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Abstract. Genetic programming (GP) can automatically fuse
given classifiers of diverse types to produce a combined classifier
whose Receiver Operating Characteristics (ROC) are better than
[Scott et al.1998b]’s “Maximum Realisable Receiver Operating Char-
acteristics” (MRROC). I.e. better than their convex hull. This is
demonstrated on a satellite image processing bench mark using Naive
Bayes, Decision Trees (C4.5) and Clementine artificial neural networks.

1 Introduction

[Scott et al.1998b] has previously suggested the “Maximum Realisable Receiver
Operating Characteristics” for a combination of classifiers is the convex hull of
their individual ROCs. However the convex hull is not always the best that can be
achieved [Yusoff et al.1998]. Previously we showed [Langdon and Buxton2001a,
Langdon and Buxton2001b] in at least some cases better ROCs can be auto-
matically produced. We extend [Langdon and Buxton2001b] to show, on the
problems derived from those proposed by [Scott et al.1998b], that genetic pro-
gramming can automatically fuse different classifiers trained on different data
to yield a classifier whose ROC are better than the convex hull of the supplied
classifier’s ROCs.

Section 2 gives the back ground to data fusion and Sect. 3 summarises
Scott’s work. The three classifiers are described in Sect. 4, while Sect. 5 de-
scribes the satellite data. The genetic programming system and its results are
given in Sects. 6 and 7. Finally we finish in Sects. 8 and 9 with a discus-
sion and conclusions. Sections 2–6 (excluding Sects. 4.1 and 4.3) are similar to
[Langdon and Buxton2001b] however the experimental work (Sect. 7 onwards)
extends [Langdon and Buxton2001b] to consider fusing classifiers of very differ-
ent types.

2 Background

There is considerable interest in automatic means of making large volumes of
data intelligible to people. Arguably traditional sciences such as Astronomy, Bi-
ology and Chemistry and branches of Industry and Commerce can now generate
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data so cheaply that it far outstrips human resources to make sense of it. In-
creasingly scientists and Industry are turning to their computers not only to
generate data but to try and make sense of it. Indeed the new science of Bioin-
formatics has arisen from the need for computer scientists and biologists to work
together on tough, data rich problems, such as rendering protein sequence data
useful. Of particular interest are the Pharmaceutical (drug discovery) and food
preparation industries.

The terms Data Mining and Knowledge Discovery are commonly used for
the problem of getting information out of data. There are two common aims:
1) to produce a summary of all or an interesting part of the available data 2) to
find interesting subsets of the data buried within it. Of course these may over-
lap. In addition to traditional techniques, a large range of “intelligent” or “soft
computing” techniques, such as artificial neural networks, decision tables, fuzzy
logic, radial basis functions, inductive logic programming, support vector ma-
chines, are being increasingly used. Many of these techniques have been used in
connection with evolutionary computation techniques such as genetic algorithms
and genetic programming [Langdon1998].

We investigate ways of combining these and other classifiers with a view to
producing one classifier which is better than each. Firstly we need to decide
how we will measure the performance of a classifier. In practise when using
any classifier a balance has to be chosen between missing positive examples and
generating too many spurious alarms. Such a balancing act is not easy. Especially
in the medical field where failing to detect a disease, such as cancer, has obvious
consequences but raising false alarms (false positives) also has implications for
patient well being. Receiver Operating Characteristics (ROC) curves allow us to
show graphically the trade off each classifier makes between its “false positive
rate” (false alarms) and its “true positive rate” [Swets et al.2000]. (The true
positive rate is the fraction of all positive cases correctly classified. While the false
positive rate is the fraction of negative cases incorrectly classified as positive).
ROC curves are shown in Figs. 3 and 4. We treat each classifier as though it has
a sensitivity parameter (e.g a threshold) which allows the classifier to be tuned.
At the lowest sensitivity level the classifier produces no false alarms but detects
no positive cases, i.e. the origin of the ROC. As the sensitivity is increased,
the classifier detects more positive examples but may also start generating false
alarms (false positives). Eventually the sensitivity may become so high that
the classifier always claims each case is positive. This corresponds to both true
positive and false positive rates being unity, i.e. the top right hand corner of the
ROC. On average a classifier which simply makes random guesses will have an
operating point somewhere on the line between the origin and 1,1 (cf. Fig. 1).

Naturally we want our classifiers to have ROC curves that come as close
to a true positive rate of one and simultaneously a false positive rate of zero.
In Sect. 6 we score each classifier by the area under its ROC curve. An ideal
classifier has an area of one. We also require the given classifiers, not only to
indicate which class they think a data point belongs to, but also how confident
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they are of this. Values near zero indicate the classifier is not sure, possibly
because the data point lies near the classifier’s decision boundary.

Arguably the well known “boosting” techniques combine classifiers to get a
better one. However boosting is normally applied to only one classifier and pro-
duces improvements by iteratively retraining it. Here we will assume the classi-
fiers we have are fixed, i.e. we do not wish to retrain them. Similarly boosting
is normally applied by assuming the classifier is operated at a single sensitivity
(e.g a single threshold value). This means on each retraining it produces a single
pair of false positive and true positive rates. Which is a single point on the ROC
rather than the curve we require.

3 “Maximum Realisable” ROC

Scott’s Parcel system [Scott et al.1998b] followed on from work on using wrap-
pers for feature subset selection [Kohavi and John1997] and the use of ROC
hulls [Provost and Fawcett2001]. However [Scott et al.1998b] describe a method
to create, from two existing classifiers, a new one whose ROC lie on a line con-
necting the ROC of its two components. This is done by choosing one or other
of the component classifiers at random and using its result. E.g. if we need a
classifier whose false positive rate vs. its true positive rate lies half way between
the ROC points of classifiers A and B, then the Scott’s composite classifier will
randomly give the answer given by A half the time and that given by B the
other half, see Fig. 1. (Of course persuading patients to accept such a random
diagnose may not be straightforward).

The performance of the composite can be readily set to any point along the
line simply by varying the ratio between the number of times one classifier is
used relative to the other. Indeed this can be readily extended to any number of
classifiers to fill the space between them. The better classifiers are those closer
to the zero false positive axis or with a higher true positive rate. In other words
the classifiers lying on the convex hull.
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Fig. 1. Classifier C is created by choosing equally between the output of classifier A and
classifier B. Any point in the shaded area can be created. The “Maximum Realisable
ROC” is its convex hull (solid line).
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Often classifiers have some variable threshold or tuning parameter whereby
their trade off between false positives and true positives can be adjusted. This
means their Receiver Operating Characteristics (ROC) are now a curve rather
than a single point. We can apply Scott’s random combination method to any
set of points along the curve. So a “maximum realisable” ROC is the convex
hull of the (single) classifier’s ROC. Indeed, if the ROC curve is not convex,
an improved classifier can easily be created from it [Scott et al.1998b]. The nice
thing about the MRROC, is that it is always possible. But as we show it may
be possible to do better.

4 Classifiers

4.1 C4.5

C4.5 [Quinlan1993], like the other classifiers, was extended to allow its use within
our GP system. Each classifier takes a threshold parameter. To produce an ROC
curve the threshold is varied from zero to one.

To use a classifier in GP we adopt the convention that non-negative values
indicate the data is in the class. We also require the classifier to indicate its
“confidence” in its answer. In our GP, it does this by the magnitude of the value
it returns.

C4.5 was run with defaults setting to produce pruned trees containing “con-
fidence” values Z0 and Z1. Normally the decision tree’s final classification would
depend on which of Z0 and Z1 was the bigger. When the threshold is 0.5, this
is what GP returns. However if it is near 0, GP is more likely to return class 0.
While if the threshold is near 1, GP is biased towards class 1. (In detail GP
returns class 0 iff (1− threshold)Z0 ≥ threshold Z1). This determines the sign of
the value returned to the GP system. The magnitude is the C4.5 “confidence”.
This is |Z0 − Z1|.

4.2 Naive Bayes Classifiers

The Bayes [Ripley1996,Mitchell1997] approach attempts to estimate, from the
training data, the probability of data being in each class. Its prediction is the
class with the highest estimated probability. We extend it 1) to include a tuning
parameter to bias its choice of class and 2) to make it return a confidence based
upon the difference between the two probabilities.

If there is no training data for a given class/attribute value combination,
we follow [Kohavi and Sommerfield1996, page 11] and estimate the probability
based on assuming there was actually a count of 0.5. ([Mitchell1997] suggests a
slightly different way of calculating the estimates).

A threshold T (0 ≤ T ≤ 1), allows us to introduce a bias. That is if
(1 − T ) × P0,a(E) < T × P1,a(E) then our Bayes classifier will predicts E is
in class 1, otherwise 0. (Pc,a(E) is the probability estimated from the training
data, using attributes from the set a, that E is in class c). Finally we define the
classifiers “confidence” to be |P0,a(E) − P1,a(E)|.
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4.3 Artificial Neural Networks

We used the Clementine data mining tool to train an artificial neural network
to model the training data. This model was then frozen and made available to
genetic programming as a function with one argument.

The ANN model was trained using Clementine version 5.0 on 2956 training
records. Each record had nine integer inputs (from the last of the four spectral
bands, see next section) and an integer range output. The output was 0 or 1 de-
pending on whether the pixel was “grey” or not (see next section). The defaults
were used, i.e. quick training, prevention of over training (50%), sensitivity anal-
ysis and default stopping criterion for training. The model has one hidden layer
of four nodes, whose performance Clementine estimates to be 72.32%. (Perfor-
mance of ANN models for the first band to third bands were estimated at 83.78%,
71.36% and 65.90%).

The neural net model gives a continuous valued output. Values below 0.5
indicate class 0. For use in GP, we subtract 1.0 and add the threshold parameter.
This means values below zero indicate class 0, while non-negative values indicate
class 1. As usual the continuous threshold parameter allows us to tune the neural
network to trade off false positive against true positives and so obtain a complete
ROC curve rather than a single error rate. (A threshold of 0.5 indicates no bias,
i.e. use the raw neural network). Notice that the “confidence” the GP sees is
directly related to how far from the neural networks idle value (0.5) its output
is.

5 Grey Landsat

The Landsat data comes from the Stalog project via the UCI machine learning
repository1. The data is spilt into training (sat.trn 4425 records) and test
(sat.tst 2000). Each record has 36 continuous attributes (8 bit integer values
nominally in the range 0–255) and 6 way classification. (Classes 1, 2, 3, 4, 5
and 7). Following Scott [Scott et al.1998b], classes 3, 4 and 7 were combined
into one (positive, grey) while 1, 2 and 5 became the negative examples (not-
grey). sat.tst was kept for the holdout set.

The 36 data values represent intensity values for nine neighbouring pixels
and four spectral bands (see Fig. 2). While the classification refers to just the
central pixel. Since each pixel has eight neighbours and each may be in the
dataset, data values appear multiple times in the data set. But when they do,
they are presented as being different attributes each time. The data all come
from a rectangular area approximately five miles wide. Each of the three types
of classifiers is trained on data from one spectral band. (Naive Bayes - first band,
C4.5 - second band, artificial neural network - last band).

After reducing to two classes, the continuous values in sat.trn were
partitioned into bins before it was used by the Naive Bayes classifier.
Following [Scott et al.1998a, page 8], we used entropy based discretisation
1 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/statlog/satimage
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Fig. 2. Each record contains data from nine adjacent Landsat pixels. In these exper-
iments, all of the Naive Bayes classifiers are trained on the first spectral band. There
are two types of Naive Bayes classifiers, single attribute and those trained on pairs of
attributes. All nine single attribute and all pairs of attributes 0, 4, 12, 16, 20 and 32
are available to GP. C4.5 was trained on nine attributes 1, 5, ... 33 (second band) while
the ANN was trained on the fourth band (attributes 3, 7, ... 35).

[Kohavi and Sommerfield1996], implemented in MLC++ discretize.exe2,
with default parameters. (Giving between 4 and 7 bins per attribute). To avoid
introducing bias, the holdout data (sat.tst) was partitioned using the same
bin boundaries. sat.trn was randomly split into training (2956 records) and
verification (1479) sets.

6 Genetic Programming Configuration

The genetic programming system is almost identical to that described in
[Langdon and Buxton2001b]. The GP is set up to signal its prediction of the
class of each data value in the same way as the classifiers. I.e. by returning a
floating point value, whose sign indicates the class and whose magnitude in-
dicates the “confidence”. (Note confidence is not constrained to a particular
range).

Following earlier work [Jacobs et al. 1991,Soule1999,Langdon1998] each GP
individual is composed of five trees. Each of which is capable of acting as a
classifier. The use of signed numbers makes it natural to combine classifiers by
adding them. I.e. the classification of the “ensemble” is the sum of the answers
given by the five trees. Should a single classifier be very confident about its
answer this allows it to “out vote” all the others.

6.1 Function and Terminal Sets

The function set includes the four binary floating arithmetic operators (+, ×,
− and protected division), maximum and minimum and absolute maximum and
minimum. The latter two return the (signed) value of the largest, (or smallest)
in absolute terms, of their inputs. IFLTE takes four arguments. If the first is
2 http://www.sgi.com/Technology/mlc
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less than or equal to the second, IFLTE returns the value of its third argument.
Otherwise it returns the value of its fourth argument. INT returns the integer
part of its argument, while FRAC(e) returns e - INT(e).

The classifiers are represented as floating point functions. Their threshold is
supplied as their single argument. As described in Sect. 4.

The terminal T yields the current value of the threshold being applied to
the classifier being evolved by GP. Finally the GP population was initially con-
structed from a number of floating point values. These constants do not change
as the population evolves. However crossover and mutation do change which
constants are used and in which parts of the program.

6.2 Fitness Function

Each new individual is tested on each training example with the threshold pa-
rameter (T) taking values from 0 to 1 every 0.1 (i.e. 11 values). So it is run
32516 times. For each threshold value the true positive rate is calculated. (The
number of correct positive cases divided by the total number of positive cases). If
a floating point exception occurs its answer is assumed to be wrong. Similarly its
false positive rate is given by the no. of negative cases it gets wrong divided by
the total no. of negative cases. It is possible to do worst than random guessing.
When this happens, i.e. the true positive rate is less than the false positive rate,
the sign of the output is reversed. This is common practise in classifiers.

Since a classifier can always achieve both a zero success rate and 100% false
positive rate, the points (0,0) and (1,1) are always included. These plus the
eleven true positive and false positive rates are plotted and the area under the
convex hull is calculated. The area is the fitness of the individual GP program.
Note the GP individual is not only rewarded for getting answers right but also
for using the threshold parameter to get a range of high scores. Parameters are
summarised in Table 1.

7 Results

The three types of classifier (C4.5, Naive Bayes and ANN) were made available
to GP, singly, in pairs and finally all three together. I.e. seven experiments were
run. (The 21 Naive Bayes classifiers are treated as a group, i.e. they are either
all included or all excluded). In each run, GP’s answer was chosen as the first
occurrence of a program with the the largest ROC area (on the training data)
found in the whole run. The ROC of these seven programs (on the holdout data)
are plotted in Fig. 4 and tabulated in Table 2. In all seven cases GP automatically
produced a classifier with better performance than those it was given. That is
genetic programming fused classifiers of different types, trained on different data,
to yield superior classifiers.
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8 Over Fitting

We have taken some care to ensure our input classifiers do not over fit the training
data. Similarly one needs to be careful when using GP to avoid over fitting. So far
we have seen little evidence of over fitting. This may be related to the problems
themselves or the choice of multiple tree programs or the absence of “bloat”. The
absence of bloat may be due to our choice of size fair crossover [Langdon2000]
and a high mutation rate. Our intention is to evaluate this GP approach on
more sophisticated classifiers and on harder problems. Here we expect it will be
essential to ensure the classifiers GP uses do not over fit, however this may not
be enough to ensure the GP does not.

Table 1. Grey Landsat GP Parameters

Objective: Evolve a function with Maximum Convex Hull Area
Function set: INT FRAC Max Min MaxA MinA MUL ADD DIV SUB IFLTE

C4.5 ANN (nb0 nb4 nb8 nb12 nb16 nb20 nb24 nb28 nb32 nb0,4 nb0,12
nb0,16 nb0,20 nb0,32 nb4,12 nb4,16 nb4,20 nb4,32 nb12,16 nb12,20
nb12,32 nb16,20 nb16,32 nb20,32)

Terminal set: T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fitness: Area under convex hull of 11 ROC points on 2956 test points
Selection: generational (non elitist), tournament size 7
Wrapper: ≥ 0 ⇒ positive, negative otherwise
Pop Size: 500
No size or depth limits
Initial pop: ramped half-and-half (2:6) (half terminals are constants)
Parameters: 50% size fair crossover [Langdon2000], 50% mutation (point 22.5%, con-

stants 22.5%, shrink 2.5% subtree 2.5%)
Termination: generation 50
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Fig. 3. The ROC produced by GP (generation 50) using threshold values
0, 0.1, . . . , 1.0 on the Thyroid data. Details of the experiment are reported in
[Langdon and Buxton2001b].
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C4.5, gen 25, 0.821859
ANN, gen 38, 0.801198

Naive Bayes, gen 50, 0.910912
C4.5 ANN, gen 50, 0.895467

C4.5 Naive Bayes, gen 27, 0.944954
ANN Naive Bayes, gen 50, 0.978034

C4.5 ANN Naive Bayes, gen 50, 0.987655

Fig. 4. The ROC produced by GP using seven combinations of classifiers on the Grey
Landsat holdout data. The caption gives the area under the ROC (holdout) and the
first generation to give the maximum area on the training data. (For simplicity only
the convex hull of each classifier is plotted).

Table 2. Grey Landsat, Area under ROC on holdout set

Given Classifiers Genetic Programming

ANN 0.764945
C4.5 0.74271

nb0 0.873961
nb4 0.883431
nb8 0.886417
nb12 0.877244
nb16 0.880381
nb20 0.895346
nb24 0.888831
nb28 0.8898
nb32 0.893585

nb0,12 0.877244
nb0,16 0.880381
nb0,20 0.895346
nb0,32 0.893585
nb0,4 0.883431
nb4,12 0.890616
nb4,16 0.888611
nb4,20 0.89729
nb4,32 0.901857
nb12,16 0.888113
nb12,20 0.896233
nb12,32 0.891777
nb16,20 0.901793
nb16,32 0.892662
nb20,32 0.900468

ANN 0.801198
C4.5 0.821859
nb 0.910912

ANN + C4.5 0.895467
ANN + nb 0.978034
C4.5 + nb 0.944954

all 0.987655

9 Conclusions

Previously [Langdon and Buxton2001a] we showed, using Scott’s own bench
marks, that genetic programming can do better than [Scott et al.1998b]’s MR-
ROC [Langdon and Buxton2001b]. Here we have shown, GP can deal not only
with different classifiers but with classifiers of different types, trained on different
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data. Genetic programming offers an automatic means of data fusion by evolving
combined classifiers.
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