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Genetic Improvement:
A Key Challenge for Evolutionary Computation

William B. Langdon Gabriela Ochoa

Abstract—Automatic Programming has long been a sub-goal
of Artificial Intelligence (AI). It is feasible in limited domains.
Genetic Improvement (GI) has expanded these dramatically to
more than 100 000 lines of code by building on human written
applications. Further scaling may need key advances in both
Search Based Software Engineering (SBSE) and Evolutionary
Computation (EC) research, particularly on representations,
genetic operations, fitness landscapes, fitness surrogates, multi
objective search and co-evolution.

I. INTRODUCTION

Genetic Algorithms were invented right at the start of Ar-
tificial Intelligence research in the hope they could harness
the power of Darwin’s natural evolution [Darwin, 1859] so
that we can get “computers to do what is needed to be
done, without being told exactly how to do it” [Koza, 1992,
page 1]. Natural selection and inheritable genetic variation
acting over billions of years has seen life diversify and new
species emerge and colonise every conceivable niche on the
planet. Indeed geographic [Owen et al., 1990] or even man
made environmental changes1 have seen the evolution or
diversification of species within a few hundred years. The
hope that such rapid evolution might also take place within
computer populations has in many cases been vindicated.
Today Evolutionary Computing has been successfully applied
to finding acceptable solutions (even optimal solutions) to
a wide range of numerical problems within the computer
and to the evolution of engineering structures and even art
and music in the physical world. However, now more than
twenty years after [Koza, 1992], Evolutionary Computing has
had less success at evolving the programs which control our
computers.

The success of Genetic Programming [Koza, 1992] is
well known. It has evolved predictive models and classifiers
[Pappa and Freitas, 2004; Bhowan et al., 2013] over a huge
range of applications, from predicting human endeavours
(finance [Neely and Weller, 1999; Dempster and Jones, 2000;
Tsang and Li, 2002], insurance [Langdon, 1999]) to the
outcome of breast cancer [Langdon and Buxton, 2004] and
drug research [Langdon and Barrett, 2004]. In engineering it
has been used to save energy in steel manufacture [Kovacic
and Sarler, 2014] and modelling microscopic particulate
pollution [Kovacic et al., 2013]. It has been used to design
electronic circuits [Koza et al., 1999; Koza and Bennett III,
1999] radio antennas [Hornby et al., 2011; Baker et al.,

Computer Science, University College London, London, WC1E 6BT, UK.
Computer Science, University of Stirling, Stirling, FK9 4LA, UK

1E.g. Melanism in the Peppered Moth during the 19th and 20th centuries
in England.
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Fig. 1. Evolutionary Computation cycle adapted for Genetic Improvement
(GI) of manually written C code (left). The grammar (or AST) tries to ensure
many mutants compile, run, and terminate. Fitness is given by comparing
with the original code run on the same test cases. (Figure from [Langdon
and Petke, 2016].)

2010], to aid building architects [O’Reilly and Hemberg,
2007] and in civil engineering [Baykasoglu et al., 2008;
Najafzadeh and Barani, 2011; Mirzahosseini et al., 2011] and
the environment [Savic et al., 1999; Brumby et al., 2001].

The next section introduces Genetic Improvement (GI)
whilst Section III gives more details on how it uses Evo-
lutionary Computing. Section IV asks how EC might further
improve GI and we challenge EC to lead further down the
road to Artificial Intelligence in general and to Automatic
Programming in particular. Section V discusses the existing
strengths and weakness of GI, whilst Section VI suggests
ways that EC might improve it. Finally Section VII mentions
some ways that GI researchers might help EC before we
conclude (Section VIII).

II. PERSPECTIVE:
WHAT GENETIC IMPROVEMENT HAS DONE SO FAR

Although Evolutionary Computing has had many successes
in software engineering [Harman, 2007], it has had less
success generating new software. However it has recently
started to be used for improving existing programs written by
people. Genetic Programming has been used to automatically
fix bugs [Arcuri, 2011; Weimer et al., 2010]. Although still
controversial in some software engineering circles, Weimer
and Forrest [Forrest et al., 2009] kicked down the door
and showed automatic bugfixing could be possible, whereas
the software engineering community appear to have ignored
the possibility until it was shown Evolutionary Computing
could fix real bugs in real programs. (Albeit some bugs,
not necessarily all of them.) Given this impetuous by EC,
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automatic bug repair [Kessentini et al., 2011] is now a very
active research topic in software engineering.

Le Goues’ [Le Goues et al., 2012] prize winning work
on bug fixing is far from the only prize winning work using
genetic programming to improve existing code. Last year saw
the first international workshop on genetic improvement and
this year will see the second and also genetic improvement
represented at this conference, as well as various local GI
events. As well as fixing errors, GI has been demonstrated
speeding up code [Langdon and Harman, 2015b] generating
[Langdon and Harman, 2010] and improving parallel code
[Langdon and Harman, 2014; Langdon et al., 2014; Langdon
et al., 2015; Langdon and Harman, 2015a], automatically
specialising programs [Petke et al., 2014], reducing energy
[Schulte et al., 2014a; Bruce, 2015] and memory consump-
tion [Wu et al., 2015]. Indeed there is great interested in
multi-objective approaches where evolution might generate
a Pareto front [Harman et al., 2012] allowing the designer
to trade-off different objectives (e.g. quality v. memory)
indeed we might see the user being given the option of
trading objectives according to circumstances. E.g. someone
might want a mobile application’s full functionality whilst
their phone was plugged in at home but be prepared to
accept lower response in return for longer battery life when
disconnected from a power supply during the day.

III. HOW GENETIC IMPROVEMENT WORKS

Although there are many approaches in detail, currently
(see Figure 1) the general approach is to automatically pre-
process the program source 2 to give either a simple grammar
or description at the AST level and use that description to
constrain the genetic operations to ensure children in the next
generation do not have syntax errors. The individuals in the
evolving population are typically changes to the software to
be evolved. This makes them more compact. This is a bit
like seeding the population [Langdon and Nordin, 2000] with
the human written code rather than starting with a totally
random population. Although typically the syntax is correct,
a sizeable fraction of the mutants may not compile. This is
almost always due to variables being moved out of scope.
In some cases the mutations may be restricted to respect
variable scope limits, allowing 100% of children to compile.

Typically how good a child is (i.e. its fitness) is found by
compiling it, running it and then comparing its results with
those of the original program.

Great progress has been made with using Evolutionary
Computation to generate test suite for programs [Fraser and
Arcuri, 2011]. It is common to be able to generate test cases
that will cause the software under test to execute most of
the paths within it (NB. not all combinations). However in
the classic software engineering case, the automatic tests
say how to run the program but have no way of knowing
if it produced the right answer. (In software engineering

2Evolution at the level of Java byte code [Lukschandl et al., 1998; Orlov
and Sipper, 2011] or indeed machine code binaries [Schulte et al., 2010;
Schulte et al., 2014b; Schulte et al., 2015] may also be possible.

this is known as the “Oracle Problem”). But notice how
Evolutionary Computing side-steps the Oracle Problem. We
have an oracle. We have the original code. Admittedly in
some cases (e.g. bug fixing) the original code’s answer may
need some adjustment. But in many cases it is sufficient.
We just want the improved code to give the same answer
but be faster, take less resources, etc. As long as the fitness
function can automatically qualitatively say if the code is
better or not we can in principle automatically evolve code
in the right direction. Even in the case of multi-objective
evolution (MOEA), it may be possible to automatically score
several objectives. E.g., as well as the program’s run time, it
may be possible to calculate the quality of a mutant’s answer
and compare it with the quality of the original code’s answer.
Thus allowing a MOEA to automatically evolve mutants of
the original hand written code.

Running the mutated code is like the well established
software engineering tool of mutation testing [Langdon et
al., 2010] (also called mutation analysis). As with mutation
testing, typically you need to protect your system against
badly behaved mutants. Therefore it is common to use either
CPU or elapsed time limits to force termination. (Aborted
programs seldom get high fitness). You may want to use some
form of protection against mutants accessing data outside
the bounds of arrays. Depending upon the range of allowed
mutations, you may want to use virtual machines or some
form of sand boxing to prevent damage by rogue mutants.

As with mutation testing, and indeed Evolutionary Al-
gorithms (EAs), typically GI run time is dominated by
fitness testing. Also sometimes the time taken to compile
the mutants is also important. You may want to use Unix’
make to ensure only the modified code is recompiled, pre-
compile libraries (e.g. C .h files) [Langdon and Harman,
2015b], compile the whole population of mutants in one
operation [Langdon et al., 2015], or compile the population
using multiple computers [Harding and Banzhaf, 2009].

IV. THE AUTOMATIC PROGRAMMING CHALLENGE TO
EVOLUTIONARY COMPUTING

Artificial Intelligence has started to achieve impressive re-
sults. Twenty years ago IBM’s deep blue showed traditional
AI can play chess better than every human on the planet.
In the last few years neural network based deep learning has
made great strides and we now have cars driving themselves.
Although improving, these still suffer from the the AI being
hand built for a task. Evolutionary Computing roots are
mixed with those of AI [Fogel, 1994, page 9], but will these
advances leave EC behind? Even though single sequential
processor CPU core speeds have stagnated, Moore’s Law
[Moore, 1965] continues to pump out computation. Does this
mean the traditional complaint that EC is compute heavy
is not relevant. Like neural networks, EC can readily use
parallelism. Perhaps it is time to start to revisit EC’s primary
goal: the evolution of machine intelligence. This was GP’s
goal but two decades on it risks getting stuck in a symbolic
regression cul-de-sac. If we could improve software and
then make improvements on top of those and make more
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improvements on those and so on, we might escape from
the symbolic regression local attractor. However realistically
what GI gives you is more like trying to evolve a human
from an ape, rather than starting with a single celled amoeba.
Genetic Improvement does not give human intelligence but
it has been demonstrated on a few examples to be able to
create better programs than people have. This is not to say
that people could not have done better themselves but that the
GI did better stating from where the people had got to and
where they ran out of time/money/enthusism and stopped.

Possibly GI has been too ambitious so far, in that it has
compared its artefacts with code generated by some of the
brightest programmers on the planet on non-trivial tasks. A
more mundane goal might be to compare with the bread-and-
better tedious tasks which we now expect people to code.
If the machines can do this, they will get cheaper and so
free millions of human programmers for more interesting
challenges. Should EC aim to evolve simple cheap boiler
plate code better than the average jobbing programmer?

V. CURRENT WEAKNESSES OF GI AND WAYS FORWARD

A number of issues have already been raised
• Is the new code legible?

Is it maintainable?
These are important points, which may make some
reluctant to take up GI. [Fry et al., 2012] try to answer
them to some extent. In their study, they showed that
the provision of automatically generated comments to
accompany the source code changes made automatically
generated bug repairs more maintainable, rather than
less.
As will be mentioned on at the end of Section VI-F, it is
common to minimise the size of the code change. For
example, in bug fixing delta debugging [Zeller, 1999]
is often used to remove unneeded changes. Reducing
the volume of code is often assumed to make it more
comprehensible.
Of course if GI is operating on machine code binaries
(Section III) then we assume that we do not care about
understanding the program (perhaps we do not even
have the source code) even before it is debugged or its
performance is automatically improved. Hence we need
only try to understand the mutations from the academic
point of view of understanding our evolutionary process.

• Does the evolved program work?
Is it correct?
It is possible to run the full gamete of software valida-
tion tools post evolution. It seems reasonable that these
tools will work on artificial code as well as on hand
written code.
The original code remains available and the new code
can be automatically compared with it. We had one
case where the new and old code were run together
and their answers automatically compared [Langdon and
Harman, 2010]. We did this more than a million times.
No difference was ever found.

Do you ever test your code a million times? And check
it gives the right answer? Every time?

• Who is liable if (when?) something goes wrong?
Hmm its not clear that this is worse for GI than for any
other part of the software tool chain.
Compilers are not formally verified. They certainly can
do unexpected things. However these days they are
sufficiently good, that their behaviour has become the
de facto definition of the language they compile.

• User acceptability.
It might be suggested that people will not want to trust
code that has been automatically generated. However
Microsoft claim their Flash Fill (end of Section VII)
has more than a hundred million potential users. In fact
this insert of practical AI into the user experience has
been widely welcomed.

• Benchmarks
From a practical point of view, experts in Evolution-
ary Computing will want an easy route into genetic
improvement. Part of this aught to be a set of simple
to understand benchmark problems [Ang and Li, 2002]
and their associated tools so that they can quickly get
useful results without an unnecessarily steep learning
curve. Claire Le Goues has made a start on this by
making available her set of 105 bugs to be repaired as
part of her GenProg tool. Something similar is needed
for other forms of program improvement.

VI. STEPPING STONES ON THE ROUTE FORWARD

There are five steps we need to go though before running a
genetic programming system [Poli et al., 2008, page 19]. A
key challenge for EC is to decide if they are really suitable for
genetic improvement. And if not to investigate alternatives.

A. Representation

Traditionally in tree based GP the first two steps (choice
of terminals, leaf nodes, and functions, internal tree nodes)
define the problem representation. However we should also
include considering the genetic operations. In EC we have a
wealth of experience in devising representations.

An obvious requirement is that the representation should
include at least one acceptable solution. So far with the
programs modified and their new requirements it has not
been difficult to ensure the existence of solutions. However
it may be that some bug repairs have been less successful
because they have restricted the range of modification they
allow too much. Unfortunately the existence of a solution is
not sufficient. We need the representation, fitness function
and genetic operations to conspire together to make a fitness
landscape which makes it practical to find a solution.

Most GI work has represented members of the population
as changes to the target program’s source code. This has the
advantage that changes may be human readable but is it the
best for evolution? Should we be looking at:

• Is the source the right target? Would Evolutionary
Algorithms do better trying to modify the program trace
or the sequence of instructions it executes?
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• Much GI work has focused on industrial strength code
written in C or C++. Would other languages better
better? Is the source code the right target? Would
intermediate levels like Java or .net byte code be more
evolvable?

• What of genotype-phenotype mappings? Should EC use
an intermediate mapping, perhaps based on Gruau’s
embryology [Gruau and Whitley, 1993; Gruau, 1996]?

• New mutation operators.
GI has so far been restricted to operations like deleting
a line of the target program and copying a line of code
and and pasting it elsewhere.

• New crossover operators.
• Provably correct transformations.

Right at the beginning [Ryan and Walsh, 1995], the then
conservative nature of the parallel computing commu-
nity effectively mandated only provably semantics pre-
serving transformations be used to convert sequential to
parallel code. The risk of mutated code doing something
unwanted is still very much with us. Perhaps with now
much faster ways to check for semantic equivalence GI
should re-consider its fast and loose ways?
Although SAT technology has progressed in leaps and
bounds in the last ten years, in practice Evolutionary
Computing might want to consider hybrid approaches
in which only the most likely mutants are validated. Or
indeed, formal methods are only used after evolution
has finished.

B. Improving in Multiple Ways: EMOs

Traditionally people have been able to optimise code for
one objective (typically speed). It appears they are less
able to optimise programs for non-traditional objectives like
extending battery life. However machines may be able to
automatically optimise non-traditional objectives provided
suitable measurements (e.g. energy consumption) can be
incorporated into the fitness function.

It is typical in engineering to seek a good trade-off between
multiple conflicting objectives. Evolutionary Multiobjective
Optimization (EMO), e.g. [Deb et al., 2002], has been
widely used (e.g. [Coello Coello and Cruz Cortes, 2005;
Xue et al., 2013]) and are increasingly being used in Search
Based Software Engineering (e.g. [Langdon et al., 2009]).
Although very asymmetric objectives may be problematic
[Langdon and Harman, 2014], EMOs offer the prospect of
automatically optimising code for several objectives [Harman
et al., 2012], which may be difficult for manual coders.

C. Improving Code and its Validation: Coevolution

Coevolution [Darwen and Yao, 2001] of code to pass the
current test suite and simultaneous evolution of the tests to
stretch the code [Hillis, 1992] has been considered but with
little progress. However successful applications in financial
modelling, presented at the recent UCL workshop on Genetic
Improvement [Hemberg et al., 2015], may encourage more
research into using coevolution within GI.

D. Fitness Measure. Can GI use Surrogates?

As mentioned in Section III, existing GI work performs
selection by creating and running the mutant code and
comparing its performance with that of the original code.
This is computationally demanding and typically the end
result of all this work is condensed into a single bit: does
this mutant get children or not.

To reduce computational overhead and so allow bigger
populations, usually GI uses random subsets selected from
the complete test suite every generation. Assessing fitness
on dynamic randomised subsets goes back to Gathercole
[Gathercole and Ross, 1994]. (His DSS is used commercially
[Foster, 2001] [Poli et al., 2008, page 84].) [Langdon, 1998;
Teller and Andre, 1997] advanced statistical arguments for
choosing how many tests to use. However in practise, it
appears feasible to use just a handful of tests provided they
are randomly redrawn frequently.

The problem of computationally demanding fitness func-
tions has frequently been encountered in Evolutionary Com-
putation when dealing with real problems [Forrester et al.,
2008]. For example designing an aircraft to withstand light-
ening strikes might need running a complete three dimen-
sional electrodynamic simulation of the aircraft. However
some success has been reported by replacing expensive
fitness functions with cheaper surrogates [Jin, 2011]. Sur-
rogates may be applied when the underlying system has
boundaries and discontinuities. Which gives hope that they
may be applied to program spaces. As will be seen in
Section VI-H, program spaces may be better behave than
common prejudices suggest.

E. Setting key parameters values

In EC it is well known that parameters like population size
and mutation and crossover rates can make a huge difference
to how successful a run will be. There has been no published
studies of how parameters affect GI. Surely there is EC
theory [Bäck, 1996] or experience [Ribeiro Filho et al., 1994]
which could be applied to the problem of evolving better
programs?

F. Termination, Who is the result

As with many non-trivial EC problems, the choice of when
to terminate evolution is often dominated by the available
compute resources. But again, perhaps there is EC theory
and practise to be applied here. Should we be looking at re-
start strategies when the population (genotype or phenotype)
appears to have converged? How can we reliable recognise
premature convergence? There has been only a little work in
GI on preventing re-exploration of the same solutions (via
some form of tabu list [Langdon et al., 2015]).

In EC (including GI) it is common to simply use the best
individual in the last generation as the result of evolution.
However, it is entirely feasible to store every mutant program
and its associated fitness. Perhaps an earlier mutant might be
chosen. We might want to use other criteria as well as fitness
to choose the final mutant. For example we might opt for the
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mutant which makes the fewest changes to the original code.
In GI it is common to chose the mutant with the best fitness
and then minimise it after evolution by removing changes one
at a time and retaining only those essential for its improved
performance.

G. The Search Space

The global structure of program search spaces is little un-
derstood, partly due to the lack of tools for analysing their
complex structure. A recent model, local optima networks
[Ochoa et al., 2014; Verel et al., 2011] helps to fill this gap by
providing a way of expressing search spaces as graphs where
nodes are local optima under a given mutation operator; and
edges represent probabilistic transitions with an explorative
operator, such as a stronger perturbation or crossover [Ochoa
et al., 2015a]. Modelling landscapes as networks brings a
new set of tools and metrics for analysing search spaces
and the possibility of visualising them (see Figure 2). The
global structure of several combinatorial spaces, such as the
travelling salesman problem, has been thought to contain a
big-valley or central-massif where many local optima exist.
That is, the local optima are not randomly distributed, instead
good solutions tend to cluster around the global optimum.
However, recent studies have observed that, for solutions
close to the global optimum, this structure breaks down into
multiple valleys [Hains et al., 2011; Ochoa et al., 2015b;
Ochoa and Veerapen, 2016] (see Figure 2). In the study of en-
ergy surfaces in theoretical chemistry these have been called
multiple funnels [Doye et al., 1999]. Multiple funnels implies
that local optima are organised into clusters. We suggest that
local optima networks can be used to analyse the global
structure of program spaces. Important aspects to study are
the distribution of local optima and their connectivity pattern.
Do program spaces conform a big-valley? Do they divide
into multiple valleys or funnels? Answering these questions
will help to design more effective algorithms for traversing
program search spaces.

H. Neutral Networks

Traditionally the space of program mutations is regarded as
very disjointed with few good programs. However actual
experience with sizeable real-world programs [Schulte et al.,
2014b] (it may be small toy program are less robust) in
equivalent mutants in mutation testing [Yao et al., 2014]
automatic bug repair and genetic improvement [Langdon
and Petke, 2015] suggests that many changes do not affect
programs at all. Indeed it may be that program spaces
may not be as hard to search as expected. Neutral Net-
works have been studied in GP [Langdon and Poli, 1998;
Banzhaf and Leier, 2005], Evolvable Hardware [Vassilev et
al., 2000], GI [Schulte, 2014], Artificial Life [Standish, 2003]
as well as in Nature [Babajide et al., 1997; van Nimwegen
et al., 1999].

A key challenge to EC is to consolidate prior theory on
landscapes riddled with fitness neutral pathways and usefully
apply it to real world programs.
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Fig. 2. Local optima network of a travelling salesman (TSP) instance with
666 cites. Nodes are local optima according to Lin-Kernighan, and edges
represent probabilistic transitions with the L-K double-bridge perturbation
operator. Colours identify the four largest connected components, which
are related to the dominant funnels in the landscape. The red component
(8 O’Clock) contains the global optima.

I. Semantic Search of Open Source code (GitHub etc.)

Software engineers are now used to vast repositories of less
than perfect but freely available program source code. At
present this is only exploited manually. However we are
starting to see the use of Evolutionary Computing both to
automatically fix bugs by reusing free code [Ke et al., 2015]
and to transplant new functionality into existing code [Barr et
al., 2015; Marginean et al., 2015]. Indeed EC can evolve new
functionality for sizeable applications [Harman et al., 2014;
Jia et al., 2015].

VII. BENEFITS TO EVOLUTIONARY COMPUTING

As mentioned in the previous section (VI), there are several
key challenges which are already core to the on going
success of Evolutionary Computing. GI research contains
many important practical real world problems which EC has
already made substantial progress on and also Automatic
Programming lies at the roots of Evolutionary Computing
as a practical Artificial Intelligence technique. Whilst evo-
lutionary routes to true AI are probably some way off,
genetic improvement of existing code is here and now.
Evolutionary Algorithms techniques offer the prospect of
substantial progress both in the short term and towards more
distance goals.

By sidestepping the Software Engineering Oracle Problem
(mentioned in Section III) and using existing automatic test
case generation tools, EC is close to having automated fitness
functions. By substantially automating program modification
and by re-using open source code, it may be that EC can
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lift millions of programmers from their current error prone
grind of mundane programming to a higher level, which is
more like them saying what needs to be done without having
to tell the computer how to do it [Langdon and Poli, 2002].
When the computer gets it wrong, the future response might
be to update the test suite, rather than the code. Indeed we
are already seeing user level programming based solely on
examples [Gulwani et al., 2012]. For example three years
ago, Microsoft released “Flash Fill” within their excel 2013
spreadsheet. Flash Fill allows people to program excel purely
from examples within their spreadsheet.

Surely Evolutionary Computing can do more!

VIII. CONCLUSIONS

Today Automatic Programming, in restricted domains, is
a reality for millions of users (see previous section). Ge-
netic Improvement [Langdon, 2015] is firmly rooted in
Evolutionary Computing and already offers a general way
of extending sizeable existing programs by using genetic
programming [Poli et al., 2008] to evolve not complete
programs but patches to them. In Section VI we have
listed many deficiencies of current GI and hopes that the
Evolutionary Computing experts may help. Perhaps the most
urgent are the related problems of representation and the
fitness landscape and also GA expertise in fitness surrogates
may help radically reduce fitness evaluation effort. Being
the second best way of solving any problem [Eiben and
Smith, 2015] makes Evolutionary Computing very general
but it is always at risk of being usurped in any domain by
algorithms developed exclusively for that domain. To survive
EC must keep conquering new challenges. Solving problems
no one else can, or simply no one has been brave enough to
try. The principle payment to EC (Section VII) may simply
be the opportunity to work on truly challenging problems,
relating back to the AI roots of EC and moving Automatic
Programming towards the sort of programs that are well
within the scope of manual methods.
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