
To be presented at CEC 2016 Key Challenges and Future Directions of Evolutionary Computation Workshop Yun Li, et al., Eds., Vancouver,
25-29 July, IEEE.

Genetic Improvement:
A Key Challenge for Evolutionary Computation

William B. Langdon Gabriela Ochoa

Abstract—Automatic Programming has long been a sub-goal
of Artificial Intelligence (AI). It is feasible in limited domains.
Genetic Improvement (GI) has expanded these dramatically to
more than 100 000 lines of code by building on human written
applications. Further scaling may need key advances in both
Search Based Software Engineering (SBSE) and Evolutionary
Computation (EC) research, particularly on representations,
genetic operations, fitness landscapes, fitness surrogates, multi
objective search and co-evolution.

I. INTRODUCTION

Genetic Algorithms were invented right at the start of Ar-
tificial Intelligence research in the hope they could harness
the power of Darwin’s natural evolution [Darwin, 1859] so
that we can get “computers to do what is needed to be
done, without being told exactly how to do it” [Koza, 1992,
page 1]. Natural selection and inheritable genetic variation
acting over billions of years has seen life diversify and new
species emerge and colonise every conceivable niche on the
planet. Indeed geographic [Owen et al., 1990] or even man
made environmental changes1 have seen the evolution or
diversification of species within a few hundred years. The
hope that such rapid evolution might also take place within
computer populations has in many cases been vindicated.
Today Evolutionary Computing has been successfully applied
to finding acceptable solutions (even optimal solutions) to
a wide range of numerical problems within the computer
and to the evolution of engineering structures and even art
and music in the physical world. However, now more than
twenty years after [Koza, 1992], Evolutionary Computing has
had less success at evolving the programs which control our
computers.

The success of Genetic Programming [Koza, 1992] is
well known. It has evolved predictive models and classifiers
[Pappa and Freitas, 2004; Bhowan et al., 2013] over a huge
range of applications, from predicting human endeavours
(finance [Neely and Weller, 1999; Dempster and Jones, 2000;
Tsang and Li, 2002], insurance [Langdon, 1999]) to the
outcome of breast cancer [Langdon and Buxton, 2004] and
drug research [Langdon and Barrett, 2004]. In engineering it
has been used to save energy in steel manufacture [Kovacic
and Sarler, 2014] and modelling microscopic particulate
pollution [Kovacic et al., 2013]. It has been used to design
electronic circuits [Koza et al., 1999; Koza and Bennett III,
1999] radio antennas [Hornby et al., 2011; Baker et al.,

Computer Science, University College London, London, WC1E 6BT, UK.
Computer Science, University of Stirling, Stirling, FK9 4LA, UK

1E.g. Melanism in the Peppered Moth during the 19th and 20th centuries
in England.

Test cases

Pop modifications

Pop modifications

Improved program

Select

Mutation and Crossover

Grammar

Fitness
population

Original code

GI mutants

Fig. 1. Evolutionary Computation cycle adapted for Genetic Improvement
(GI) of manually written C code (left). The grammar (or AST) tries to ensure
many mutants compile, run, and terminate. Fitness is given by comparing
with the original code run on the same test cases. (Figure from [Langdon
and Petke, 2016].)

2010], to aid building architects [O’Reilly and Hemberg,
2007] and in civil engineering [Baykasoglu et al., 2008;
Najafzadeh and Barani, 2011; Mirzahosseini et al., 2011] and
the environment [Savic et al., 1999; Brumby et al., 2001].

The next section introduces Genetic Improvement (GI)
whilst Section III gives more details on how it uses Evo-
lutionary Computing. Section IV asks how EC might further
improve GI and we challenge EC to lead further down the
road to Artificial Intelligence in general and to Automatic
Programming in particular. Section V discusses the existing
strengths and weakness of GI, whilst Section VI suggests
ways that EC might improve it. Finally Section VII mentions
some ways that GI researchers might help EC before we
conclude (Section VIII).

II. PERSPECTIVE:
WHAT GENETIC IMPROVEMENT HAS DONE SO FAR

Although Evolutionary Computing has had many successes
in software engineering [Harman, 2007], it has had less
success generating new software. However it has recently
started to be used for improving existing programs written by
people. Genetic Programming has been used to automatically
fix bugs [Arcuri, 2011; Weimer et al., 2010]. Although still
controversial in some software engineering circles, Weimer
and Forrest [Forrest et al., 2009] kicked down the door
and showed automatic bugfixing could be possible, whereas
the software engineering community appear to have ignored
the possibility until it was shown Evolutionary Computing
could fix real bugs in real programs. (Albeit some bugs,
not necessarily all of them.) Given this impetuous by EC,

1

http://userweb.eng.gla.ac.uk/yun.li/ga_demo/WCCI-EC.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.stir.ac.uk/~goc/
http://www.cs.ucl.ac.uk/
http://www.cs.stir.ac.uk/


automatic bug repair [Kessentini et al., 2011] is now a very
active research topic in software engineering.

Le Goues’ [Le Goues et al., 2012] prize winning work
on bug fixing is far from the only prize winning work using
genetic programming to improve existing code. Last year saw
the first international workshop on genetic improvement and
this year will see the second and also genetic improvement
represented at this conference, as well as various local GI
events. As well as fixing errors, GI has been demonstrated
speeding up code [Langdon and Harman, 2015b] generating
[Langdon and Harman, 2010] and improving parallel code
[Langdon and Harman, 2014; Langdon et al., 2014; Langdon
et al., 2015; Langdon and Harman, 2015a], automatically
specialising programs [Petke et al., 2014], reducing energy
[Schulte et al., 2014a; Bruce, 2015] and memory consump-
tion [Wu et al., 2015]. Indeed there is great interested in
multi-objective approaches where evolution might generate
a Pareto front [Harman et al., 2012] allowing the designer
to trade-off different objectives (e.g. quality v. memory)
indeed we might see the user being given the option of
trading objectives according to circumstances. E.g. someone
might want a mobile application’s full functionality whilst
their phone was plugged in at home but be prepared to
accept lower response in return for longer battery life when
disconnected from a power supply during the day.

III. HOW GENETIC IMPROVEMENT WORKS

Although there are many approaches in detail, currently
(see Figure 1) the general approach is to automatically pre-
process the program source 2 to give either a simple grammar
or description at the AST level and use that description to
constrain the genetic operations to ensure children in the next
generation do not have syntax errors. The individuals in the
evolving population are typically changes to the software to
be evolved. This makes them more compact. This is a bit
like seeding the population [Langdon and Nordin, 2000] with
the human written code rather than starting with a totally
random population. Although typically the syntax is correct,
a sizeable fraction of the mutants may not compile. This is
almost always due to variables being moved out of scope.
In some cases the mutations may be restricted to respect
variable scope limits, allowing 100% of children to compile.

Typically how good a child is (i.e. its fitness) is found by
compiling it, running it and then comparing its results with
those of the original program.

Great progress has been made with using Evolutionary
Computation to generate test suite for programs [Fraser and
Arcuri, 2011]. It is common to be able to generate test cases
that will cause the software under test to execute most of
the paths within it (NB. not all combinations). However in
the classic software engineering case, the automatic tests
say how to run the program but have no way of knowing
if it produced the right answer. (In software engineering

2Evolution at the level of Java byte code [Lukschandl et al., 1998; Orlov
and Sipper, 2011] or indeed machine code binaries [Schulte et al., 2010;
Schulte et al., 2014b; Schulte et al., 2015] may also be possible.

this is known as the “Oracle Problem”). But notice how
Evolutionary Computing side-steps the Oracle Problem. We
have an oracle. We have the original code. Admittedly in
some cases (e.g. bug fixing) the original code’s answer may
need some adjustment. But in many cases it is sufficient.
We just want the improved code to give the same answer
but be faster, take less resources, etc. As long as the fitness
function can automatically qualitatively say if the code is
better or not we can in principle automatically evolve code
in the right direction. Even in the case of multi-objective
evolution (MOEA), it may be possible to automatically score
several objectives. E.g., as well as the program’s run time, it
may be possible to calculate the quality of a mutant’s answer
and compare it with the quality of the original code’s answer.
Thus allowing a MOEA to automatically evolve mutants of
the original hand written code.

Running the mutated code is like the well established
software engineering tool of mutation testing [Langdon et
al., 2010] (also called mutation analysis). As with mutation
testing, typically you need to protect your system against
badly behaved mutants. Therefore it is common to use either
CPU or elapsed time limits to force termination. (Aborted
programs seldom get high fitness). You may want to use some
form of protection against mutants accessing data outside
the bounds of arrays. Depending upon the range of allowed
mutations, you may want to use virtual machines or some
form of sand boxing to prevent damage by rogue mutants.

As with mutation testing, and indeed Evolutionary Al-
gorithms (EAs), typically GI run time is dominated by
fitness testing. Also sometimes the time taken to compile
the mutants is also important. You may want to use Unix’
make to ensure only the modified code is recompiled, pre-
compile libraries (e.g. C .h files) [Langdon and Harman,
2015b], compile the whole population of mutants in one
operation [Langdon et al., 2015], or compile the population
using multiple computers [Harding and Banzhaf, 2009].

IV. THE AUTOMATIC PROGRAMMING CHALLENGE TO
EVOLUTIONARY COMPUTING

Artificial Intelligence has started to achieve impressive re-
sults. Twenty years ago IBM’s deep blue showed traditional
AI can play chess better than every human on the planet.
In the last few years neural network based deep learning has
made great strides and we now have cars driving themselves.
Although improving, these still suffer from the the AI being
hand built for a task. Evolutionary Computing roots are
mixed with those of AI [Fogel, 1994, page 9], but will these
advances leave EC behind? Even though single sequential
processor CPU core speeds have stagnated, Moore’s Law
[Moore, 1965] continues to pump out computation. Does this
mean the traditional complaint that EC is compute heavy
is not relevant. Like neural networks, EC can readily use
parallelism. Perhaps it is time to start to revisit EC’s primary
goal: the evolution of machine intelligence. This was GP’s
goal but two decades on it risks getting stuck in a symbolic
regression cul-de-sac. If we could improve software and
then make improvements on top of those and make more

2

http://geneticimprovement2015.com/
http://geneticimprovementofsoftware.com/
http://www.cs.ucl.ac.uk/staff/W.Langdon/cec2016/


improvements on those and so on, we might escape from
the symbolic regression local attractor. However realistically
what GI gives you is more like trying to evolve a human
from an ape, rather than starting with a single celled amoeba.
Genetic Improvement does not give human intelligence but
it has been demonstrated on a few examples to be able to
create better programs than people have. This is not to say
that people could not have done better themselves but that the
GI did better stating from where the people had got to and
where they ran out of time/money/enthusism and stopped.

Possibly GI has been too ambitious so far, in that it has
compared its artefacts with code generated by some of the
brightest programmers on the planet on non-trivial tasks. A
more mundane goal might be to compare with the bread-and-
better tedious tasks which we now expect people to code.
If the machines can do this, they will get cheaper and so
free millions of human programmers for more interesting
challenges. Should EC aim to evolve simple cheap boiler
plate code better than the average jobbing programmer?

V. CURRENT WEAKNESSES OF GI AND WAYS FORWARD

A number of issues have already been raised
• Is the new code legible?

Is it maintainable?
These are important points, which may make some
reluctant to take up GI. [Fry et al., 2012] try to answer
them to some extent. In their study, they showed that
the provision of automatically generated comments to
accompany the source code changes made automatically
generated bug repairs more maintainable, rather than
less.
As will be mentioned on at the end of Section VI-F, it is
common to minimise the size of the code change. For
example, in bug fixing delta debugging [Zeller, 1999]
is often used to remove unneeded changes. Reducing
the volume of code is often assumed to make it more
comprehensible.
Of course if GI is operating on machine code binaries
(Section III) then we assume that we do not care about
understanding the program (perhaps we do not even
have the source code) even before it is debugged or its
performance is automatically improved. Hence we need
only try to understand the mutations from the academic
point of view of understanding our evolutionary process.

• Does the evolved program work?
Is it correct?
It is possible to run the full gamete of software valida-
tion tools post evolution. It seems reasonable that these
tools will work on artificial code as well as on hand
written code.
The original code remains available and the new code
can be automatically compared with it. We had one
case where the new and old code were run together
and their answers automatically compared [Langdon and
Harman, 2010]. We did this more than a million times.
No difference was ever found.

Do you ever test your code a million times? And check
it gives the right answer? Every time?

• Who is liable if (when?) something goes wrong?
Hmm its not clear that this is worse for GI than for any
other part of the software tool chain.
Compilers are not formally verified. They certainly can
do unexpected things. However these days they are
sufficiently good, that their behaviour has become the
de facto definition of the language they compile.

• User acceptability.
It might be suggested that people will not want to trust
code that has been automatically generated. However
Microsoft claim their Flash Fill (end of Section VII)
has more than a hundred million potential users. In fact
this insert of practical AI into the user experience has
been widely welcomed.

• Benchmarks
From a practical point of view, experts in Evolution-
ary Computing will want an easy route into genetic
improvement. Part of this aught to be a set of simple
to understand benchmark problems [Ang and Li, 2002]
and their associated tools so that they can quickly get
useful results without an unnecessarily steep learning
curve. Claire Le Goues has made a start on this by
making available her set of 105 bugs to be repaired as
part of her GenProg tool. Something similar is needed
for other forms of program improvement.

VI. STEPPING STONES ON THE ROUTE FORWARD

There are five steps we need to go though before running a
genetic programming system [Poli et al., 2008, page 19]. A
key challenge for EC is to decide if they are really suitable for
genetic improvement. And if not to investigate alternatives.

A. Representation

Traditionally in tree based GP the first two steps (choice
of terminals, leaf nodes, and functions, internal tree nodes)
define the problem representation. However we should also
include considering the genetic operations. In EC we have a
wealth of experience in devising representations.

An obvious requirement is that the representation should
include at least one acceptable solution. So far with the
programs modified and their new requirements it has not
been difficult to ensure the existence of solutions. However
it may be that some bug repairs have been less successful
because they have restricted the range of modification they
allow too much. Unfortunately the existence of a solution is
not sufficient. We need the representation, fitness function
and genetic operations to conspire together to make a fitness
landscape which makes it practical to find a solution.

Most GI work has represented members of the population
as changes to the target program’s source code. This has the
advantage that changes may be human readable but is it the
best for evolution? Should we be looking at:

• Is the source the right target? Would Evolutionary
Algorithms do better trying to modify the program trace
or the sequence of instructions it executes?

3

http://www.cs.virginia.edu/genprog/


• Much GI work has focused on industrial strength code
written in C or C++. Would other languages better
better? Is the source code the right target? Would
intermediate levels like Java or .net byte code be more
evolvable?

• What of genotype-phenotype mappings? Should EC use
an intermediate mapping, perhaps based on Gruau’s
embryology [Gruau and Whitley, 1993; Gruau, 1996]?

• New mutation operators.
GI has so far been restricted to operations like deleting
a line of the target program and copying a line of code
and and pasting it elsewhere.

• New crossover operators.
• Provably correct transformations.

Right at the beginning [Ryan and Walsh, 1995], the then
conservative nature of the parallel computing commu-
nity effectively mandated only provably semantics pre-
serving transformations be used to convert sequential to
parallel code. The risk of mutated code doing something
unwanted is still very much with us. Perhaps with now
much faster ways to check for semantic equivalence GI
should re-consider its fast and loose ways?
Although SAT technology has progressed in leaps and
bounds in the last ten years, in practice Evolutionary
Computing might want to consider hybrid approaches
in which only the most likely mutants are validated. Or
indeed, formal methods are only used after evolution
has finished.

B. Improving in Multiple Ways: EMOs

Traditionally people have been able to optimise code for
one objective (typically speed). It appears they are less
able to optimise programs for non-traditional objectives like
extending battery life. However machines may be able to
automatically optimise non-traditional objectives provided
suitable measurements (e.g. energy consumption) can be
incorporated into the fitness function.

It is typical in engineering to seek a good trade-off between
multiple conflicting objectives. Evolutionary Multiobjective
Optimization (EMO), e.g. [Deb et al., 2002], has been
widely used (e.g. [Coello Coello and Cruz Cortes, 2005;
Xue et al., 2013]) and are increasingly being used in Search
Based Software Engineering (e.g. [Langdon et al., 2009]).
Although very asymmetric objectives may be problematic
[Langdon and Harman, 2014], EMOs offer the prospect of
automatically optimising code for several objectives [Harman
et al., 2012], which may be difficult for manual coders.

C. Improving Code and its Validation: Coevolution

Coevolution [Darwen and Yao, 2001] of code to pass the
current test suite and simultaneous evolution of the tests to
stretch the code [Hillis, 1992] has been considered but with
little progress. However successful applications in financial
modelling, presented at the recent UCL workshop on Genetic
Improvement [Hemberg et al., 2015], may encourage more
research into using coevolution within GI.

D. Fitness Measure. Can GI use Surrogates?

As mentioned in Section III, existing GI work performs
selection by creating and running the mutant code and
comparing its performance with that of the original code.
This is computationally demanding and typically the end
result of all this work is condensed into a single bit: does
this mutant get children or not.

To reduce computational overhead and so allow bigger
populations, usually GI uses random subsets selected from
the complete test suite every generation. Assessing fitness
on dynamic randomised subsets goes back to Gathercole
[Gathercole and Ross, 1994]. (His DSS is used commercially
[Foster, 2001] [Poli et al., 2008, page 84].) [Langdon, 1998;
Teller and Andre, 1997] advanced statistical arguments for
choosing how many tests to use. However in practise, it
appears feasible to use just a handful of tests provided they
are randomly redrawn frequently.

The problem of computationally demanding fitness func-
tions has frequently been encountered in Evolutionary Com-
putation when dealing with real problems [Forrester et al.,
2008]. For example designing an aircraft to withstand light-
ening strikes might need running a complete three dimen-
sional electrodynamic simulation of the aircraft. However
some success has been reported by replacing expensive
fitness functions with cheaper surrogates [Jin, 2011]. Sur-
rogates may be applied when the underlying system has
boundaries and discontinuities. Which gives hope that they
may be applied to program spaces. As will be seen in
Section VI-H, program spaces may be better behave than
common prejudices suggest.

E. Setting key parameters values

In EC it is well known that parameters like population size
and mutation and crossover rates can make a huge difference
to how successful a run will be. There has been no published
studies of how parameters affect GI. Surely there is EC
theory [Bäck, 1996] or experience [Ribeiro Filho et al., 1994]
which could be applied to the problem of evolving better
programs?

F. Termination, Who is the result

As with many non-trivial EC problems, the choice of when
to terminate evolution is often dominated by the available
compute resources. But again, perhaps there is EC theory
and practise to be applied here. Should we be looking at re-
start strategies when the population (genotype or phenotype)
appears to have converged? How can we reliable recognise
premature convergence? There has been only a little work in
GI on preventing re-exploration of the same solutions (via
some form of tabu list [Langdon et al., 2015]).

In EC (including GI) it is common to simply use the best
individual in the last generation as the result of evolution.
However, it is entirely feasible to store every mutant program
and its associated fitness. Perhaps an earlier mutant might be
chosen. We might want to use other criteria as well as fitness
to choose the final mutant. For example we might opt for the

4

http://crest.cs.ucl.ac.uk/cow/45/
http://crest.cs.ucl.ac.uk/cow/45/


mutant which makes the fewest changes to the original code.
In GI it is common to chose the mutant with the best fitness
and then minimise it after evolution by removing changes one
at a time and retaining only those essential for its improved
performance.

G. The Search Space

The global structure of program search spaces is little un-
derstood, partly due to the lack of tools for analysing their
complex structure. A recent model, local optima networks
[Ochoa et al., 2014; Verel et al., 2011] helps to fill this gap by
providing a way of expressing search spaces as graphs where
nodes are local optima under a given mutation operator; and
edges represent probabilistic transitions with an explorative
operator, such as a stronger perturbation or crossover [Ochoa
et al., 2015a]. Modelling landscapes as networks brings a
new set of tools and metrics for analysing search spaces
and the possibility of visualising them (see Figure 2). The
global structure of several combinatorial spaces, such as the
travelling salesman problem, has been thought to contain a
big-valley or central-massif where many local optima exist.
That is, the local optima are not randomly distributed, instead
good solutions tend to cluster around the global optimum.
However, recent studies have observed that, for solutions
close to the global optimum, this structure breaks down into
multiple valleys [Hains et al., 2011; Ochoa et al., 2015b;
Ochoa and Veerapen, 2016] (see Figure 2). In the study of en-
ergy surfaces in theoretical chemistry these have been called
multiple funnels [Doye et al., 1999]. Multiple funnels implies
that local optima are organised into clusters. We suggest that
local optima networks can be used to analyse the global
structure of program spaces. Important aspects to study are
the distribution of local optima and their connectivity pattern.
Do program spaces conform a big-valley? Do they divide
into multiple valleys or funnels? Answering these questions
will help to design more effective algorithms for traversing
program search spaces.

H. Neutral Networks

Traditionally the space of program mutations is regarded as
very disjointed with few good programs. However actual
experience with sizeable real-world programs [Schulte et al.,
2014b] (it may be small toy program are less robust) in
equivalent mutants in mutation testing [Yao et al., 2014]
automatic bug repair and genetic improvement [Langdon
and Petke, 2015] suggests that many changes do not affect
programs at all. Indeed it may be that program spaces
may not be as hard to search as expected. Neutral Net-
works have been studied in GP [Langdon and Poli, 1998;
Banzhaf and Leier, 2005], Evolvable Hardware [Vassilev et
al., 2000], GI [Schulte, 2014], Artificial Life [Standish, 2003]
as well as in Nature [Babajide et al., 1997; van Nimwegen
et al., 1999].

A key challenge to EC is to consolidate prior theory on
landscapes riddled with fitness neutral pathways and usefully
apply it to real world programs.

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●
●

●

● ●

●●

●

●●

● ●

●●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

● ●

●
●● ● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●●
●

●

●

●

●
●

●●

●

●●
●

●

●
● ●

● ●

●

●
●
●

●

● ●

●

●

● ●●

● ●

● ●

●

●

● ●
● ●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●
●
●

●

●

●

●

●
●

●
●

●
●● ●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●
● ●

●

●
●

● ●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

● ●

● ●●

●

● ●

●

●

●
●

●

●
●

●●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

● ●

●●

● ●

●
●

●

●

●

●
● ● ●

●

●

●

●

●
●

●

●
●

●
●

●● ● ●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●

●● ●●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

●

●

● ●●● ●

●

●
● ●

●

●

●
●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●
●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●
●

●

●
●
●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

● ●

●
●

●

●
●

●
●

●

●
●

● ●

●
●

●

●
●

● ●
●

●●●

●

●

● ●

●
●

●●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●●

●
●

●

●
●

● ●

●
●

●

●

●

●

●●

●
●

●
●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●●
●

●●
●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●●●
●

●
●

●
●

●
●

●

●

●●
●

● ●●
●

●

● ●●

●
●

● ●

●

●

●

●

●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●

●
●●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

● ●
● ●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●

●
●

●●

●

●●
●
●

●
●

●
●

●●
●

●●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●
●

●●

●
●

● ●
●

●
●

●

●
●

●
●●

●
●

●

●●

●

●
● ●

●
●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●
●●

●

●
●

●
●

●●

●

●

●

●●

●
● ●

●

●

●

●

●

●●

●

●

●
●

●●
●

●

●
●

●
●

●●
●● ●

●
●●●●
●

●

● ●●

● ●
●

●
●●

●
●

●

●
●

●

●

●
●
●

●
●
●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●●
●●

●

●
●●

●

●

●
●
●

●

●
●

● ●
●●

●
●●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●
●
●

●

●

● ●

●
●

●

●

●
●

●

●

●

● ●

●●
●

●●

● ●
●

●

●
●

●●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

Fig. 2. Local optima network of a travelling salesman (TSP) instance with
666 cites. Nodes are local optima according to Lin-Kernighan, and edges
represent probabilistic transitions with the L-K double-bridge perturbation
operator. Colours identify the four largest connected components, which
are related to the dominant funnels in the landscape. The red component
(8 O’Clock) contains the global optima.

I. Semantic Search of Open Source code (GitHub etc.)

Software engineers are now used to vast repositories of less
than perfect but freely available program source code. At
present this is only exploited manually. However we are
starting to see the use of Evolutionary Computing both to
automatically fix bugs by reusing free code [Ke et al., 2015]
and to transplant new functionality into existing code [Barr et
al., 2015; Marginean et al., 2015]. Indeed EC can evolve new
functionality for sizeable applications [Harman et al., 2014;
Jia et al., 2015].

VII. BENEFITS TO EVOLUTIONARY COMPUTING

As mentioned in the previous section (VI), there are several
key challenges which are already core to the on going
success of Evolutionary Computing. GI research contains
many important practical real world problems which EC has
already made substantial progress on and also Automatic
Programming lies at the roots of Evolutionary Computing
as a practical Artificial Intelligence technique. Whilst evo-
lutionary routes to true AI are probably some way off,
genetic improvement of existing code is here and now.
Evolutionary Algorithms techniques offer the prospect of
substantial progress both in the short term and towards more
distance goals.

By sidestepping the Software Engineering Oracle Problem
(mentioned in Section III) and using existing automatic test
case generation tools, EC is close to having automated fitness
functions. By substantially automating program modification
and by re-using open source code, it may be that EC can

5



lift millions of programmers from their current error prone
grind of mundane programming to a higher level, which is
more like them saying what needs to be done without having
to tell the computer how to do it [Langdon and Poli, 2002].
When the computer gets it wrong, the future response might
be to update the test suite, rather than the code. Indeed we
are already seeing user level programming based solely on
examples [Gulwani et al., 2012]. For example three years
ago, Microsoft released “Flash Fill” within their excel 2013
spreadsheet. Flash Fill allows people to program excel purely
from examples within their spreadsheet.

Surely Evolutionary Computing can do more!

VIII. CONCLUSIONS

Today Automatic Programming, in restricted domains, is
a reality for millions of users (see previous section). Ge-
netic Improvement [Langdon, 2015] is firmly rooted in
Evolutionary Computing and already offers a general way
of extending sizeable existing programs by using genetic
programming [Poli et al., 2008] to evolve not complete
programs but patches to them. In Section VI we have
listed many deficiencies of current GI and hopes that the
Evolutionary Computing experts may help. Perhaps the most
urgent are the related problems of representation and the
fitness landscape and also GA expertise in fitness surrogates
may help radically reduce fitness evaluation effort. Being
the second best way of solving any problem [Eiben and
Smith, 2015] makes Evolutionary Computing very general
but it is always at risk of being usurped in any domain by
algorithms developed exclusively for that domain. To survive
EC must keep conquering new challenges. Solving problems
no one else can, or simply no one has been brave enough to
try. The principle payment to EC (Section VII) may simply
be the opportunity to work on truly challenging problems,
relating back to the AI roots of EC and moving Automatic
Programming towards the sort of programs that are well
within the scope of manual methods.

REFERENCES

[Ang and Li, 2002] Kiam Heong Ang and Yun Li. An overview of
benchmarking techniques for multi-objective evolutionary algorithms. In
Soft Computing and Industry: Recent Applications. Springer, 2002.

[Arcuri, 2011] Andrea Arcuri. Evolutionary repair of faulty software.
Applied Soft Computing, 11(4):3494–3514, 2011.

[Babajide et al., 1997] Aderonke Babajide, Ivo L. Hofacker, Manfred J.
Sippl, and Peter F. Stadler. Neutral networks in protein space, a
computational study based on knowledge-based potentials of mean force.
Folding & Design, 2:261–269, 20 August 1997.

[Bäck, 1996] Thomas Bäck. Evolutionary Algorithms in Theory and
Practice: Evolution Strategies, Evolutionary Programming, Genetic Al-
gorithms. Oxford University Press, New York, 1996.

[Baker et al., 2010] James Baker, Nuri Celik, Nobutaka Omaki, Jill
Kobashigawa, Hyoung-Sun Youn, and Magdy F. Iskander. On the design
of integrated HF radar systems for homeland security applications. In
2010 IEEE International Conference on Wireless Information Technology
and Systems (ICWITS), 28 October-September 3 2010.

[Banzhaf and Leier, 2005] Wolfgang Banzhaf and Andre Leier. Evolution
on neutral networks in genetic programming. In Tina Yu et al., editors,
Genetic Programming Theory and Practice III, volume 9 of Genetic
Programming, chapter 14, pages 207–221. Springer, 12-14 May 2005.

[Barr et al., 2015] Earl T. Barr, Mark Harman, Yue Jia, Alexandru
Marginean, and Justyna Petke. Automated software transplantation. In
Tao Xie and Michal Young, editors, International Symposium on Software
Testing and Analysis, ISSTA 2015, pages 257–269, Baltimore, USA, 14-
17 July 2015. ACM. ACM SIGSOFT Distinguished Paper Award.

[Baykasoglu et al., 2008] Adil Baykasoglu, Hamza Gullu, Hanifi Canakci,
and Lale Ozbakir. Prediction of compressive and tensile strength of
limestone via genetic programming. Expert Systems with Applications,
35(1-2):111–123, 2008.

[Bhowan et al., 2013] Urvesh Bhowan, Mark Johnston, Mengjie Zhang,
and Xin Yao. Evolving diverse ensembles using genetic programming
for classification with unbalanced data. IEEE Trans. EC, 17(3):368–386.

[Bruce, 2015] Bobby R. Bruce. Energy optimisation via genetic improve-
ment A SBSE technique for a new era in software development. In
William B. Langdon et al., editors, Genetic Improvement 2015 Workshop,
pages 819–820, Madrid, 11-15 July 2015. ACM.

[Brumby et al., 2001] S. P. Brumby, J. J. Bloch, N. R. Harvey, J. Theiler,
S. Perkins, A. C. Young, and J. J. Szymanski. Evolving forest fire burn
severity classification algorithms for multi-spectral imagery. In Sylvia S.
Shen and Michael R. Descour, editors, In Algorithms for Multispectral,
Hyperspectral, and Ultraspectral Imagery VII, Proceedings of SPIE,
volume 4381, pages 236–245, 2001.

[Coello Coello and Cruz Cortes, 2005] Carlos A. Coello Coello and Nareli
Cruz Cortes. Solving multiobjective optimization problems using an ar-
tificial immune system. Genetic Programming and Evolvable Machines,
6(2):163–190, June 2005.

[Darwen and Yao, 2001] Paul J. Darwen and Xin Yao. Why more choices
cause less cooperation in iterated prisoner’s dilemma. In CEC-2001,
volume 2, pages 987–994. IEEE, 27-30 May 2001.

[Darwin, 1859] Charles Darwin. The Origin of Species. John Murray,
penguin classics, 1985 edition, 1859.

[Deb et al., 2002] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions
on Evolutionary Computation, 6(2):182–197, Apr 2002.

[Dempster and Jones, 2000] M. A. H. Dempster and C. M. Jones. A real-
time adaptive trading system using genetic programming. Quantitative
Finance, 1:397–413, 2000.

[Doye et al., 1999] J P K Doye, M A Miller, and D J Wales. The double-
funnel energy landscape of the 38-atom Lennard-Jones cluster. Journal
of Chemical Physics, 110(14):6896–6906, 1999.

[Eiben and Smith, 2015] Agoston E. Eiben and Jim Smith. From evolution-
ary computation to the evolution of things. Nature, 521(7553):476–482.

[Fogel, 1994] David B. Fogel. An introduction to simulated evolutionary
optimization. IEEE trans. on Neural Networks, 5(1):3–14, Jan 1994.

[Forrest et al., 2009] Stephanie Forrest, ThanhVu Nguyen, Westley
Weimer, and Claire Le Goues. A genetic programming approach to
automated software repair. In Guenther Raidl et al., editors, GECCO
’09, pages 947–954, Montreal, 8-12 July 2009. ACM. Best paper.

[Forrester et al., 2008] Alexander Forrester, Andras Sobester, and Andy
Keane. Engineering Design via Surrogate Modelling: A Practical Guide.
Wiley, 2008.

[Foster, 2001] James A. Foster. Review: Discipulus: A commercial genetic
programming system. Genetic Programming and Evolvable Machines,
2(2):201–203, June 2001.

[Fraser and Arcuri, 2011] Gordon Fraser and Andrea Arcuri. Evosuite:
automatic test suite generation for object-oriented software. In 8th

European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE ’11),
pages 416–419. ACM, September 5th - 9th 2011.

[Fry et al., 2012] Zachary P. Fry, Bryan Landau, and Westley Weimer.
A human study of patch maintainability. In Zhendong Su, editor,
Proceedings of the 2012 International Symposium on Software Testing
and Analysis, ISSTA 2012, pages 177–187, Minneapolis, MN, USA, 15-
20 July 2012. ACM.

[Gathercole and Ross, 1994] Chris Gathercole and Peter Ross. Dynamic
training subset selection for supervised learning in genetic programming.
In Yuval Davidor et al., editors, Parallel Problem Solving from Nature
III, volume 866 of LNCS, pages 312–321, Jerusalem, 9-14 October 1994.
Springer-Verlag.

[Gruau and Whitley, 1993] Frederic Gruau and Darrell Whitley. Adding
learning to the cellular development process: a comparative study.
Evolutionary Computation, 1(3):213–233, 1993.

[Gruau, 1996] Frederic Gruau. On using syntactic constraints with genetic
programming. In Peter J. Angeline and K. E. Kinnear, Jr., editors,

6

http://dx.doi.org/10.1007/978-1-4471-0123-9_29
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Arcuri20113494.html
citeseer.ist.psu.edu/babajide97neutral.html
citeseer.ist.psu.edu/babajide97neutral.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Baker_2010_ieeeICWITS.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Baker_2010_ieeeICWITS.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/banzhaf_2005_GPTP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Barr_2015_ISSTA.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Barr_2015_ISSTA.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Baykasoglu2008111.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Baykasoglu2008111.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Bhowan_2012_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Bhowan_2012_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Bruce_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Brumby_2001_SPIE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Brumby_2001_SPIE.html
http://dx.doi.org/10.1007/s10710-005-6164-x
http://dx.doi.org/10.1007/s10710-005-6164-x
http://dx.doi.org/10.1109/CEC.2001.934298
http://dx.doi.org/10.1109/4235.996017
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Dempster_2000_QF.html
http://dx.doi.org/10.1063/1.478595
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Eiben_2015_nature.html
http://dx.doi.org/10.1109/72.265956
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_conf_gecco_ForrestNWG09.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_conf_gecco_ForrestNWG09.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/foster_2001_discipulus.html
http://dx.doi.org/10.1145/2025113.2025179
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Fry_2012_ISSTA.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ga94aGathercole.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Gruau_1993_alcdp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/gruau_1996_aigp2.html


Advances in Genetic Programming 2, chapter 19, pages 377–394. MIT
Press, Cambridge, MA, USA, 1996.

[Gulwani et al., 2012] Sumit Gulwani, William R. Harris, and Rishabh
Singh. Spreadsheet data manipulation using examples. Communications
of the ACM, 55(8):97–105, August 2012.

[Hains et al., 2011] D R Hains, L D Whitley, and A E Howe. Revisiting the
big valley search space structure in the TSP. Journal of the Operational
Research Society, 62(2):305–312, 2011.

[Harding and Banzhaf, 2009] Simon L. Harding and Wolfgang Banzhaf.
Distributed genetic programming on GPUs using CUDA. In Ignacio
Hidalgo et al., editors, Workshop on Parallel Architectures and Bioin-
spired Algorithms, pages 1–10, Raleigh, NC, USA, 13 September 2009.
Universidad Complutense de Madrid.

[Harman et al., 2012] Mark Harman, William B. Langdon, Yue Jia,
David R. White, Andrea Arcuri, and John A. Clark. The GISMOE
challenge: Constructing the Pareto program surface using genetic pro-
gramming to find better programs. In The 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE 12), pages 1–14,
Essen, Germany, September 3-7 2012. ACM.

[Harman et al., 2014] Mark Harman, Yue Jia, and William B. Langdon.
Babel pidgin: SBSE can grow and graft entirely new functionality into a
real world system. In Claire Le Goues and Shin Yoo, editors, Proceedings
of the 6th International Symposium, on Search-Based Software Engi-
neering, SSBSE 2014, volume 8636 of LNCS, pages 247–252, Fortaleza,
Brazil, 26-29 August 2014. Springer. Winner SSBSE 2014 Challange
Track.

[Harman, 2007] Mark Harman. The current state and future of search based
software engineering. In Lionel Briand and Alexander Wolf, editors,
Future of Software Engineering 2007, pages 342–357, 2007.

[Hemberg et al., 2015] Erik Hemberg, Jacob Rosen, Geoff Warner, Sanith
Wijesinghe, and Una-May O’Reilly. Tax non-compliance detection using
co-evolution of tax evasion risk and audit likelihood. In Katie Atkinson
and Ted Sichelman, editors, Proceedings of the 15th International
Conference on Artificial Intelligence and Law, ICAIL-2015, pages 79–88,
San Diego, USA, 2015. ACM.

[Hillis, 1992] W. Daniel Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. In Christopher G. Langton et al.,
editors, Artificial Life II, volume X of Sante Fe Institute Studies in the
Sciences of Complexity. Addison-Wesley, 1992.

[Hornby et al., 2011] Gregory. S. Hornby, Jason D. Lohn, and Derek S.
Linden. Computer-automated evolution of an X-band antenna for
NASA’s space technology 5 mission. Evolutionary Computation,
19(1):1–23, Spring 2011.

[Jia et al., 2015] Yue Jia, Mark Harman, William B. Langdon, and Alexan-
dru Marginean. Grow and serve: Growing Django citation services
using SBSE. In Shin Yoo and Leandro Minku, editors, SSBSE 2015
Challenge Track, volume 9275 of LNCS, pages 269–275, Bergamo, Italy,
5-7 September 2015.

[Jin, 2011] Yaochu Jin. Surrogate-assisted evolutionary computation: Re-
cent advances and future challenges. Swarm and Evolutionary Compu-
tation, 1(2):61–70, 2011.

[Ke et al., 2015] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy
Brun. Repairing programs with semantic code search. In Lars Grunske
and Michael Whalen, editors, 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2015), Lincoln, Nebraska,
USA, November 9-13 2015.

[Kessentini et al., 2011] Marouane Kessentini, Wael Kessentini, Houari
Sahraoui, Mounir Boukadoum, and Ali Ouni. Design defects detection
and correction by example. In 19th IEEE International Conference on
Program Comprehension (ICPC 2011), pages 81–90, Kingston, Canada,
22-24 June 2011.

[Kovacic and Sarler, 2014] Miha Kovacic and Bozidar Sarler. Genetic
programming prediction of the natural gas consumption in a steel plant.
Energy, 66(1):273–284, 1 March 2014.

[Kovacic et al., 2013] Miha Kovacic, Sandra Sencic, and Uros Zuperl.
Genetic programming and artificial neural network modeling of PM10
emission close to a steel plant. RMZ – Materials and Geoenvironment,
60(1):9–16, July 2013.

[Koza and Bennett III, 1999] John R. Koza and Forrest H Bennett III.
Automatic synthesis, placement, and routing of electrical circuits by
means of genetic programming. In Lee Spector et al., editors, Advances
in Genetic Programming 3, chapter 6, pages 105–134. MIT Press,
Cambridge, MA, USA, June 1999.

[Koza et al., 1999] John R. Koza, David Andre, Forrest H Bennett III,
and Martin Keane. Genetic Programming III: Darwinian Invention and
Problem Solving. Morgan Kaufman, April 1999.

[Koza, 1992] John R. Koza. Genetic Programming: On the Programming
of Computers by Natural Selection. MIT press, 1992.

[Langdon and Barrett, 2004] W. B. Langdon and S. J. Barrett. Genetic
programming in data mining for drug discovery. In Ashish Ghosh
and Lakhmi C. Jain, editors, Evolutionary Computing in Data Mining,
volume 163 of Studies in Fuzziness and Soft Computing, chapter 10,
pages 211–235. Springer, 2004.

[Langdon and Buxton, 2004] W. B. Langdon and B. F. Buxton. Genetic
programming for mining DNA chip data from cancer patients. Genetic
Programming and Evolvable Machines, 5(3):251–257, September 2004.

[Langdon and Harman, 2010] W. B. Langdon and M. Harman. Evolving a
CUDA kernel from an nVidia template. In Pilar Sobrevilla, editor, 2010
IEEE World Congress on Computational Intelligence, pages 2376–2383,
Barcelona, 18-23 July 2010. IEEE.

[Langdon and Harman, 2014] William B. Langdon and Mark Harman.
Genetically improved CUDA C++ software. In Miguel Nicolau et al.,
editors, 17th European Conference on Genetic Programming, volume
8599 of LNCS, pages 87–99, Granada, Spain, 23-25 April 2014. Springer.

[Langdon and Harman, 2015a] William B. Langdon and Mark Harman.
Grow and graft a better CUDA pknotsRG for RNA pseudoknot free
energy calculation. In William B. Langdon et al., editors, Genetic
Improvement 2015 Workshop, pages 805–810, Madrid, 11-15 July 2015.
ACM.

[Langdon and Harman, 2015b] William B. Langdon and Mark Harman.
Optimising existing software with genetic programming. IEEE Trans-
actions on Evolutionary Computation, 19(1):118–135, February 2015.

[Langdon and Nordin, 2000] W. B. Langdon and J. P. Nordin. Seeding
GP populations. In Riccardo Poli et al., editors, Genetic Programming,
Proceedings of EuroGP’2000, volume 1802 of LNCS, pages 304–315,
Edinburgh, 15-16 April 2000. Springer-Verlag.

[Langdon and Petke, 2015] William B. Langdon and Justyna Petke. Soft-
ware is not fragile. In Paul Bourgine and Pierre Collet, editors,
Complex Systems Digital Campus E-conference, CS-DC’15, Proceedings
in Complexity, page Paper ID: 356. Springer, September 30-October 1
2015. Invited talk, Forthcoming.

[Langdon and Petke, 2016] William B. Langdon and Justyna Petke. Ge-
netic improvement. IEEE Software Blog, February 3 2016.

[Langdon and Poli, 1998] W. B. Langdon and R. Poli. Why ants are hard.
In John R. Koza et al., editors, Genetic Programming 1998: Proceedings
of the Third Annual Conference, pages 193–201, University of Wisconsin,
Madison, Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann.

[Langdon and Poli, 2002] W. B. Langdon and Riccardo Poli. Removal of
the man-machine interface bottleneck “Do what I ment not what I said”.
In Grand Challenges for Computing, Edinburgh, 24-26 November 2002.
Discussion paper.

[Langdon et al., 2009] W. B. Langdon, Mark Harman, and Yue Jia. Multi
objective higher order mutation testing with GP. In Guenther Raidl
et al., editors, GECCO ’09: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, page 1945, Montreal, 8-12
July 2009. ACM.

[Langdon et al., 2010] William B. Langdon, Mark Harman, and Yue Jia.
Efficient multi-objective higher order mutation testing with genetic
programming. Journal of Systems and Software, 83(12):2416–2430,
December 2010.

[Langdon et al., 2014] William B. Langdon, Marc Modat, Justyna Petke,
and Mark Harman. Improving 3D medical image registration CUDA
software with genetic programming. In Christian Igel et al., editors,
GECCO ’14: Proceeding of the sixteenth annual conference on genetic
and evolutionary computation conference, pages 951–958, Vancouver,
BC, Canada, 12-15 July 2014. ACM.

[Langdon et al., 2015] William B. Langdon, Brian Yee Hong Lam, Justyna
Petke, and Mark Harman. Improving CUDA DNA analysis software
with genetic programming. In Sara Silva et al., editors, GECCO ’15:
Proceedings of the 2015 on Genetic and Evolutionary Computation
Conference, pages 1063–1070, Madrid, 11-15 July 2015. ACM.

[Langdon, 1998] William B. Langdon. Genetic Programming and Data
Structures: Genetic Programming + Data Structures = Automatic Pro-
gramming!, volume 1 of Genetic Programming. Kluwer, Boston, 1998.

[Langdon, 1999] W. B. Langdon. Genetic programming approach to bene-
learn 99: I. In Peter van der Putten and Maarten van Someren, editors,
The Benelearn 1999 Competition, page 3.5, Sociaal-Wetenschappelijke
Informatica, Universiteit van Amsterdam, 2 November 1999.

7

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Gulwani_2012_CACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Gulwani_2012_CACM.html
http://dx.doi.org/10.1057/jors.2010.116
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/hardinggpem2009.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_Babel.html
http://dx.doi.org/10.1109/FOSE.2007.29
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Hemberg_2015_ICAIL.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Hemberg_2015_ICAIL.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Hornby_2011_EC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Hornby_2011_EC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/jia_2015_gsgp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/jia_2015_gsgp.html
http://dx.doi.org/10.1016/j.swevo.2011.05.001
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Ke_2015_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Ke_2015_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kessentini_2011_ICPC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kessentini_2011_ICPC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kovacic_2014_energy.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kovacic_2013_RMZ.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_1999_aigp3.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_gp3.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_gp3.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2004_ECDM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2004_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2000_seed.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_csdc.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2016_ieeeblog.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_1998_antspace.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/dwimrn0220.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2009_gecco2.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2014_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2014_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_1999_benelearn1.html


[Langdon, 2015] William B. Langdon. Genetically improved software. In
Amir H. Gandomi et al., editors, Handbook of Genetic Programming
Applications, chapter 8, pages 181–220. Springer, 2015.

[Le Goues et al., 2012] Claire Le Goues, Michael Dewey-Vogt, Stephanie
Forrest, and Westley Weimer. A systematic study of automated program
repair: Fixing 55 out of 105 bugs for $8 each. In Martin Glinz, editor,
34th International Conference on Software Engineering (ICSE 2012),
pages 3–13, Zurich, June 2-9 2012.

[Lukschandl et al., 1998] Eduard Lukschandl, Magus Holmlund, and Eirk
Moden. Automatic evolution of Java bytecode: First experience with
the Java virtual machine. In Riccardo Poli et al., editors, Late Breaking
Papers at EuroGP’98: the First European Workshop on Genetic Pro-
gramming, pages 14–16, Paris, France, 14-15 April 1998. CSRP-98-10,
The University of Birmingham, UK.

[Marginean et al., 2015] Alexandru Marginean, Earl T. Barr, Mark Har-
man, and Yue Jia. Automated transplantation of call graph and layout
features into Kate. In Yvan Labiche and Marcio Barros, editors, SSBSE,
volume 9275 of LNCS, pages 262–268, Bergamo, Italy, September 5-7
2015. Springer.

[Mirzahosseini et al., 2011] Mohammad Reza Mirzahosseini, Alireza
Aghaeifar, Amir Hossein Alavi, Amir Hossein Gandomi, and Reza
Seyednour. Permanent deformation analysis of asphalt mixtures
using soft computing techniques. Expert Systems with Applications,
38(5):6081–6100, 2011.

[Moore, 1965] Gordon E. Moore. Cramming more components onto
integrated circuits. Electronics, 38(8):114–117, April 19 1965.

[Najafzadeh and Barani, 2011] M. Najafzadeh and Gh.-A. Barani. Com-
parison of group method of data handling based genetic programming
and back propagation systems to predict scour depth around bridge piers.
Scientia Iranica, 18(6):1207–1213, December 2011.

[Neely and Weller, 1999] Christopher J. Neely and Paul A. Weller. Tech-
nical trading rules in the european monetary system. Journal of
International Money and Finance, 18(3):429–458, 1999.

[Ochoa and Veerapen, 2016] G. Ochoa and N. Veerapen. Deconstructing
the big valley search space hypothesis. In European Conference on Evo-
lutionary Computation in Combinatorial Optimisation(EvoCOP 2016),
volume 9595 of LNCS. Springer, 2016.

[Ochoa et al., 2014] Gabriela Ochoa, Sebastien Verel, Fabio Daolio, and
Marco Tomassini. Local optima networks: A new model of combinatorial
fitness landscapes. In Hendrik Richter and Andries Engelbrecht, editors,
Recent Advances in the Theory and Application of Fitness Landscapes,
volume 6 of Emergence, Complexity and Computation, pages 233–262.
Springer, 2014.

[Ochoa et al., 2015a] G. Ochoa, F. Chicano, R. Tinos, and D. Whitley.
Tunnelling crossover networks. In GECCO 2015, pages 449–456. ACM.

[Ochoa et al., 2015b] G. Ochoa, N. Veerapen, D. Whitley, and E. K.
Burke. The multi-funnel structure of TSP fitness landscapes: A visual
exploration,. In Artificial Evolution - 12th International Conference,
Evolution Artificielle, EA, 2015.

[O’Reilly and Hemberg, 2007] Una-May O’Reilly and Martin Hemberg.
Integrating generative growth and evolutionary computation for form
exploration. Genetic Programming and Evolvable Machines, 8(2):163–
186, June 2007. Special issue on developmental systems.

[Orlov and Sipper, 2011] Michael Orlov and Moshe Sipper. Flight of the
FINCH through the Java wilderness. IEEE Transactions on Evolutionary
Computation, 15(2):166–182, April 2011.

[Owen et al., 1990] R. B. Owen, R. Crossley, T. C. Johnson, D. Tweddle,
I. Kornfield, S. Davison, D. H. Eccles, and D. E. Engstrom. Major
low levels of Lake Malawi and their implications for speciation rates in
cichlid fishes. Proceedings of the Royal Society (B), 240(1299):519–553,
1990.

[Pappa and Freitas, 2004] Gisele L. Pappa and Alex A. Freitas. Towards a
genetic programming algorithm for automatically evolving rule induction
algorithms. In Johannes Furnkranz, editor, ECML/PKDD 2004 Proceed-
ings of the Workshop W8 on Advances in Inductive Learning, pages
93–108, Pisa, Italy, 20-24 September 2004.

[Petke et al., 2014] Justyna Petke, Mark Harman, William B. Langdon,
and Westley Weimer. Using genetic improvement and code transplants
to specialise a C++ program to a problem class. In Miguel Nicolau
et al., editors, 17th European Conference on Genetic Programming,
volume 8599 of LNCS, pages 137–149, Granada, Spain, 23-25 April
2014. Springer.

[Poli et al., 2008] Riccardo Poli, William B. Langdon, and
Nicholas Freitag McPhee. A field guide to genetic programming.
Published via http://lulu.com and freely available at

http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[Ribeiro Filho et al., 1994] Jose L. Ribeiro Filho, Philip C. Treleaven, and
Cesare Alippi. Genetic-algorithm programming environments. Computer,
27(6):28, June 1994.

[Ryan and Walsh, 1995] Conor Ryan and Paul Walsh. Automatic conver-
sion of programs from serial to parallel using genetic programming - the
paragen system. In Proceedings of ParCo’95. North-Holland, 1995.

[Savic et al., 1999] Dragan A. Savic, Godfrey A. Walters, and James W.
Davidson. A genetic programming approach to rainfall-runoff modelling.
Water Resources Management, 13(3):219–231, June 1999.

[Schulte et al., 2010] Eric Schulte, Stephanie Forrest, and Westley Weimer.
Automated program repair through the evolution of assembly code. In
Proceedings of the IEEE/ACM international conference on Automated
software engineering, pages 313–316, Antwerp, 20-24 September 2010.

[Schulte et al., 2014a] Eric Schulte, Jonathan Dorn, Stephen Harding,
Stephanie Forrest, and Westley Weimer. Post-compiler software opti-
mization for reducing energy. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’14, pages 639–652, Salt Lake City, Utah,
USA, 1-5 March 2014. ACM.

[Schulte et al., 2014b] Eric Schulte, Zachary P. Fry, Ethan Fast, Westley
Weimer, and Stephanie Forrest. Software mutational robustness. Genetic
Programming and Evolvable Machines, 15(3):281–312, September 2014.

[Schulte et al., 2015] Eric Schulte, Westley Weimer, and Stephanie Forrest.
Repairing COTS router firmware without access to source code or test
suites: A case study in evolutionary software repair. In William B.
Langdon et al., editors, Genetic Improvement 2015 Workshop, pages 847–
854, Madrid, 11-15 July 2015. ACM. Best Paper.

[Schulte, 2014] Eric Schulte. Neutral Networks of Real-World Programs
and their Application to Automated Software Evolution. PhD thesis,
University of New Mexico, Albuquerque, USA, July 2014.

[Standish, 2003] Russell K. Standish. Open-ended artificial evolution.
International Journal of Computational Intelligence and Applications,
3(2):167–175, 2003.

[Teller and Andre, 1997] Astro Teller and David Andre. Automatically
choosing the number of fitness cases: The rational allocation of trials. In
John R. Koza et al., editors, Genetic Programming 1997: Proceedings
of the Second Annual Conference, pages 321–328, Stanford University,
CA, USA, 13-16 July 1997. Morgan Kaufmann.

[Tsang and Li, 2002] Edward P. K. Tsang and Jin Li. EDDIE for financial
forecasting. In Shu-Heng Chen, editor, Genetic Algorithms and Genetic
Programming in Computational Finance, chapter 7, pages 161–174.
Kluwer Academic Press, 2002.

[van Nimwegen et al., 1999] Erik van Nimwegen, James P. Crutchfield,
and Martijn Huynen. Neutral evolution of mutational robustness. Proc.
Natl. Acad. Sci, 96:9716–9720, August 1999. USA.

[Vassilev et al., 2000] Vesselin K. Vassilev, Dominic Job, and Julian F.
Miller. Towards the automatic design of more efficient digital circuits. In
Jason Lohn et al., editors, The Second NASA/DoD workshop on Evolvable
Hardware, pages 151–160, Palo Alto, California, 13-15 July 2000. IEEE
Computer Society.

[Verel et al., 2011] S. Verel, G. Ochoa, and M. Tomassini. Local optima
networks of NK landscapes with neutrality. IEEE Transactions on
Evolutionary Computation, 15(6):783–797, 2011.

[Weimer et al., 2010] Westley Weimer, Stephanie Forrest, Claire Le Goues,
and ThanhVu Nguyen. Automatic program repair with evolutionary
computation. Communications of the ACM, 53(5):109–116, June 2010.

[Wu et al., 2015] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and
Jens Krinke. Deep parameter optimisation. In Sara Silva et al., editors,
GECCO ’15: Proceedings of the 2015 on Genetic and Evolutionary
Computation Conference, pages 1375–1382, Madrid, 11-15 July. ACM.

[Xue et al., 2013] Bing Xue, Mengjie Zhang, and Will N. Browne. Particle
swarm optimization for feature selection in classification: A multi-
objective approach. IEEE Transactions on Cybernetics, 43(6):1656–
1671, Dec 2013.

[Yao et al., 2014] Xiangjuan Yao, Mark Harman, and Yue Jia. A study
of equivalent and stubborn mutation operators using human analysis of
equivalence. In Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 919–930, Hyderabad. ACM.

[Zeller, 1999] Andreas Zeller. Yesterday, my program worked. today, it
does not. why? In Oscar Nierstrasz and Michel Lemoine, editors,
ESEC/FSE ’99, pages 253–267, Toulouse, Sept. 6–10 1999. Springer.

8

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_hbgpa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/lukschandl_1998_1java.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/lukschandl_1998_1java.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Marginean_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Marginean_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Mirzahosseini_2011_ESA.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Mirzahosseini_2011_ESA.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Najafzadeh20111207.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Neely_1999_JIMF.html
http://dx.doi.org/10.1145/2739480.2754657
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/OReilly_2007_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Orlov_2011_ieeeTEC.html
http://www.jstor.org/stable/49477
http://www.jstor.org/stable/49477
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/pappa_2004_ecml.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/RibeiroFilho_1994_GPE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/RibeiroFilho_1994_GPE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ryan_1995_paragen.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Savic1999219.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Savic1999219.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte10__autom_progr_repair_evolut_assem_code.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte2014optimization.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte2014optimization.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2014_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2014_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte2014dissertation.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Standish03a.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Teller_1997_acnfc.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Tsang_2002_gagpcf.html
http://dx.doi.org/10.1073/pnas.96.17.9716
http://dx.doi.org/10.1073/pnas.96.17.9716
http://dx.doi.org/10.1109/TEVC.2010.2046175
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2010_ACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2010_ACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wu_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wu_2015_GECCO.html
http://dx.doi.org/10.1109/TSMCB.2012.2227469
http://dx.doi.org/10.1145/2568225.2568265
http://dx.doi.org/10.1007/3-540-48166-4_16

	Introduction
	Perspective:What Genetic Improvement has done so far
	How Genetic Improvement Works
	The Automatic Programming Challenge to Evolutionary Computing
	Current Weaknesses of GI and Ways Forward
	Stepping Stones on the Route Forward
	Representation
	Improving in Multiple Ways: EMOs
	Improving Code and its Validation: Coevolution
	Fitness Measure. Can GI use Surrogates?
	Setting key parameters values
	Termination, Who is the result
	The Search Space
	Neutral Networks
	Semantic Search of Open Source code (GitHub etc.)

	Benefits to Evolutionary Computing
	Conclusions
	References

