the literature, many performance indicators have
been proposed [12,17] and classified according to several properties: (i) cardi-
nality, (ii) convergence and (iii) distribution. It has also been shown that it is
generally not possible to aggregate such properties into a single indicator. Thus,
it is recommended to consider multiple performance indicators, preferably ones
that complement each other, in order to assess the efficiency multi-objective
optimisation algorithms fairly.
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Fig. 1: Automatic configuration of a given, parameterised target algorithm for
performance optimised for a given set problem instances.

Here, we use two complementary indicators: unary hypervolume [20], a volume-
based convergence performance indicator, and ∆ spread [4], a distance-based
distribution metric. In the following, we assume that all objective values have
been normalised to [0, 1] and are to be minimised, meaning that the nadir is at
(1, 1) and the ideal at (0, 0). The unary hypervolume indicator [20] measures the
hypervolume of the objective space between the solutions of a given Pareto set
and the nadir point. Hypervolume is maximised when the Pareto set is reduced
to the ideal point. The ∆ spread indicator [4] has been proposed to measure the
distance-based distribution of set of solutions in a bi-objective context. Given a
Pareto set S, ordered regarding the first criterion, we define

∆ :=
df + dl +

∑|S|−1
i=1 |di − d̄|

df + dl + (|S| − 1) · d̄
,

where df and dl are the Euclidean distances between the extreme positions
(1, 0) and (0, 1), respectively, and the boundary solutions of S, and d̄ denotes
the average over the Euclidean distances di for i ∈ [1, |S| − 1] between adjacent
solutions on the ordered set S. This indicator is to be minimised; it takes small
values for large Pareto sets with evenly distributed solutions, and values close
to 1 for Pareto sets with few or unevenly distributed solutions.

3 Multi-Objective Algorithm Configuration

The goal of automatic algorithm configuration (AAC) is to automatically deter-
mine a configuration (i.e., parameter setting) optimising the performance of a
given algorithm for a given class of problem instances. In this context, we call
the algorithm whose parameters are being optimised the target algorithm and
the procedure that configures the target algorithm a configurator. The general
concept of AAC is illustrated in Figure 1.

Most applications of AAC consider a single-objective target algorithm, us-
ing a single performance metric – for optimisation algorithms, usually either
the running time required to reach a specific solution quality or the solution
quality achieved within a given running time. State-of-the-art AAC procedures
from the literature include irace [14], SMAC [10] and ParamILS [11]. In prin-
ciple, these and other single-objective AAC procedures can easily be applied



to multi-objective optimisation (MOO) target algorithms, using a single per-
formance indicator or an aggregation of several indicators (e.g., using the hy-
pervolume of normalised indicators [1]). A conceptually attractive alternative is
to directly optimise multiple performance indicators, requiring a multi-objective
configurator, such as the recently proposed MO-ParamILS [2], an extension of the
original, single-objective ParamILS configuration framework. To the best of our
knowledge, multi-objective configurators have so far only been applied to single-
objective target algorithms – for example, for simultaneously optimising solution
quality and running time of single-objective optimisation algorithms. Here, we
investigate the efficacy of the state-of-the-art MO configurator MO-ParamILS
when applied to MOO algorithms, using multiple multi-objective performance
indicators.

In the standard AAC framework shown in Figure 1, only the performance
indicator values of the target algorithm are given to the configurator, rather than
the entire target algorithm output. For multi-objective algorithms, this means
that we cannot use binary performance indicators or performance indicators that
use dynamic reference points. (Of course, this limitation could be overcome in
future MO configurator designs.)

Algorithm configuration is a machine learning process that involves three sep-
arate phases: training, validation and testing. In the training phase, illustrated in
Figure 1, the configurator is used to optimise the configuration of the target al-
gorithm on a given set of training instances. However, configurators are based on
stochastic search procedures that are sensitive to random decisions made during
the search process, including the order in which training instances are consid-
ered. Thus, the training phase is performed multiple times, independently, each
with a different pseudo-random number seed. In the validation phase, the per-
formance of the final configurations thus obtained is measured on a common set
of instances (usually a subset of the training set). Dominated configurations are
discarded, resulting in a set of non-dominated configurations. In the final testing
phase, the set of configurations thus obtained is evaluated on a set of instances
that does not contain any of the instances used for training or validation.

Note that from each independent run of a single-objective configuration pro-
cedure, a single configuration is obtained, while a run of a multi-objective config-
urator results in a Pareto set of configurations. In the latter case, the validation
phase over n independent configurator runs will result in n Pareto sets, which
are then merged, eliminating any configuration that is dominated with respect
to the given performance objectives. Likewise, in the testing phase, every con-
figuration is evaluated w.r.t. all given performance objectives, and we do not
report configurations that turn out to be dominated on the given test set.

4 Multi-Objective Local Search Algorithms

Stochastic local search (SLS) algorithms have been widely used for single-objective
optimisation [9], and extensions to multi-objective optimisation are known to
achieve excellent performance. The most popular multi-objective SLS algorithms



Algorithm 1: Multi-Objective Iterative Improvement (moii_algo); as de-
scribed in detail in Section 4.3, ‘exploration’ makes use of a reference.

Input: Initial archive
Output: Archive of non-dominated solutions
archive ← initial archive;
until termination criterion is met do

/* Selection */
selection ← select(archive);
/* Exploration */
candidates ← empty list;
foreach solution ∈ selection do

candidates ← candidates ∪ exploration(solution);

/* Archive */
archive ← combine(archive, candidates);

return archive;

include Pareto local search (PLS, 2004) [18] and its numerous variants, such as
the iterated PLS (2010) [5], stochastic PLS (2012) [6], anytime PLS (2015) [7],
and dominance-based multi-objective local search (DMLS, 2012) [13]. In the fol-
lowing, we use a parametrised general local search framework that incorporates
most of the strategies used by these algorithms. Our framework can be configured
to replicate the behaviour of efficient algorithms of the literature, while making
possible numerous intermediate behaviours by combining known building blocks
in novel ways. More complex and problem-specific hybrid strategies based on
local search strategies have also been studied in the literature. We do not con-
sider these here, as our goal is to automatically configure effective yet widely
applicable local search procedures rather than to design a state-of-the-art local
search algorithm for a given problem using problem-specific expert knowledge.

Single-objective local search algorithms often get trapped in or around local
optima of the search space they are exploring. This can be overcome in many
ways, among which iterated local search (ILS) is well-known for its efficacy and
versatility; as a general stochastic local search method, ILS provides the basis
for state-of-the-art algorithms for many challenging combinatorial optimisation
problems [15]. Our highly parametric ILS framework, described in the following,
facilitates the design of powerful multi-objective local search algorithms based
on an iterative improvement procedure.

4.1 Multi-Objective Iterative Improvement

Algorithm 1 outlines a general procedure for iteratively improving an archive
(i.e., a Pareto set) until a stopping condition is satisfied. It works in three phases:
(i) the selection phase, in which solutions are selected from the archive; (ii)
the exploration phase, in which the neighbourhood of each selected solution is
explored, based on a reference set of solutions, and some neighbours are accepted



Algorithm 2: Multi-Objective Iterated Local Search
Input: Initial archive
Result: Archive of the best solutions
current_archive ← initial archive;
current_archive ← moii_algo(current_archive);
until termination criterion is met do

tmp_archive ← perturb(current_archive);
tmp_archive ← moii_algo(tmp_archive);
current_archive ← combine(current_archive, tmp_archive);

return current_archive;

as candidates; and (iii) the archive phase, in which the current archive is updated
using the candidate neighbours.

Many strategies exist for these three phases and will be described in Sec-
tion 4.3. We note that structurally, Algorithm 1 resembles DMLS [13]; however,
as explained in Section 4.3, we have augmented the exploration procedure to
make use of a reference point or set in order to replicate the behaviour of PLS
algorithms.

4.2 Multi-Objective Iterated Local Search

Our multi-objective iterated local search framework is obtained by embedding
the iterative improvement procedure from Algorithm 1 into a typical ILS algo-
rithm, as shown in Algorithm 2. After an initial run of the iterative improvement
procedure, three search phases are iterated: (i) a perturbation phase, in which a
copy of the current archive is perturbed, (ii) an iterative improvement phase, dur-
ing which the perturbed archive is optimised, (iii) an acceptance phase, during
which the current archive is updated based on the previous and newly optimised
archives. In our case, the acceptance phase consists of merging the two archives
followed by pruning based on the Pareto criterion.

4.3 Parameters and Configuration Space

We now describe the different strategies included in our multi-objective ILS
framework, its parameters and their instantiation for simulating the behaviour
of prominent local search algorithms from the literature.

Initialisation. We always initialise our iterative improvement procedure with
10 solutions generated uniformly at random. It is known that additional per-
formance improvements can be realised by using an auxiliary optimisation algo-
rithm to generate initial solutions [8], but we decided to not include this type
of initialisation mechanism in order to focus our investigation on the core ILS
procedure and its configuration.



Selection. In the selection phase, we choose a subset of solutions from the
archive on which exploration will be performed. We then distinguish two main
selection strategies (selectStrat): The first of these selects all solutions from
the archive for exploration. The second strategy chooses a subset of k ∈ {1, 2, 3}
solutions from the archive (parameter selectSize), either uniformly at random,
or the k newest or oldest solutions. Additionally, if some solutions have already
been fully explored, we filter these out before starting the selection process.

Exploration. In this phase, the neighbourhood of each selected solution is ex-
plored: a set of neighbours is evaluated, and some of these are then added to
the candidate set, which is later merged with the archive. We consider two types
of exploration strategies (explorStrat), one of which evaluates all neighbours,
while the other limits exploration to a subset of the neighbours. If all neigh-
bours are evaluated, we can then either add all non-dominated neighbours to the
candidate set (strategy all), or only add all dominating neighbours (strategy
all_imp). Otherwise, we consider two different termination criteria for the ex-
ploration. The first of these ends exploration when k dominating neighbours have
been evaluated. In that case, we can either only add these dominating neighbours
to the candidate set (strategy imp), or also include the non-dominated neigh-
bours that have been evaluated so far (strategy imp_ndom). The second criterion
terminates exploration when k non-dominated neighbours have been evaluated,
which are then added to the candidate set (strategy ndom). For both termination
criteria, the value of k is specified by the parameter explorSize.

These strategies are further elaborated using another parameter, explorRef,
which specifies the reference point for both dominating and non-dominated
neighbours. This reference point can be either set to the current solution being
explored (sol), or to a set of solutions, in which case we implicitly mean domi-
nating every solution in the set and non-dominated regarding each solution in the
set ; we support taking the current archive as reference during exploration (arch)
as well as taking the subset of the solutions that have been selected (select).

Archive. After all selected solutions have been explored, the set of candidates
is merged with the current archive, and every dominated solution is removed.
Thus, the archive always contains the best non-dominated solutions found during
the search process. We note that the size of the archive is unbounded.

Termination Criteria. The termination criterion of the iterative multi-objective
improvement procedure (Algorithm 1) is satisfied either when all the solutions
in the current archive have been entirely explored, or when a given number of
iterations have been performed without any modification of the archive. The
termination criterion of the multi-objective iterated local search (Algorithm 2)
is simply time-based.

Perturbation. In Algorithm 2, the starting point of every subsidiary local
search is obtained by applying perturbation to the current archive. The pertur-



Table 1: Parameters of our MO-ILS framework and their possible values
Phase Parameter Parameter values

Initialisation initStrat rand
Initialisation initSize 10
Selection selectStrat {all, rand, newest, oldest}
Selection selectSize {1, 2, 3}

Exploration explorStrat {all, all_imp, imp, imp_ndom, ndom}
Exploration explorRef {sol, select, arch}
Exploration explorSize {1, 2, 3}
Perturbation perturbStrat {restart, kick, kick_all}
Perturbation perturbSize {1, 2, 3}
Perturbation perturbStrength {3, 5}

bation strategy (perturbStrat) can either be restart- or kick-based. In the
first case, we consider 10 new solutions, generated uniformly at random, follow-
ing the initialisation strategy. Otherwise, we either select k ∈ {1, 2, 3} solutions
from the archive (strategy kick with parameter perturbSize) or take all the
solutions of the archive (strategy kick_all), before performing a kick move on
each of them; when a solution is kicked, it is replaced by one of its neighbour
selected uniformly at random. The parameter perturbStrength specifies how
many times the selected solutions are kicked.

Overall Configuration Space. Table 1 shows all parameters exposed by our
multi-objective iterated local search framework (Algorithms 1 and 2) and their
possible values; these jointly give rise to 1·(1+3·3)·(1+3+3·(3·3))·(1+3·2+2) =
2790 valid configurations.

5 Experiments

In our experiments, we focus on the bi-objective permutation flowshop scheduling
problem, for which multi-objective local search algorithms are known to be very
efficient [8]. In the following, we first give a brief description of this classical
MOO problem, followed by the experimental protocol we used to compare our
MO configuration approach with two single-objective approaches.

5.1 The Bi-objective Permutation Flowshop Scheduling Problem

The Permutation Flowshop Scheduling Problem (PFSP) involves scheduling a
set of N jobs {J1, . . . , JN} on a set of M machines {M1, . . . ,MM}. Each job Ji
is processed sequentially on each of theM machines, with fixed processing times
{pi,1, . . . , pi,M}, and machines can only process one job at a time. The sequenc-
ing of jobs is identical on every machine, so that a solution is represented by
a permutation of size N . Here, we consider the bi-objective PFSP, minimising



both the makespan and the flowtime of the schedule, two objectives widely in-
vestigated in the literature [16], where makespan is the total completion time of
the schedule, and flowtime is the sum of the individual completion times of all
N jobs.

Classical PFSP neighbourhoods include the exchange neighbourhood, where
the positions of two jobs are exchanged, and the insertion neighbourhood, where
one job is reinserted at another position in the perturbation. In the following, we
consider the union of these two classical neighbourhoods, as this hybrid neigh-
bourhood has been shown to lead to better solutions than either of the two
constituting neighbourhoods by itself [7].

5.2 Experimental Design

Benchmark Instances and Configuration Scenarios. We considered two
sizes of bi-objective PFSP instances, leading to two configuration scenarios: one
with instances of 20 jobs and a configuration budget (training time) of 12 CPU
hours, and the other one with instances with 50 jobs and a configuration budget
of 24 CPU hours. The classical PFSP instances in the literature are the widely-
used Taillard instances [19]. Because the set of training and testing instances
need to be completely disjoint and independent, we used the original Taillard
instances only in the testing phase and generated new Taillard-like instances for
training and validation phases.

In the testing phase, we used 30 classical Taillard instances for both 20 and
50 jobs scenarios, with 5, 10 or 20 machines (10 different instances for each
combination). For the training phase, we generated 80 new instances with 5 to
20 machines (18 different instances for 5, 10 and 20 machines, and 2 instances
for each intermediate instances sizes) for both 20 and 50 jobs scenarios. We also
limited the maximum number of training runs of a given configuration to 240
(i.e., 3 runs on each instance) in order not to spend too much time on too few
instances. For the validation phase, a single target algorithm run was performed
on each of the 80 training instances. The final test assessment was performed
spending 5 runs on each of the 30 Taillard instances for a total of 150 runs.

In all our configuration experiments, we considered the configuration space
defined by the parameters and parameter values specified in Table 1 (Section 4.3),
containing a total of 2790 valid configurations. The maximum running time for
all target algorithm runs was dynamically fixed to n ·m/50 CPU sec, where n
and m are the number of jobs and the number of machines of the instance being
solved. We note that these running times were chosen to be smaller than those
commonly found in the literature (n ·m/10 in [16] and [7], or from 6 · n ·m to
0.9 · n ·m in [13] for instances of similar size), in order to permit the configura-
tor to perform more runs and thus consider a larger number of configurations.
We set the maximum number of consecutive iterations of Algorithm 1 without
improvement to n. Finally, our algorithm framework and all of its components
have been implemented in ParadisEO [3], a white-box, object-oriented frame-
work dedicated to the flexible design of metaheuristics, in order to facilitate fair
comparisons between arbitrary instantiations of our MO-ILS framework.



Performance assessment. We used the hypervolume and ∆ spread indicators
to assess the performance of each MO-ILS configuration. Let us recall that the
hypervolume measures the convergence, and the spread indicator is only used as
a complementary indicator that measures the distribution along the Pareto set;
we note that ∆ spread is meaningless when used alone. To achieve a formulation
where both indicators are to be minimised, we used HV = 1−hypervolume, i.e.,
the complement between hypervolume and the hypervolume of the ideal point.

AAC Experimental Protocol. We evaluated three configuration approaches:
HV ||∆, a multi-objective approach, in which both hypervolume and ∆ spread
are minimised, using MO-ParamILS [2]; HV , a single-objective approach, in
which only hypervolume is minimised; and HV +∆, a single-objective approach,
in which we minimise a weighted sum of hypervolume and ∆-spread. For both
single-objective approaches, we used single-objective ParamILS [11], as imple-
mented in our MO-ParamILS framework. In HV +∆, we normalised both perfor-
mance indicators and use weights of 0.75 for the hypervolume and 0.25 for the
spread, as we see the latter as a secondary performance indicator. For each of
these configuration approaches, we performed 30 independent configurator runs
each with a total budget of 12 CPU hours for the 20-job benchmark and 24
CPU hours for the 50-job benchmark. The resulting configurations were evalu-
ated on the entire given training set, and Pareto-dominated configurations were
removed.

6 Results and Discussion

Figure 2 shows the performance of the non-dominated configurations obtained
in our three configuration scenarios for the 20- and 50-job Taillard benchmark
sets. The single-objective configuration approach optimising hypervolume only
(HV ) resulted in 3 and 2 final configurations on the 20- and 50-job instance sets,
respectively. While the hypervolume values achieved by these configurations were
amongst the best obtained by any of our approaches, we observed somewhat
average spread values on the 20-job instances, and poor spread on the 50-job
set. Two of the three configurations for the 20-job set obtained exactly the same
hypervolume and spread values.

The single-objective HV +∆ configuration approach optimising a weighted
combination of hypervolume and spread also produced small numbers of non-
dominated configurations (2 on the 20-job and 3 on the 50-job benchmarks).
As expected, these configurations achieved different tradeoffs between the two
performance metrics. While it is clear that a broader range of tradeoffs could
be obtained by using different weight vectors, this would require additional,
costly configurator runs. Additionally, the HV +∆ approach requires non-trivial
normalisation of both performance metrics, which we achieved based on the
configurations obtained by HV and HV ||∆; this is unproblematic only because
the purpose of studying HV +∆ was to provide a second baseline for our multi-
objective configuration approach.
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Fig. 2: Performance of automatically determined, non-dominated configurations
on test sets of 20-job (left) and 50-job (right) Taillard instances. Each point
shows the mean performance of a single configuration over the test set.

In contrast to HV and HV +∆, our multi-objective configuration approach,
HV ||∆, resulted in substantially larger numbers of configurations covering a wide
range of tradeoffs between hypervolume and spread. (The same phenomenon was
observed when evaluating the configurations produced by ParamILS and MO-
ParamILS on the respective training sets of instances.) We note that, while
on the 20-job benchmark, HV ||∆ and HV +∆ achieved very similar extreme
values for both performance indicators, on the more challenging 50-job bench-
mark, the configurations found by HV ||∆ spanned a wider range of hypervol-
ume and spread values. Overall, for both benchmarks, we obtained two rather
well-separated clusters of non-dominated configurations, but for the set of larger
instances, the second cluster – characterised by low ∆ spread and high hypervol-
ume – was only reached by the multi-objective HV ||∆ configuration approach,
while the single-objective HV +∆ achieved excellent results only in the direction
of the weight vector used for aggregation.

Whereas Figure 2 shows average performance across each benchmark set, we
also examined average performance on subsets of instances with the same number
of machines and on individual instances within these sets. This analysis revealed
significant variation in both performance metrics with number of machines as
well as between instances. For example, while the largest difference in ∆ spread
for 50-job instances, averaged over the entire set, that we measured for any pair
of configurations found by our three approaches is below 0.01 (as seen in Fig-
ure 2), we observed differences as large as 0.03 between instances within the set
for individual configurations produced by any of our approaches. Furthermore,
similar spread values were observed across and within instance subsets with 5,
10 and 20 machines. This indicates that the small differences in mean spread
observed between the configurations found by HV +∆ and the closest configu-
rations produced by HV ||∆ are somewhat insignificant. This finding is further
supported by our observation that differences in the spread values measured for
pairs of configurations are inconsistent across the instances within each set.



Table 2: Optimised configurations for Taillard instances with 20 jobs
HV ∆ Approach Selection Exploration Perturbation

0.3891 0.9842 HV rand 2 imp_ndom select 1 kick 1 5
0.3891 0.9842 HV oldest 2 imp_ndom sol 1 restart . .
0.3892 0.9832 HV all . imp_ndom select 1 kick_all . 5

0.3892 0.9832 HV +∆ all . imp_ndom select 1 kick_all . 5
0.3985 0.9822 HV +∆ all . ndom arch 1 restart . .

0.389 0.985 HV ||∆ oldest 1 imp_ndom sol 1 kick 1 5
0.3891 0.9844 HV ||∆ all . imp_ndom select 1 kick 1 5
0.3892 0.984 HV ||∆ oldest 1 imp_ndom sol 1 kick 3 3
0.3893 0.9837 HV ||∆ oldest 1 imp_ndom sol 1 restart . .
0.3967 0.983 HV ||∆ all . ndom arch 1 kick 1 3
0.3985 0.9822 HV ||∆ all . ndom arch 1 restart . .

In contrast, the differences in mean hypervolume observed between the two
clusters of configurations in Figure 2 are not only quite large, but also corre-
spond well to the differences in hypervolume for instance subsets with the same,
fixed number of machines and on individual instances within these sets. Further-
more, the hypervolume values for instance subsets with 5, 10 and 20 machines
fall into intervals with very little overlap, and those intervals differ markedly be-
tween configurations from the two clusters seen in Figure 2 (right). Overall, this
indicates that these clusters of configurations are indeed well separated, which
highlights the significance of our finding that, at least for the larger, 50-job in-
stances, only the multi-objective HV ||∆ approach finds the second cluster of
configurations, characterised by high hypervolume and low ∆ spread values.

Finally, we examined the non-dominated configurations found byHV ,HV +∆
and HV ||∆ in detail. Tables 2 and 3 show the performance metrics and parame-
ter settings for each of the configurations shown in Figure 2; inactive conditional
parameters are indicated by dots (e.g., when all the solutions are selected, the
selection size parameter is inactive). For the 20-job scenario (see Table 2), the
configurations found by our three approaches are quite varied. The selection
strategy is mostly oldest or all, the exploration strategy either imp_ndom or
ndom, and other parameters take various values. Overall, this suggests that for
these small instances, a broad range of design choices within our framework
achieves good tradeoffs between hypervolume and spread. For the larger, 50-job
scenario (see Table 3), the situation appears to be markedly different. There
are two distinct types of configurations, corresponding to the two clusters seen
in Figure 2. The first of these consistently uses the newest selection strategy
and the ndom exploration strategy, whereas the second employs the all selec-
tion strategy and (with one exception) the all exploration strategy; almost
all configurations make use of the kick or kick_all perturbation strategy. The
restart perturbation strategy, which seems to work well on the 20-job instances,



Table 3: Optimised configurations for Taillard instances with 50 jobs
HV ∆ Approach Selection Exploration Perturbation

0.3492 0.9943 HV newest 1 ndom select 2 kick 2 3
0.3496 0.9929 HV newest 1 ndom sol 1 kick_all . 3

0.3564 0.9914 HV all . ndom arch 1 kick_all . 3
0.3655 0.9894 HV +∆ newest 1 ndom arch 3 kick 2 3
0.3669 0.9891 HV +∆ newest 1 ndom arch 2 kick_all . 3

0.3496 0.9929 HV ||∆ newest 1 ndom sol 2 kick_all . 3
0.3505 0.9926 HV ||∆ newest 1 ndom sol 1 kick 1 5
0.3566 0.9924 HV ||∆ newest 3 ndom arch 2 kick_all . 3
0.3596 0.9918 HV ||∆ newest 2 ndom arch 2 kick_all . 3
0.3614 0.9914 HV ||∆ newest 3 ndom arch 1 kick_all . 3
0.3649 0.9899 HV ||∆ newest 1 ndom arch 3 kick 3 3
0.3669 0.9891 HV ||∆ newest 1 ndom arch 2 kick_all . 3
0.379 0.9889 HV ||∆ newest 1 ndom arch 1 kick 1 3
0.4303 0.9861 HV ||∆ all . all . . kick 3 3
0.4305 0.986 HV ||∆ all . all . . kick 1 5
0.4305 0.986 HV ||∆ all . all . . kick 3 5
0.4306 0.9859 HV ||∆ all . all . . kick 1 3
0.449 0.9857 HV ||∆ all . imp_ndom arch 2 restart . .

appears to be less effective on the more challenging 50-job instances. These find-
ings suggest that, as instance size and difficulty increases, effective combinations
of design choices become more constrained, and finding these combinations more
challenging. Our multi-objective configuration approach, HV ||∆, appears to be
considerably more effective at exploring this design space than the two single-
objective configuration approaches,HV andHV +∆, as witnessed by the size and
diversity of the sets of non-dominated configurations found by each approach. We
note that rand is a selection strategy commonly used in the literature; interest-
ingly, it was chosen only once by our configuration approaches, which, in contrast,
favoured newest and oldest. The prevalence of the ndom and imp_ndom explo-
ration strategies in the configurations obtained from our approaches highlights
the importance of considering the non-dominated neighbours in multi-objective
iterated local search for the bi-objective PFSP.

The DMLS recommendations [13] regarding design choices within multi-
objective local search algorithms depending on instance size are mostly con-
sistent with the results obtained from our automatic configuration approaches,
with some interesting differences. For small instances, the recommendation is to
use exploration until the first dominating neighbour is found (i.e., exploration
strategy imp_ndom with selectSize = 1), with either the selection of a single
random solution from the archive or the selection of the entire archive (i.e., se-
lection strategy all or rand with selectSize = 1). For larger instances, the
recommendation is to explore until the first non-dominated neighbour is found



(exploration strategy ndom with selectSize = 1). In both cases, the only refer-
ence considered is the current solution being explored (explorRef = sol), and
the recommendation is to use full restarts. In contrast, our results indicate that
the random selection strategy is not a good choice, and that either the entire
archive should be selected, or a selection of the oldest or newest solutions from
the archive should be considered instead. Furthermore, we found no evidence
that the full restart strategy is effective for larger instances; on the other hand,
using the current archive as a reference for exploration – something not consid-
ered in DMLS – appears to be very effective, especially for larger instances.

7 Conclusions

Based on our empirical investigation, we conclude that there is substantial
promise in the use of multi-objective (MO) automated algorithm configuration
procedures, such as MO-ParamILS, for optimising the performance of highly
heuristic algorithms for multi-objective optimisation (MOO) problems. While
standard, single-objective algorithm configurators are effective tools for optimis-
ing a single performance metric of an MOO algorithm, such as hypervolume, in
many circumstances, it can be important to pay attention to multiple perfor-
mance indicators – in particular, to ones that assess the overall quality of a set
of solutions and its diversity. Conceptually, this turns the configuration problem
into a multi-objective optimisation problem, and our results suggest that this
problem is solved most effectively using an MO configuration procedure.

For our experiments, we devised a highly parameterised iterated local search
framework for the widely studied bi-objective permutation flow-shop problem.
Our framework comprises a broad range of building blocks from the literature as
well as a few simple novel choices. It is important to emphasise that in this work,
our goal was not to improve the state of the art in solving the bi-objective PFSP,
but rather to determine whether the automated configuration of flexible and
powerful algorithm frameworks for this type of MOO problem should make use
of multi-objective algorithm configuration procedures, such as MO-ParamILS.
We firmly believe that automated algorithm configuration will greatly facilitate
improvements in the state of the art for solving challenging MOO problems, such
as the bi-objective PFSP – and this belief is amply supported by prior work on
automatically configuring single- and multi-objective optimisation algorithms.
Moreover, based on our findings reported in this work, we believe that MOO
algorithms should be configured using an MO algorithm configuration procedure
for the Pareto-optimisation of multiple performance indicators – an approach
which differs from prior work on automated configuration of MOO algorithms.

As a secondary contribution of our work, based on a detailed analysis of the
configurations of our multi-objective iterated local search framework, we pro-
posed several revisions to the recommendations from prior work on dominance-
based multi-objective local search [13]. In particular, we found evidence that
simple alternatives to random selection provide improved overall performance.
This type of finding confirms that the use of effective automated algorithm pro-



cedures and protocols can yield valuable insights into the efficacy of various
algorithmic strategies and components for solving challenging MOO problems.
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