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ABSTRACT
Grow and graft genetic programming greatly improves GPGPU
dynamic programming software for predicting the minimum
binding energy for folding of RNA molecules. The parallel
code inserted into the existing CUDA version of pknots was
“grown” using a BNF grammar. On an nVidia Tesla K40
GPU GGGP gives a speed up of up to 10 000 times.
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1. INTRODUCTION
Unlike protein folding, computer programs have had con-
siderable success at predicting the three dimensional struc-
ture of RNA using the sequence of bases along the RNA
molecule. These programs are based on finding the ther-
modynamically most stable structure, i.e. the one with the
lowest free energy. Since guaranteeing to find the minimum
energy requires considering all possible configurations, pop-
ular algorithms use Biologically feasible short cuts to reduce
both time and space complexity. There are a number of al-
gorithms which restrict their search to RNA structures no
more complex than pseudo knots and yet have been shown
to yield the correct structure for the vast majority of Biolog-
ically interesting RNA molecules [14, 15]. One such program
is pknotsRG which uses dynamic programming.

pknotsRG [15] implements Reeder and Giegerich’s algo-
rithm for pseudo knot RNA energy folding. Although more
recent programs are available, it has a number of advantages
for our purposes:

• It is freely available. (See http://bibiserv.techfak.uni-
bielefeld.de/adp/cuda.html)

• It is written in C and CUDA
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Figure 1: Ratio between original speed of CUDA
version of pknotsRG and CUDA version after grow
and graft change to allow processing multiple se-
quences in parallel.

• The same program is available both as a traditional
C program and also as a parallel version running on
graphics card GPU hardware.

• Although not as big as some programs we have suc-
cessfully enhanced [9], at 11 000 lines of code, it is def-
initely non-trivial. (About one thousand lines of code
relate to the graphics hardware.)

The RG pseudoknot Dynamic Programming algorithm is
matrix based, with the key matrix being (n + 1) by (n + 1).
Where n is the length of the string used to describe the RNA
molecule’s sequence of bases. (Although the pknotsRG ac-
tually only uses the lower triangle part of the matrix and
does not store the other half.) With modern GPUs hous-
ing thousands of processors, a single RNA molecule of a few
hundred bases does not represent sufficient computational
load to effectively use all the available parallelism. However
(as shown in Figure 1) enormous speedup are available us-
ing nVidia Tesla GPUs by processing strings representing
different RNA molecules in parallel. (Figure 2 shows the
wide range of RNA sizes typical of modest sized modern
Bioinformatics datasets.)

Our goal was to demonstrate growing a small fragment of
CUDA code and then grafting it into the existing pknotsRG
code. Notice, as with our previous work [1], we give evolu-
tion a series of hints based on engineering knowledge. Firstly
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Figure 2: Distribution of lengths of RNA molecules.
(From the CompaRNA version of RNAStrand which
excludes RNA molecules with less than 20 bases.)
Total 1987.

we strongly suspected that the performance bottleneck was
due to processing each RNA’s matrix in series, rather than
all of them in parallel. (A single K40 Tesla GPU can read-
ily process 200 000 such matrices. Table 1 summarises the
capabilities of the two GPUs used.) Secondly we identified
where in the existing parallel CUDA code we wanted the
new code to be grafted in. In [1] the automated grafting
process had more work to do in the sense the location was
only given to the nearest module in Pidgin (a two hundred
thousand line C program). In pknotsRG it seemed clear that
the ideal location for the new code was at the start of the
existing CUDA kernel and little benefit was anticipated in
allowing the optimisation process to consider alternatives.

The next section gives full details of our grow and graft
genetic programming (GGGP) system, including both the
initial flawed experiments and the successful ones. Since
solutions were found immediately in the 2nd approach, the
busy reader may wish to skip past details of crossover and
selection used to create subsequent generations and go di-
rectly to Section 3 which describes the results. Section 4
includes discussion of problems over come and the AI, En-
gineering and research implications.

2. THE GRAMMAR BASED GI SYSTEM
Much of the original code for pknotsRG was in fact automat-
ically generated by the Algebraic Dynamic Programming
(ADP) compiler [16]. The ADP compiler created the C and
CUDA code from rules used to define the binding energies of
interactions between RNA bases. As our previous Genetic
Improvement (GI) work [9, 6, 8, 11, 10, 4] the downloaded
code was automatically converted into a BNF grammar.

Originally it was intended to use the grammar rules from
all the CUDA code as feedstock for the newly grown code [12].
However this was not tried, as it appeared most such rules
contained variables that would be out of scope in the new
location and hence lead to compilation errors. Instead, we
attempted, only a little “plastic surgery” in which code is
taken from elsewhere and reused in the graft. The only
plastic surgery used was to gather constants (rather than
lines of code) and make them available when growing the
graft (see Section 2.3).

<gggpint_Kkernel_bnf.cu_57><gggpint_Kkernel_bnf.cu_128>

Figure 4: Example line replacement mutation. The
format <rule1><rule2> causes rule1 to be replaced by
rule2. So here line 57 is replaced by a copy of line
128. The type of each rule is given by the first part
of its name. Here both rules are of type gggpint.

Initially a 206 rule grammar was automatically created
from a modified form of the outer most function, calc all,
of the CUDA kernel. For reasons described in Section 2.1,
this was further reduced to a grammar of 111 rules. In each
case genetic programming [13] uses the grammar to control
the mutations it can make. The grammar ensures that after
each mutation the new code is syntactically correct. The
grammar not only ensures the correct placement of CUDA
language keywords, brackets, semi-colons, etc. but, in this
case, also ensures that the mutated code compiles. As the
evolving code does not include loops or recursion, it is easy
to guarantee that it will terminate, and a fitness value can be
assigned to each member of the population. (Section 2.6 will
describe our use of CUDA MEMCHECK to handle evolved
grafts which misbehave during run time fitness testing.)

2.1 Seed to be Grown and then Grafted
The outermost pknotsRG calc all kernel calls seven other

device functions with the same twelve parameters. These
include nine pointers to arrays. calc all is designed to run
one step of the dynamic programming algorithm on the tri-
angular matrix for one RNA molecule. At each step calcu-
lations are performed in a diagonal line across the matrix,
so at each step from 1 to n + 1 elements of the matrix are
involved in the calculations. These can be done in parallel.
Even for large RNA molecules from RNAstrand (Section 3.1)
the amount of work the kernel does in parallel is below the
number of threads needed to keep a K40 busy. Hence to ex-
ploit the massive parallelism available in GPUs the idea was
to plant some seed code into the existing calc all to allow it
to process multiple RNA sequences simultaneously.

The seed code intercepts calc all’s eleven existing param-
eters. It provides a gap for evolution to fill in. Into this gap
evolution puts code to update the twelve parameters passed
to the seven device functions. The seven device func-
tions are not changed.

In the first attempt to evolve a solution, the whole of
calc all including the manually created initial seed was con-
verted to a BNF grammar and evolved. After various teething
problems and bug fixes it was realised that the initial seed
was fatally restricted and could not, as posed, be evolved
into a solution. In the second attempt it was realised that
there was no need to evolve the rest of calc all and evolu-
tion should concentrate upon growing the graft (i.e. on the
seed code). Therefore only the seed code was converted into
a BNF grammar (see Figure 3). This reduced it from 206
rules of ten types to 111 rules of 4 types and lead immedi-
ately to a solution which was grafted into pknotsRG.

2.2 Variable Code: Grammar Types
Each line of the source code is represented by one or more
rules in the BNF grammar. Evolution changes the seed code.
Each variable rule belongs to one of ten (reduced to four)
types. Mutations only copy code between rules of the same
type.
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Table 1: GPU Hardware. Each GPU chip contains 13 or 15 identical independent multiprocessors (MP,
column 4). Each MP contains 192 stream processors. (Total given in column 6). The next two columns give
sizes of the L1 and L2 caches used. ECC enabled.

GPU Introduced compute level MP total cores Clock L1 cache L2 cache Memory Bandwidth

Tesla K20 2012 3.5 13 × 192 = 2496 0.71 GHz 48 KB 1.25 MB 5 GB 140 GB/s
Tesla K40 2013 3.5 15 × 192 = 2880 0.88 GHz 48 KB 1.50 MB 11 GB 180 GB/s

int i;

int j;

const int gggp_thread = blockIdx.x*blockDim.x+threadIdx.x;

//const int gggp_x = tree1(gggp_thread,gggp_nrna,diag,d_n,d_max_pknot_length);

//const int gggp_y = tree2(gggp_thread,gggp_nrna,diag,d_n,d_max_pknot_length,gggp_x);

//const int gggp_I = tree3(gggp_thread,gggp_nrna,diag,d_n,d_max_pknot_length,gggp_x,gggp_y);

const int gggp_x = d_max_pknot_length + 1;

const int gggp_y = gggp_x - diag + 0;

const int gggp_I = gggp_thread/gggp_x;

const int gggp_I1 = (d_max_pknot_length+1)*gggp_I;

const int gggp_IJ = ((d_max_pknot_length*(d_max_pknot_length+1))/2+

d_max_pknot_length+1)*gggp_I;

i = gggp_thread- gggp_y*gggp_I;

j = i+diag;

printf("diag %d thread %d gggp_I %d gggp_I1 %d gggp_IJ %d i %d j %d\n",

diag, gggp_thread, gggp_I, gggp_I1, gggp_IJ, i, j);

Figure 3: Manually written seed in 2nd experiments. Reformatted for clarity. The tree1,2,3 comments
indicate an s-expression using the variables listed as arguments should be evolved. The grammar did not
support this directly. Instead the evolvable code above was used. Fitness is based on gggp_I, gggp_I1,

gggp_IJ, i and j. (diag is included with printf as a debug aid.)

Ten of the variable rules were simple lines, mostly calls
to device functions. They could be exchanged with each
other, or indeed inserted before other statements. However
as they all referred to code outside the seed, they were all re-
moved in the second version. Similarly the three IF rules dis-
appeared in the second version. The 8 (later 6) constants are
represented by constant integer type rules (see Section 2.3).

Originally each of C types had a corresponding BNF rule
type (there were four of these) but this reduces to just gggp-
int for the int C type in the second version. That is, in the
final grammar there are 17 gggpint rules.

In all cases the code compiled.

2.3 Integer constants
All the integers used in the source and Makefile (see Fig-
ure 5), plus INT MAX (a total of 86) were extracted and
converted into BNF typed grammar rules like those used to
represent mutable code. They are given the same type as
int constants used in the seed code, which means any con-
stant in the seed code can be replaced with any constant (or
INT MAX) taken from anywhere in the original program.

2.4 Initial Population
The initial population of 300 unique individuals is created
using mutation.

2.5 Genetic Operations: Mutation and Crossover
Mutation and crossover were used in the first experiments.
In the second a solution was found in the first generation so
there was no need to breed a second.

In the first experiments, each member of the breeding
pool, i.e. the top 150 individuals from the previous genera-
tion, is allocated two children, one to be created by mutation
and one via crossover (between the selected parent and an-
other randomly selected from the breeding pool). If less than
150 individuals in the previous generation were selected, the
missing children are created at random in the same way as
the initial population was created.

New code mutations are made by appending another code
mutation. There are three types of code mutation: delete
a line, copy and replace the target line and copy and insert
before the target line. (Figure 4 gives an example of a copy
and replace mutation.

Insert mutations are denoted by a + between the rule
names. For example, <_Kkernel_bnf.cu_161>+<_Kkernel_
bnf.cu_170> which causes line 170 __syncthreads(); to be
inserted before line 161 calc_knot(· · · );

Crossover acts on the genetic representation giving a new
child by two point crossover like Koza’s sub-tree crossover [3].
Notice crossover only selects genes from its two parents, it
does not create new ones. If crossover is unable create a new
unique offspring after a small number of tries, the child is
created by mutating the parent instead.
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2.6 Ensuring Mutated Code Runs
Much of the CUDA code uses pointers and macros to ac-
cess arrays. Whilst it was possible to annotated these with
assert statements to ensure array indices did not exceed
their array’s bounds this was not sufficient to catch all pointer
errors and so during fitness testing evolved code was run in-
side the nVidia CUDA MEMCHECK tool. MEMCHECK
imposes a considerable run time penalty. To reduce run
time, the evolving graft was only tested on a small number of
strings (actually five) and these were quite short (35 bases).
Thirty five randomly chosen bases being enough so that
there is some interesting self-binding for the fitness func-
tion to check for. Also the CUDA block size was reduced
from 128 to 1.

In the event of a mutated program triggering a run time
assert (e.g. by violating an array bound check) or MEM-
CHECK detecting a memory access violation, testing of the
current individual is aborted. Its fitness is set from the an-
swers it returned before the error. The GPU is reset and fit-
ness testing of the next member of the population is started.

2.7 Fitness Function
It is well known that compiling the population in one go is
typically more efficient than compiling each member of the
population individually [2]. Therefore all 300 GP individuals
are converted into a single file which is compiled and linked
with the rest of pknotsRG to give a single image which runs
the 300 kernels one at a time.

To reduce Genetic Improvement (GI) run time, for fitness
testing the evolved code is tested on short RNA strands.
Random RNA strings of length 35 typically yield ten non-
zero intermediate energy values. To show the GI working
with multiple RNA molecules fitness testing processes five
in parallel. For simplicity these are all copies of the same
string. (In holdout and benchmark testing, multiple RNA
base sequences were used.) In the first experiments, the
evolved code was tested inside the complete calc all kernel
against answers produced by unmodified code. However in
the second, this was short cut and values produced by the
GI graft were checked directly (see following and printf in
Figure 3).

Table 2: GGGP to improve pknotsRG

Representation:
variable list of replacements, deletions and insertions into
BNF grammar

Fitness:
Compile modified code. Random RNA string of 35 bases.

Population:
Panmictic, non-elitist, generational. 300 members.

Parameters:
Initial population of random single mutants. 50% trunca-
tion selection. 50% two point crossover, 50% mutation. No
size limit.

The first experiments had a complex scheme of rewards
for running tests without aborting, returning non-zero val-
ues and penalties for giving default answers. In the second
experiments a simpler fitness function was used: As usual
the calc all kernel is called n + 1 times (i.e. 36). Once for
each position of the diagonal. After each, the five values
(see gggp_I etc., in printf in Figure 3) of the five evolved
variables is compared with its ideal answer. The difference
between them is normalised by the maximum correct value
of that variable. These are all summed. E.g. if i is 40 but
should be 15 then |40−15|/35 is added to the sum of errors.
The goal is to minimise this sum of 36 × 5 differences.

2.8 Selection
At the end of each generation the kernels are sorted by their
fitness and the best half (i.e. the top 150) are selected to be
parents of the next generation.

3. RESULTS
The two experiments differed in terms of the BNF gram-
mar and the fitness function but otherwise the same genetic
improvement system was used (see Table 2).

In both experiments the GI system was based on evolving
lines of code. Although, for simplicity (not shown in Fig-
ure 3) each component of the expressions to be evolved was
placed on a line by itself. This quick work around to al-
low easy use of the existing line based scheme unfortunately
lead to an opaque system where it was not obvious that it
lacked sufficient flexibility and intermediate values to allow
the desired functionality to evolve. Comments in Figure 3
give hints about how a multiple tree based system [5] might
have been used instead.

Given the improved representation a suitable program
(given in Figure 4) was found almost immediately. (Figure 4
shows line 57, gggp_x in the assignment of const int gggp_I,
see Figure 3, is replaced by a copy of line 128, gggp_y.) The
modified seed was grafted into pknotsRG and was found to
give enormous speedups when multiple RNA molecules were
processed in parallel (see Figure 6). In almost all cases the
new parallel code produces identical answers to the original
CPU version and in all cases the difference in energy pre-
dictions between the CPU version and the GGGP CUDA
version is less than 1%.

3.1 Real RNA Molecules: RNAstrand
Reeder and Giegerich [14] have previously shown that per-
formance of their dynamic programming algorithm on ran-
dom RNA base sequences is close to that on real RNA se-
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Figure 6: Speed at which new GGGP pknotsRG
predicts the binding energy of random RNA
molecules on nVidia Tesla K40 (+) and K20 (×)
GPUs. Depending on molecule size, the Tesla can
process hundreds or thousand of molecules before
saturating. The saturation speed was estimated
from the performance on the largest RNA molecules
to give speed up ratios plotted in Figure 1 and used
in Figure 7. The lengths (other than 35 bases) were
chosen to allow easy comparison with [14, Table 4]
(see also Figure 8). As expected [14], performance
on 60 and 90 Biological RNA sequences (76 and 408
bases, arrowed) closely follows that of random se-
quences.

quences. Nevertheless we down loaded real RNA sequences
whose structure has been determined from RNAstrand1 at
the International Institute of Molecular and Cell Biology
in Warsaw. We selected two collections of RNA sequences:
1) 90 sequences of 408 bases and 2) 76 sequences of 90 bases
and ran pknotsRG on them. In all cases the GGGP GPU
code produced identical energy predictions to those given by
the original CPU version of pknots. We ran the GGGP ver-
sion on both Tesla K20 (×) and K40 (+) and got run times
similar to those we would expect on random sequences (see
Figure 6).

4. DISCUSSION
It is difficult to convert C code to CUDA and have the par-
allel code both produce the right answers and take advan-
tage of the GPU hardware. The downloaded CUDA code
allocated one thread per matrix diagonal element. I.e. on
average n/2. As we can see from the saturation curves in
Figure 6 in excess of 100 000 active threads may be needed
to fully load a modern Tesla class GPU. Here the grown and
grafted code has enabled all of the existing CUDA code to
be used on multiple RNA molecules in parallel and achieved
enormous speedups as a result. However the bulk of the
CUDA code is as the CPU version. We have not permit-
ted evolution to improve it. We anticipate further gains are
possible here but suspect that we have already harvested the
“low hanging fruit”.

1http://iimcb.genesilico.pl/comparna/site media/entire
datasets/rnastrand.zip 163.3MB down loaded 3 Apr 2015
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From an artificial intelligence purist point of view the out-
come could be taken as disappointing. The seed from which
the CUDA code grew and the environment where it was
grafted both took human intervention. However that is not
the goal of GGGP [1], which seeks to exploit the synergy be-
tween human programmers and heuristic optimisation tech-
niques and thereby lift programming up a level of abstrac-
tion. GGGP can best be viewed as a stepping stone towards
programming as saying (e.g. via a high level description of
testing or a fitness function) what needs to be done and let-
ting the computer (compiler) get on and find a program that
implements this. In GGGP testing remains key but also it
requires the programmer to give hints about components
that the automatic procedure might use (here the 12 inputs
to the calc all CUDA kernel) and approximately where to
graft in the newly evolved code. (Here the start of calc all.)

From an engineering point of view a factor of ten thou-
sand fold speed up is not to be sneezed at. From a research
view point we need to investigate the differences between

809

http://iimcb.genesilico.pl/comparna/site_media/entire_datasets/rnastrand.zip
http://iimcb.genesilico.pl/comparna/site_media/entire_datasets/rnastrand.zip


the system that evolved but failed to find a solution and the
simpler one, with the missing variable diag included which
gave a general solution almost immediately.

5. CONCLUSIONS
pknotsRG [15] is unusual in real applications in having both
CPU and CUDA versions derived from a common stock.
With default parameters, in typical short RNA sequences,
the performance of the downloaded CUDA version was dis-
appointing. And yet we have shown a small graft of auto-
matically grown code can give a four orders of magnitude
speedup without loss of accuracy.
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