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1 Introduction

We study online algorithms associated with a general convex loss function and reproducing

kernel Hilbert spaces. To this end, we review necessary background material and established

notations for subsequent use. Let (X, d) be a compact metric space and Y a bounded subset

of IR. We shall learn a function f ∗ from X to Y from random samples drawn according to

a probability measure ρ on the space Z := X × Y . One way to accomplish this is to specify

a loss function V : Z → IR+ and choose the function f ∗ := fV
ρ to be a minimizer of the

generalization error E(f) :=

∫

Z

V (y, f(x))dρ(x, y) that is,

fV
ρ := arg min

{
E(f) : f is a measurable function from X to Y

}
.

We can easily identify the target function fV
ρ . Indeed, let ρX as the marginal distribution of

ρ on X and ρ(·|x) the conditional distribution for x ∈ X, then we obtain that

fV
ρ (x) = arg min

t∈Y

∫

Y

V (y, t)dρ(y|x), a.e., x ∈ X.

Reproducing kernel Hilbert spaces are often used in the design of leaning algorithms. Let

K : X ×X → IR be continuous, symmetric and positive semidefinite, i.e., for any finite set

of distinct points {xj : j ∈ N`} ⊆ X, the matrix (K(xi, xj))i,j∈N`
is positive semidefinite

where we set N` := {1, . . . , `}. Such a kernel is called a Mercer kernel. The Reproducing

Kernel Hilbert Space (RKHS) HK associated with the kernel K is defined (see [1]) to be the

completion of the linear span of the set of functions {Kx := K(x, ·) : x ∈ X} with the inner

product 〈·, ·〉K satisfying the requirement that 〈Kx, Ky〉K = K(x, y) for all x, y ∈ X and

〈Kx, g〉K = g(x), x ∈ X, g ∈ HK . (1.1)

Now, one standard learning algorithm called offline regularized algorithm (see [9] e.g.)

associated with the Mercer kernel K and a set of random samples z := {zt = (xt, yt) : t ∈
NT} ⊆ Z independently drawn according to ρ is given by

fz,λ = arg min
f∈HK

{
1

T

∑
t∈NT

V (yt, f(xt)) +
λ

2
‖f‖2

K

}
. (1.2)

where λ > 0 is called the regularization parameter.

The off-line algorithm (1.2) has been extensively studied in the literature. In particular,

its error analysis has been well-developed and can be found in [4, 12, 22, 13, 15, 16, 17, 19, 20].
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The essential idea of the analysis is to show that fz,λ has an asymptotic behavior similar to

the regularization function fV
λ ∈ HK defined by

fV
λ := arg inf

f∈HK

{
E(f) +

λ

2
‖f‖2

K

}
. (1.3)

Moreover, if we regard this regularization function fV
λ ∈ HK as a good learner for the

target function fV
ρ , we can then use the classical gradient descent method [3] to learn it

step by step. To explain this fact, we introduce the regularized loss function Q defined for

f ∈ HK and z = (x, y) ∈ Z as

Θ(f, z) = Θλ(f, z) := V (y, f(x)) +
λ

2
‖f‖2

K

and the regularized generalization error Q defined for f ∈ HK

Q(f) = Qλ(f) :=

∫

Z

Θ(f, z)dρ(z) = E(f) +
λ

2
‖f‖2

K .

For the purpose of presenting our algorithm for minimizing Q in HK , we define the function

∂Θ at f ∈ HK and z = (x, y) ∈ Z by the formula

∂Θ(f, z) := V ′
2(y, f(x))Kx + λf

where V ′
2(y, s) means the derivative of V at the point (y, s) with respect to the second

variable. The Hilbert space valued random variable ∂Θ(f, z) plays the role of the gradient

of the functional Θ defined above.

The classical gradient descent tells us that the following sequence
{
gt : gt ∈ HK , t ∈

NT+1

}
provides an approximation to fV

λ





g1 = 0,

and for t ∈ NT

gt+1 = gt − ηt

∫

Z

∂Θ(gt, z)dρ(z) = gt − ηt

( ∫

Z

V ′
2(y, gt(x))Kxdρ + λgt

)
.

(1.4)

Unfortunately, the use of this algorithm requires a knowledge of the distribution ρ. However,

in practice it is unknown as we only have the random sample z. Hence, we are led to replace

the integral above by the random value V ′
2(yt, f(xt))Kxt . This gives us the so-called Stochastic

Gradient Descent (SGD) online algorithm [5, 10, 14] defined by




f1 = 0,

and for t ∈ NT

ft+1 = ft − ηt

(
V ′

2(yt, ft(xt))Kxt + λft

)
.

(1.5)
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With this iterative method, we use fT+1 to learn fV
λ and hence we can also learn fV

ρ by our

remarks above. For each t ∈ NT+1, the function ft is in general dependent on the inputs

{zj : j ∈ Nt−1}. The algorithm (1.5) produces the learning sequence {ft : t ∈ NT+1} while

the offline learning (1.2) uses all the data immediately.

In this paper, we are mainly interested in the expectation over the random samples of

regularized sample error

‖fT+1 − fV
λ ‖K (1.6)

and we shall provide effective and useful upper bounds for this quantity. We turn our

attention to the description of our results.

2 Reducing the online scheme and Main results

Our error analysis of the online scheme (1.5) assumes a regularity condition on the loss

function.

Definition 1. We say that the loss function is admissible if V : Y × IR → IR+ is convex,

differentiable with respect to the second variable, |V |0 := sup
y∈Y

|V (y, 0)| < ∞ and V ′
2(y, s)

locally Lipschitz continuous i.e. for any R > 0, there exists c > 0 such that

|V ′
2(y, s1)− V ′

2(y, s2)| ≤ c|s1 − s2| for all s1, s2 ∈ [−R,R] and y ∈ Y. (2.1)

For simplicity, we denote the right derivative of V ′
2(y, s) at the point (y, s) with respect

to the second variable as V ′′
+(y, s). When V is admissible, it is easy to see that V (y, s)

is absolutely continuous as a function of s for every y ∈ Y and V ′′
+(y, s) exists almost

everywhere. Therefore, there holds the equation

V ′
2(y, s1)− V ′

2(y, s2) =

∫ s1

s2

V ′′
+(y, s)ds, ∀ s1, s2 ∈ IR.

We list below several useful examples of admissible loss functions.

(1) SVM q-norm (2 ≤ q < ∞) soft margin classifier with V (y, t) = (1− yt)q
+, see [18, 22, 4];

(2) least square loss V (y, t) = (y − t)2/2, see e.g. [7, 9, 14, 22];

(3) the exponential loss V (y, t) = e−yt, see [22, 11];

(4) the logistic regression V (y, t) = log(1 + e−yt), see [22].
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Now, we turn our attention to the estimation of the expectation over the samples of the

norm ‖fT+1 − fV
λ ‖K . To this end, we set Rt := ft − fV

λ and use the definition of the SGD

online algorithm (1.5), we obtain that

Rt+1 = Rt − ηt

(
V ′

2(yt, ft(xt))Kxt + λft

)

= Rt − ηt

{
[V ′

2(yt, ft(xt))− V ′
2(yt, f

V
λ (xt))]Kxt + λ(ft − fV

λ )
}
− ηt∂Θ(fV

λ , zt)

= (I − ηtAt)Rt − ηt∂Θ(fV
λ , zt) (2.2)

where the linear operator At : HK → HK is defined for any g ∈ Hk as

At(g) :=

∫ 1

0

V ′′
+(yt, θft(xt) + (1− θ)fV

λ (xt))dθg(xt)Kxt + λg

and I : HK → HK is the notation we use for the identity operator.

We shall use this formula to establish the convergence of the SGD online algorithm (1.5).

Before we do this, we introduce the regularization error D defined for every λ > 0 by

D(λ) = E(fV
λ )− E(fV

ρ ) +
λ

2
‖fV

λ ‖2
K . (2.3)

Lemma 1. If V is admissible then fV
λ is the regularization function if and only if

∫

Z

∂Θ(fV
λ , z)dρ =

∫

Z

V ′
2(y, fV

λ (x))Kxdρ + λfV
λ = 0 (2.4)

and the norm of fV
λ satisfies

‖fV
λ ‖K ≤

√
2D(λ)/λ. (2.5)

Proof. The bound for fV
λ can be easily derived from the inequality

D(λ) ≥ λ/2‖fV
λ ‖2

K .

For the proof of (2.4), we observe that the functional Q : HK → HK is differentiable and

strictly convex. Therefore, it has a unique minimizer which we have called fV
λ . Moreover,

fV
λ is determined by the fact that the gradient of Q at fV

λ is zero. Indeed, it can be verified

for any f, g ∈ HK that

lim
h→0

Q(f + hg)−Q(f)

h
= 〈

∫

Z

∂Θ(f, z)dρ(z), g〉K .

This proves the lemma. ¤
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Before we are in a position to state our main results, we require additional notation.

Since IE
(
∂Θ(fV

λ )
)

= 0 by Lemma 1, the variance is given by σ2 := IE
(‖∂Θ(fV

λ )‖2
K

)
. We also

need the quantities κ := supx∈X

√
K(x, x), |V ′|0 := supy∈Y |V ′

2(y, 0)|,

M(λ) := sup
{

V ′′
+(y, s) : y ∈ Y, |s| ≤ κ max

{√
2D(λ)/λ, κ|V ′|0/λ

}}
(2.6)

and

µ0(λ) := κ2M(λ) + λ. (2.7)

We can easily compute these constants for all admissible loss functions mentioned above.

Theorem 1. If V is admissible, λ > 0, 0 < ηt ≤ 1
µ0(λ)

and

∞∑
t=1

ηt = ∞,
∞∑

t=1

η2
t < ∞ (2.8)

then

lim
T→∞

IE
(‖fT+1 − fV

λ ‖K

)
= 0.

For the step size ηt = O(t−θ), t →∞ we get the following convergence rates.

Theorem 2. If V is admissible, λ > 0, µ(λ) ≥ µ0(λ) and ηt = 1
µ(λ)tθ

with 1/2 < θ < 1 then

for T ≥ 4, IE
(‖fT+1 − fV

λ ‖K

)
is bounded by

8σ

λ

( 2

2θ − 1

)1/2

T 1/2−θ +

[(
6Cθ(T ) +

√
2
) σ

µ(λ)

( 1

2θ − 1

)1/2

+

√
2D(λ)

λ

)]
e−Dθ,λT 1−θ

(2.9)

where

Cθ(T ) =





2
4θ−3

for θ ∈ (3/4, 1)

ln(T
2
) for θ = 3/4

2
3−4θ

T 3/2−2θ for θ ∈ (1/2, 3/4)

and

Dθ,λ :=
λ

(1− θ)µ(λ)

(
1− (1/2)1−θ

)
.

Although Theorem 1 allows us to choose ηt = O(t−θ) with θ = 1, the resulting convergence

rate is unacceptably slow as we present in the following theorem.

Theorem 3. Under the hypotheses above and θ = 1, then for T ≥ 4, IE
(‖fT+1 − fV

λ ‖K

)
is

bounded by

2
[ 2σ

µ(λ)

(
1 + C ′(T )

)
+

√
2D(λ)

λ

]( 1

T

) λ
µ(λ)

+
2σ

µ(λ)

1√
T

.
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where

C ′(T ) :=





ln(T + 1), λ
µ(λ)

= 1/2

2µ(λ)
µ(λ)−λ

[
1− (T + 1)−1/2+λ/µ(λ)

]
, λ

µ(λ)
∈ (0, 1/2) ∪ (1/2, 1).

We prove Theorem 1 in Section 3 and the proofs of Theorem 2 and 3 will be given in

Section 4.

The above theorems give us the convergence rate of the regularized sample error ‖fT+1−
fV

λ ‖K under the specific choices of step sizes. In order to get the whole leaning rate for the

excess generalization error

E(fT+1)− E(fV
ρ ), (2.10)

we should bias the regularized sample error and the regularization (approxiamtion) error

between fV
λ and fV

ρ . In the following, let us illustrate this approach for least square loss

V (y, s) = (y− s)2/2. In this case, the target function fV
ρ shall be denoted by fρ and is given

for x ∈ X by fρ(x) :=

∫

Y

ydρ(y|x). Often, fρ is referred to as the regression function.

Consider the least square regression problem with Y = [−M,M ] for some M > 0. The

approximation error between fV
λ and fρ is measured by ‖fV

λ − fρ‖L2
ρX

(see [15, 17]). It

depends on the approximating property of HK which can be characterized by the integral

operator LK : L2
ρX

(X) → L2
ρX

(X) defined for any f ∈ L2
ρX

(X) and x ∈ X as

LK(f)(x) =

∫

X

K(x, x′)f(x′)dρX(x′).

Since K is a Mercer kernel, the operator LK is positive, compact and symmetric. Therefore

the fractional power of the operator denoted by Lβ
K is well-defined for any 0 < β ≤ 1.

Denote C(X) as the space of continuous functions on X with the norm ‖ · ‖∞. Then the

reproducing property (1.1) tells us the following useful inequality

‖f‖∞ ≤ κ‖f‖K . (2.11)

Corollary 1. If V is the least square loss, fρ is in the range of Lβ
K for some 0 < β ≤ 1,

0 < ε < β
2β+4

, λ = T− 1
2(β+2)

+ ε
β and ηt = 1

κ2+λ
t

(β+1)ε
β

− 2β+3
2β+4 then there exists a constant c > 0

such that for all T

IE
(
‖fT+1 − fρ‖L2

ρX

)
≤ c

( 1

T

) β
2(β+2)

−ε

. (2.12)

This corollary follows from Theorem 2. We provide its proof here.
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Proof. In order to apply the result of Theorem 2, we should first estimate the constants

appearing in the righthand side of the inequality (2.9). We first estimate D(λ) and σ.

Since Y = [−M,M ], then |fρ(x)| ≤ M and

D(λ) = E(fV
λ )− E(fρ) +

λ

2
‖fV

λ ‖2
K ≤ E(0) ≤ M2

2
.

Note that E(fV
λ ) ≤ D(λ) + E(fρ), V

′
2(y, s)2 = 2V (y, s) and ‖fV

λ ‖K ≤
√

2D(λ)
λ

, then the

variance can be estimated as follows

σ2 = IEz(‖∂Θ(fV
λ )‖2

K) ≤ 2κ2

∫

Z

V ′(y, fV
λ (x))2dρ + 2λ2‖fV

λ ‖2
K

≤ 4κ2

∫

Z

V (y, fV
λ (x))dρ + 2λ2‖fV

λ ‖2
K

≤ 4κ2
(D(λ) + E(fρ)

)
+ 4λD(λ)

≤ 4(κ2 + λ)
(D(λ) + E(fρ)

) ≤ 10M2(κ2 + λ).

Since V is the least square loss, we can choose µ(λ) = κ2 + λ. Thus, there exists a constant

cθ such that for all 0 < λ < 1, we have that Dθ,λ ≥ cθλ and Cθ(T ) ≤ T 3/2. Now applying

(2.9) of Theorem 2 with ηt = 1
µ(λ)

t−θ for θ ∈ (1/2, 1), we have that there exists a constant c1

such that for all 0 < λ < 1 and T ≥ 4

IE
(‖fT+1 − fV

λ ‖K

) ≤ c1

(
λ−1T 1/2−θ + T 3/2e−cθλT 1−θ

)
.

Since fρ is in the range of Lβ
K , by [17] there exists a positive constant cβ such that for all

λ > 0

‖fV
λ − fρ‖L2

ρX
≤ cβλβ.

Therefore, for any 1/2 < θ < 1 , there exists a constant c2 such that

IE
(‖fT+1 − fρ‖L2

ρX

) ≤ IE
(‖fT+1 − fV

λ ‖L2
ρX

+ ‖fT+1 − fρ‖L2
ρX

)

≤ IE
(
κ(‖fT+1 − fV

λ ‖K + ‖fV
λ − fρ‖L2

ρX

)

≤ c2

(
λ−1T 1/2−θ + T 3/2e−cθλT 1−θ

+ λβ
)
.

For any 0 < ε < β
2β+4

, we select θ = 2β+3
2β+4

− (β+1)
β

ε and λ = T− 1
2(β+2)

+ ε
β , and conclude that

there exists a positive constant c such that

IE
(
‖fT+1 − fρ‖L2

ρX

)
≤ c

( 1

T

) β
2(β+2)

−ε

.
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This completes the proof. ¤

In [14], the authors consider the following stochastic gradient method in Hilbert space

HK . Let the map A : Z → SL(HK) be the vector space of positive definite symmetric linear

operators and B : Z → HK . They proposed the learning sequence

ft+1 = ft − ηt

(
At(ft) + Bt

)
(2.13)

to learn a stationary point f∗ satisfying

IEz(A(z) + B(z))f∗ = 0

where for each t, At = A(zt) and Bt = B(zt). We also denote Rt := ft − f∗ and rewrite the

above equation

Rt+1 = (I − ηtAt)Rt − ηt

(
At(f∗) + Bt

)
.

Comparing this equation with Lemma 1, we see that the last term plays the role of ∂Θ(fV
λ , zt)

in (2.2). Since ft depends on {z` : ` ∈ Nt−1}, the operator At depends on the samples

{z` : ` ∈ Nt}. Hence, it cannot in general be written as At except for the least square loss

function.

In [10], the authors also considered the general regularized online scheme (1.5). When

the loss function V (y, s) is convex and uniformly Lipschitz continuous with respect to s ∈ IR

for every y ∈ Y , the step sizes is chosen to be ηt = O(t−1/2) and λ > 0, then the authors

proved that the average instantaneous risk, 1/T
T∑

t=1

Θ(ft, zt) converges to the regularized

generalization error Q(fV
λ ) with rate O(T−1/2) as T →∞.

For classifying loss functions, convergence rates are recently given in [21]. However, the

methods used here are quite different than those presented there.

3 General Convergence Results

In this section, we shall prove Theorem 1. We begin with a bound for the learning sequence{
ft : t ∈ NT+1

}
. In order to do so, we define the quantity

µ̃0(λ) := κ2 sup
{

V ′′
+(y, s) : y ∈ Y, |s| ≤ κ2|V ′|0/λ

}}
+ λ

which is smaller than µ(λ) defined before.
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Lemma 2. If V is admissible and the step size satisfy ηt · µ̃0(λ) ≤ 1, t ∈ NT+1 then

‖ft‖K ≤ κ|V ′|0/λ.

Proof. We prove this inequality by induction on t. Since f1 = 0, the result is true for t = 1.

We assume that the bound holds for t, and to advance the induction step to t+1, we rewrite

the iteration (1.5) as follows

ft+1 = ft − ηt

∫ 1

0

V ′′
+(yt, θft(xt))dθft(xt)Kxt − ηtλft − ηtV

′
2(yt, 0)Kxt .

We introduce the linear operator Ãt : HK → HK defined for any g ∈ HK as

Ãt(g) :=

∫ 1

0

V ′′
+(yt, θft(xt))dθg(xt)Kxt + λg (3.1)

so that

ft+1 = (I − ηtÃt)ft − ηtV
′
2(yt, 0)Kxt . (3.2)

Since V is admissible, we obtain for any g ∈ HK that

< Ãt(g), g >K≥ λ‖g‖2
K .

By the bound for fV
λ in Lemma 1 and the induction hypothesis, we conclude that the operator

norm of Ãt satisfies the inequality

‖Ãt‖ ≤ µ̃0(λ).

Consequently, (I − ηtÃt) is positive and self-joint.

To estimate (3.2), we first show for any g ∈ HK that

‖(I − ηtÃt)(g)‖K ≤ (1− ηtλ)‖g‖K . (3.3)

Indeed, we define the operator

B̃t = Ãt − λI

and observe that it is positive and its norm is bounded by κ2 sup
{

V ′′
+(y, s) : y ∈ Y, |s| ≤

κ2|V ′|0/λ
}}

by the induction hypothesis. Next, we rewrite the quantity ‖(I − ηtÃt)(g)‖2
K

as the expression

(1− ηtλ)2‖g‖2
K − 2ηt〈B̃t(g), g〉K + 2η2

t λ〈B̃t(g), g〉K + η2
t ‖B̃t(g)‖2

K .

Note that

‖B̃t(g)‖2
K = 〈B̃t(g), g〉K ×

∫ 1

0

V ′′
+(yt, θft(xt))dθK(xt, xt) ≤ M(λ)κ2〈B̃t(g), g〉K
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which leads us to the inequality

‖(I − ηtÃt)(g)‖2
K ≤ (1− ηtλ)2‖g‖2

K − 2ηt

[
1− ηtµ̃(λ)

]
〈B̃t(g), g〉K . (3.4)

Since 〈B̃t(g), g〉K ≥ 0 and our hypothesis on the step size, we obtain (3.3).

The expression (3.2) together with the estimate (3.3) yields the bound

‖ft+1‖K ≤ (1− ηtλ)‖ft‖K + κηt|V ′|0
≤ (1− ηtλ)κ|V ′|0/λ + κηt|V ′|0
= κ|V ′|0/λ

which advances the induction step and proves the lemma . ¤

Lemma 3 below is proved in a similar fashion.

Lemma 3. If V is admissible and the step size satisfies ηt · µ0(λ) ≤ 1 then

‖At‖ ≤ µ0(λ), ‖(I − ηtAt)‖ ≤ (1− ηtλ).

For the next lemma, we defineAT
k =

∏T

t=k
(I−ηtAt) for k ∈ NT and Sk =

k∑
j=1

ηj∂Θ(fV
λ , zj)

for all k ∈ N . Also, we set AT
T+1 = I and S0 = 0.

Lemma 4.

RT+1 = AT
1R1 −

T−1∑

k=1

(AT
k+1 −AT

k+2

)Sk − ST (3.5)

Proof. Recall that

Rt+1 = (I − ηtAt)Rt − ηt∂Θ(fV
λ , zt)

and therefore by induction on t that

RT+1 = AT
1R1 −

T∑

k=1

ηkAT
k+1∂Θ(fV

λ , zk). (3.6)

Since for k ∈ N , Sk − Sk−1 = ηk∂Θ(fV
λ , zk), we can rewrite the second term of the above

equality as

T∑

k=1

AT
k+1(Sk − Sk−1) =

T−1∑

k=1

(AT
k+1 −AT

k+2)Sk + ST .

This proves the lemma. ¤

Before we turn to the proof of Theorem 1, we also need the following intermediate lemma.

11



Lemma 5. If
∞∑

t=1

η2
t < ∞ then there exists a L2

ρ(HK)-valued random variable S∗ such that

lim
T→∞

IE
(‖ST − S∗‖2

K

)
= 0.

Proof. Recall that Lemma 1 tells us that IE
(
∂Θ(fV

λ )
)

= 0. Since the samples are selected

i.i.d., we have for any T, T ′ ∈ N with T ′ > T that

IE
(‖ST − ST ′‖2

K

)
=

T ′∑

j,k=T+1

ηjηkIE〈∂Θ(fV
λ , zj), ∂Θ(fV

λ , zk)〉K =
( T ′∑

j=T+1

η2
j

)
IE(‖∂Θ(fV

λ )‖2
K).

Since the step sizes satisfy
∞∑

j=1

η2
j < ∞, this means ST is a Cauchy sequence in the Hilbert-

valued space L2
ρ(HK) which gives us the lemma. ¤

With the above preparations, we can give the proof of Theorem 1.

Proof of Theorem 1. By Lemma 4 and Lemma 5, we get that

RT+1 =AT
1R1 −

T−1∑

k=1

(AT
k+1 −AT

k+2

)
(Sk − S∗)− (ST − S∗)−

T−1∑

k=1

(AT
k+1 −AT

k+2

)S∗ − S∗

= AT
1R1 −

T−1∑

k=1

(AT
k+1 −AT

k+2

)
(Sk − S∗)− (ST − S∗)−AT

2 S∗. (3.7)

Using Lemma 3, we can bound the expectation of the HK norm of the first term in (3.7) by

IE
(‖AT

1R1‖K

) ≤
T∏

j=1

(1− ηjλ)‖fλ‖K ≤ exp
{
− λ

T∑
j=1

ηj

}
‖fλ‖K (3.8)

where we have used the fact 1 − x ≤ e−x for all x > 0 in the last inequality. Thus the

assumption on the step size
∑∞

j=1 ηj = ∞ tells us that the upper bound in (3.8) tends to

zero when T →∞.

The expectation of the norm of the fourth term in (3.7) can be estimated as above,

namely

IE
(‖AT

2 S∗‖K

) ≤ exp
{−λ

T∑
j=2

ηj

}
IE(‖S∗‖K) (3.9)

which goes to zero as T →∞.

By Lemma 5, the expectation o f the norm of the third term IE(‖ST − S∗‖K) tends to

zero as T →∞ .
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Hence, it remains to estimate the second term. By Lemma 5, we know that for any ε > 0,

there exists a positive integer T1 such that, for all k ≥ T1 there holds

IE
(‖Sk − S∗‖K

) ≤ ε. (3.10)

Hence, we can decompose the expectation of the norm of the second term in (3.7) into two

parts

IE
(‖

T−1∑

k=1

(AT
k+1 −AT

k+2

)
(Sk − S∗)‖K

) ≤
T1∑

k=1

IE(‖(AT
k+1 −AT

k+2

)
(Sk − S∗)‖)

+
T−1∑

k=T1+1

IE(‖(AT
k+1 −AT

k+2

)
(Sk − S∗)‖). (3.11)

Using Lemma 3, we know that

‖(AT
k+1 −AT

k+2

)
(Sk − S∗)‖K = ‖ηk+1Ak+1AT

k+2(Sk − S∗)‖K

≤ ηk+1µ0(λ)
T∏

j=k+2

(1− ηjλ)‖Sk − S∗‖K . (3.12)

It implies that the first part of the righthand side of (3.11) is bounded by

µ0(λ) exp
{−λ

T∑
j=T1+2

ηj

} T1∑

k=1

ηk+1IE
(‖Sk − S∗‖K

)
(3.13)

which tends to zero as T →∞.

We treat the second part in the upper bound of (3.11) by the observation that

T−1∑

k=T1+1

IE(‖(AT
k+1 −AT

k+2

)
(Sk − S∗)‖) ≤ εµ0(λ)

[ T−2∑

k=T1+1

T∏

j=k+2

(1− ηjλ)ηk+1 + ηT

]
.

Hence, the upper bound in (3.11) will tend to zero as T →∞ if we prove that

sup
T

T−2∑

k=1

T∏

j=k+2

(1− ηjλ)ηk+1 < ∞. (3.14)

In order to do so, we first note that ληj ≤ 1 and ηk+1λ = 1− (1− ηk+1λ). Therefore, (3.14)

13



is dominated by

1

λ

T−2∑

k=1

T∏

j=k+2

(1− ηjλ)ηk+1λ =
1

λ

T−2∑

k=1

T∏

j=k+2

(1− ηjλ)
[
1− (1− ηk+1λ)

]

=
1

λ

T−2∑

k=1

[ T∏

j=k+2

(1− ηjλ)−
T∏

j=k+1

(1− ηjλ)
]

=
1

λ

[
(1− ληT )−

T∏
j=2

(1− ηjλ)
] ≤ 1

λ
.

This completes the proof. ¤

4 Convergence Rate Analysis

In this section, we give the explicit convergence rate of ‖fT+1 − fV
λ ‖K for specific step sizes

ηt = O(t−θ). Let us first give the proof of Theorem 2. Specially, we prove the following facts.

Lemma 6. If V is admissible, ηt = 1
µ(λ)tθ

with 1/2 < θ ≤ 1 and S∗ as stated in Lemma 5

then there holds

IE
(‖S∗‖2

K

) ≤ σ2

µ2(λ)

( 2θ

2θ − 1

)
(4.1)

and

IE
(‖Sk − S∗‖2

K

) ≤ σ2

µ2(λ)

( 1

2θ − 1

)
k1−2θ. (4.2)

Proof. Since we have for any l > k that

IE
(‖Sk − Sl‖2

K

)
=

l∑

j,j′=k+1

ηjηj′IE〈∂Θ(fV
λ , zj), ∂Θ(fV

λ , z′j)〉

= σ2

l∑

j=k+1

η2
j ≤

σ2

µ2(λ)

( 1

2θ − 1

)
k1−2θ,

the inequality (4.2) follows from the observation IE
(‖Sk − S∗‖2

K

) ≤ lim
l→+∞

IE
(‖Sk − Sl‖2

K

)
.

Note that

IE
(‖Sl‖2

K

) ≤ σ2

µ2(λ)

l∑
j=1

j−2θ ≤ σ2

µ2(λ)
(1 +

∫ l

1

x−2θdx) ≤ σ2

µ2(λ)

( 2θ

2θ − 1

)
.

14



This in connection with IE
(‖S∗‖2

K

) ≤ lim
l→+∞

IE
(‖Sl‖2

K

)
implies the first inequality (4.1). This

proves the lemma. ¤

We shall also use the following estimation. A modified form was given in [14].

Lemma 7. If 0 < ν < 1 then the quantity
T−2∑

k=1

exp
{
−ν

T∑

j=k+2

j−θ
}

(k+1)−θk1/2−θ is bounded

by 



6
√

2
ν

T−θ+1/2 + 6Cθ(T ) exp
{
− ν(1−2θ−1)

1−θ
(T + 1)1−θ

}
, θ ∈ (1/2, 1)

4Cν(T )T−ν , θ = 1

where

Cθ(T ) :=





2
4θ−3

θ ∈ (3/4, 1)

ln(T
2
) θ = 3/4

2
3−4θ

T 3/2−2θ θ ∈ (1/2, 3/4)

and

Cν(T ) :=

∫ T+1

1

x−3/2+νdx =





ln(T + 1), ν = 1/2

2
1−2ν

[
1− (T + 1)−1/2+ν

]
, ν ∈ (0, 1/2) ∪ (1/2, 1).

Proof. Denote

I =
T−2∑

k=1

exp
{
− ν

T∑

j=k+2

j−θ
}

(k + 1)−θk1/2−θ. (4.3)

For any θ ∈ (1/2, 1), observe that for any k ≥ 0, there holds

T∑

j=k+2

j−θ ≥
∫ T+1

k+2

x−θdx =
( 1

1− θ

)[
(T + 1)1−θ − (k + 2)1−θ

]
. (4.4)

Since (k + 1)−θk1/2−θ ≤ 3
√

3
2

(k + 2)1/2−2θ for any k ≥ 1 and 1/2 < θ ≤ 1, we have

I ≤ 3
√

3

2
exp

{
− ν

1− θ
(T + 1)1−θ

} T∑

k=2

exp
{ ν

1− θ
k1−θ

}
k1/2−2θ.

For x ∈ [k, k+1] with k ≥ 2, we have k1/2−2θ ≤ 2x1/2−2θ and exp
{

ν
1−θ

k1−θ
} ≤ exp

{
ν

1−θ
x1−θ

}
.

Then

I ≤ 6 exp
{
− ν

1− θ
(T + 1)1−θ

}∫ T+1

2

f(x)dx (4.5)

where we set f(x) := exp
{

ν
1−θ

x1−θ
}

x1/2−2θ.
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To estimate the integral, we decompose it into two parts

∫ T+1

2

f(x)dx =

∫ T+1

T/2

f(x)dx +

∫ T/2

2

f(x)dx. (4.6)

Since

∫ T+1

T/2

f(x)dx ≤
√

2T 1/2−θ

∫ T+1

T/2

x−θ exp
{ ν

1− θ
x1−θ

}
dx

≤
√

2

ν
T 1/2−θ exp

{ ν

1− θ
(T + 1)1−θ

}
(4.7)

and

∫ T/2

2

f(x)dx ≤
( ∫ T/2

1

x1/2−2θdx
)

exp
{ ν

1− θ
(T/2)1−θ

}

≤ Cθ(T ) exp
{ ν

1− θ
(T/2)1−θ

}
(4.8)

where

Cθ(T ) :=





2
4θ−3

for θ ∈ (3/4, 1)

ln(T
2
) for θ = 3/4

2
3−4θ

T 3/2−2θ for θ ∈ (1/2, 3/4).

Putting the estimates (4.5), (4.6), (4.7) and (4.8) together, we get the first assertion of

Lemma 7.

For θ = 1 and ν ∈ (0, 1), we have for any 0 ≤ k ≤ T − 2 that

T∑

j=k+2

j−1 ≥
∫ T+1

k+2

x−1dx = ln(T + 1)− ln(k + 2). (4.9)

Hence, we see that

I ≤ 3
√

3

2

(
T + 1

)−ν
T−2∑

k=1

(
k + 2

)−3/2+ν ≤ 3
√

3

2

(
T + 1

)−ν
∫ T+1

1

x−3/2+νdx.

The observation that

Cν(T ) :=

∫ T+1

1

x−3/2+νdx =





ln(T + 1), ν = 1/2

2
1−2ν

[
1− (T + 1)−1/2+ν

]
, ν ∈ (0, 1/2) ∪ (1/2, 1)

completes the proof of the lemma. ¤
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To this end, we are in a position to prove Theorem 2.

Proof of Theorem 2. To estimate the explicit rate, we will follow the proof of Theorem

1. Recall the equality (3.7)

RT+1 = AT
1R1−

T−1∑

k=1

(AT
k+1−AT

k+2

)
(Sk−S∗)− (ST −S∗)−AT

2 S∗ := I1 + I2 + I3 + I4. (4.10)

We shall estimate the four terms on the righthand side of (4.10) one by one.

Applying (4.4) with k = 0, we know for T ≥ 4 that

T∑
j=2

j−θ ≥ 1− 2θ−1

1− θ
T 1−θ. (4.11)

Since IE
(‖S∗‖K

) ≤ σ
µ(λ)

(
2θ

2θ−1

)1/2
by (4.1) and ‖fλ‖K ≤

√
2D(λ)

λ
, we know from the estimates

(3.8) and (3.9) that

IE(‖I1‖K) + IE(‖I4‖K) ≤
(
‖fλ‖K + IE

(‖S∗‖K

))
exp

{
− λ(1− 2θ−1)

µ(λ)(1− θ)
T 1−θ

}

≤
(

σ

µ(λ)

( 2θ

2θ − 1

)1/2

+

√
2D(λ)

λ

)
e−Dθ,λT 1−θ

(4.12)

where we set Dθ,λ := λ(1−2θ−1)
µ(λ)(1−θ)

.

The expectation of the norm of the third term in (4.10) is immediately from Lemma 6

by Cauchy-Schwarz inequality

IE(‖I3‖K) ≤ σ

µ(λ)

( 1

2θ − 1

)1/2

T 1/2−θ. (4.13)

We shall use lemma 7 to estimate the expectation of the norm of the third term in (4.10).

Indeed, it is bounded by

IE
(‖I2‖K

) ≤ IE
( T−2∑

k=1

ηk+1‖Ak+1‖‖AT
k+2‖‖Sk − S∗‖K

)
+ µ(λ)ηT IE

(
‖ST−1 − S∗‖K

)
. (4.14)

By Lemma 3 and Lemma 6, for any θ ∈ (1/2, 1], the above upper bound is dominated by

IE(‖I2‖K) ≤ σ

µ(λ)

( 1

2θ − 1

)1/2
T−2∑

k=1

exp
{
− λ

µ(λ)

T∑

j=k+2

j−θ
}

(k + 1)−θk1/2−θ

+
σ

µ(λ)

( 2

2θ − 1

)1/2

T 1/2−θ. (4.15)
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Since λ < µ(λ), we apply Lemma 7 with θ ∈ (1/2, 1) and ν = λ
µ(λ)

to the righthand side of

the above inequality which implies that

IE
(‖I2‖K

) ≤ 7σ

λ

( 2

2θ − 1

)1/2

T 1/2−θ +
6σ

µ(λ)

( 1

2θ − 1

)1/2

Cθ(T ) e−Dθ,λT 1−θ

. (4.16)

Combining with the bounds (4.12), (4.13) and (4.16), we conclude that for any θ ∈ (1/2, 1),

IE
(‖fT+1 − fV

λ ‖K

)
is bounded by

8σ

λ

( 2

2θ − 1

)1/2

T 1/2−θ +

[
(6Cθ(T ) +

√
2)

σ

µ(λ)

( 1

2θ − 1

)1/2

+

√
2D(λ)

λ

]
e−Dθ,λT 1−θ

.

This completes Theorem 2. ¤

We turn our attention to the proof of Theorem 3.

Proof of Theorem 3. Let us estimate the four terms on the righthand side of the equality

(4.10) one by one.

Using (4.9) with k = 0, then for T ≥ 2, there holds

T∑
j=2

j−1 ≥ ln
(T + 1

2

)
.

Therefore, the estimates (3.8), (3.9) in connection with the bounds of (2.5) and (4.1) imply

that

IE
(
‖I1‖K + ‖I4‖K

)
≤

[√2σ

µ(λ)
+

√
2D(λ)

λ

]( 2

T + 1

) λ
µ(λ)

.

Lemma 6 gives us the estimate for the expectation of the norm of the third term in (4.10)

as follows

IE
(
‖I3‖K

)
≤ σ

µ(λ)
T−1/2.

By Lemma 7 with θ = 1 and ν = λ
µ(λ)

, it yields from (4.15) that

IE
(
‖I2‖K

)
≤
√

2σ

µ(λ)
T−1/2 +

4

µ(λ)σ

T−2∑

k=1

exp
{
− λ

µ(λ)

T∑

j=k+2

j−1
}

(k + 1)−1k−1/2

≤
√

2σ

µ(λ)
T−1/2 +

4σC ′(T )

µ(λ)

( 1

T

) λ
µ(λ)

.

where

C ′(T ) :=





ln(T + 1), λ
µ(λ)

= 1/2

2µ(λ)
µ(λ)−2λ

[
1− (T + 1)−1/2+λ/µ(λ)

]
, λ

µ(λ)
∈ (0, 1/2) ∪ (1/2, 1).
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Combining with all the above estimates, we see that

IE
(‖fT+1 − fV

λ ‖K

) ≤ 2
[ 2σ

µ(λ)

(
1 + C ′(T )

)
+

√
2D(λ)

λ

]( 1

T

) λ
µ(λ)

+
3σ

µ(λ)

1√
T

This completes the proof of Theorem 3. ¤
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