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Abstract  

Simulation and optimization of industrial 
processes is cost effective and profit productive. Often, 
high fidelity models require extensive resources to 
code and require long execution times. In this work, we 
examine using machine learning techniques to replace 
simulation models with high fidelity approximations. 
We test linear genetic programming, linear regression, 
and machine learning paradigms. The results show that 
high fidelity approximations (R2 of 0.99) are possible 
that execute in a fraction of the time required by the 
original simulator. These solutions are coded into web 
services so that a plant manager can input standard 
information into a user friendly web page, but produce 
results in a few milliseconds as opposed to hours. This 
advantage allows for real-time dynamic planning and 
optimization on the plant floor. 
 
 
INTRODUCTION 

We investigate four industrial strength machine 
learning paradigms:  Multiple Linear Regression, 
Classification and Regression Trees, Multivariate 
Adaptive Regression Splines, and Linear Genetic 
Programming. The best model will be chosen from 
among them on the basis of R-squared measure. 

The purpose for doing this is to turn this chosen 
model into a real time dynamic planning and 
optimization system. Here, we use an industrial data 
set, but the idea is extensible, without much change, to 
many optimization process required elsewhere. In an 
industrial plant, with these capabilities we can envision 
a supervisor making instant decisions for inputs of 
various goods for maximum profit according to the 
parameters which the optimizer would deliver. 
 
MACHINE LEARNING 

Machine learning is the study of computer 
algorithms that manipulate models improving them 

automatically through generations of experience to 
produce a single model highly effective in modeling 
the data provided. Models are necessary in all fields. 
Thus, at any time when a data set is available and the 
relationships are unknown, this method will help us 
to produce satisfying models. So, the method can be 
used to meet the demands of many industrialized or 
financial process. The machine learning methods we 
use have no capability of distinguishing between the 
physical meanings of each and every input variable.   

So, the technique can be applied to any process 
to optimize the output variable. The machine learning 
functions calibrate themselves as they work and 
produce a relationship between the given set of data 
to produce models that have an impressive 
correlation beyond the example data provided to it. 
The model that we generate from the machine 
learning process is then an effective tool to optimize 
any number of inputs in the range of our needs. We 
will show the flexibility we have in using these 
optimizing models. As an example, we deployed the 
model in a web-based, user-friendly interface. 
 
MULTIPLE LINEAR REGRESSION 

Multiple Linear Regression (MLR) can be 
regarded as a basic machine learning technique. We 
have used MLR in our analysis in this paper for two 
reasons. One, it is a powerful statistical technique 
which is capable of discovering the underlying 
linearity in the data set, producing good results in 
relationships like those that arise in physical sciences 
and economics. Furthermore, MLR will form the 
basic for comparison with other advanced methods 
that we will describe later. All of the methods share 
the statistical measure: R-squared.  

MLR seeks to find a linear relationship between 
the output and a given number of input variables. If Y 
is the output and X1, X2 … XN are the input 
variables, then multiple linear regression finds the 
constants in the following relationship: 
 

Y = C1(X1) + C2(X2) + … + CN (XN) 



Simple Graph 

R2  = 0.9246 
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 Therefore the sum of squares of the differences 
between the actual output and the predicted output is 
minimized. This is the R-square correlation measure. 
An R-square of at least 0.6 is considered to begin to 
show a statistically valid relationship. 

To illustrate the meaning of R2, a two-dimensional 
example with R2 = 0.92 is shown in Figure 1. 
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Figure 1. Illustration of the R2 Measure of Fitness. 
 
CART 

Classification and Regression Trees (CART) is 
one the methods that we have used in this analysis. 
CART software, available from Salford Systems, 
makes use of decision trees in order to discover the 
relationships that exist in our data. CART performs the 
analysis in two major steps: 

• Draws out an overgrown decision tree, and 
• Prunes back on the branches of this huge tree,  

sacrificing little accuracy while getting rid of 
subtrees that contribute the least to its 
accuracy.  

 
Maximal Tree 

After a training data is fed to the system, it works 
by going through this data and creating numerous 
 

 
  
 

splitting points in each of the variables. At each node 
of the tree which the system grows, it uses splitting 
decisions to classify the data into either the right 
child or the left child. Then, regarding each of its 
children as the root of a new tree, it finds the 
maximal tree through recursion. This brute force 
method will produce a huge decision tree and will 
uncover any relationship that might exist between the 
predictor variables and the output. In the next step, 
the program prunes back the tree to find the optimal 
one. 
 
Optimal Tree 

After making this overgrown and complicated 
tree, the algorithm works backward pruning all the 
subtrees that contribute least to the accuracy of the 
model. In effect, it will create a sizeable tree that will 
model our data well. In regression, each of the 
terminal nodes of the tree is assigned a mean value 
and all records that make up the leaves are then given 
this value as output. Though this method of 
classifying data (splitting them and giving them 
values) is a simple process, it is not feasible to 
perform this without the help of a computer program. 
Thus, CART software is particularly helpful. Its 
strength is its simplicity in modeling the 
automatically. As we will see later, it has a very high 
degree of accuracy to boast. 

Through this exhaustive search process, not only 
is the model ready but it also tells us how each of the 
variables contribute to the output variable.  

Figure 2 is an example of a complex regression 
tree.  Each of the terminal nodes represents a data 
value; each record is classified into one of the 
terminal node through the decisions made at the non-
terminal nodes that lead from the root to that leaf. It 
was generated by CART. 

 
 
 
Figure 2. Tree Generated by the CART Algorithm. 
 

 



MARS 
Multivariate Adaptive Regression Splines 

(MARS), is a machine learning technique that the 
Salford System created for data-modeling and data-
mining purposes. MARS has a Graphic User Interface-
(GUI) and is easy and quick to develop good models 
for data with complicated relationships inferred.  

Similar to the methodology of CART, the MARS 
method also uses a similar, two-step process to 
generate the model: 

1. Generate a large number of basis functions. 
2. Prune many of these basis functions without 

the loss of accuracy to the model. 
 
Basis Functions 

The multidimensional data is first scanned through 
in a brute force manner to find several short intervals 
where linear regression lines are used to fit the data, 
these are written as basis functions. The choice of the 
interval is through brute force and linear regression 
lines are then used to model the data in between these 
variables.  
 
Pruning 

After having created numerous of these regression 
splines the method then prunes back on these interval 
dissection and smoothes them out either by creating 
larger intervals or finding a compromise for the two 
endpoints in the data.  
 
Testing  

For testing the model that the software system has 
generated, we generally have two options given to us. 
We could either specify the file separately as a test 
input file or we can specify a certain portion of the file 
for testing. These two methods of testing will ensure 
that the model that we get will be one that is genuine 
and isn’t just over fitting our data. 
 
LINEAR GENETIC PROGRAMMING 

Linear Genetic Programming (LGP) is the 
controlled evolution of computer models (e.g., 
programs, instruction) that have the ability to predict 
the output given the various input using simple 
mathematical relationships among them (Deschaine 
2001, Francone 2003, RMLT 2003). Inspired from 
nature the methods extensively use genetic crossover, 
mutations and fitness-based selections to come up with 
the best model among billions of available ones. The 
strength of LGP lies in evolution and the sheer number 
of programs developed by the fast machine-code level 
algorithm and evolutionary processes. It comes up with 
the one that is the most suitable for our purpose.  

The basic idea of LGP is the evolution of models 
that are progressively adaptive at each successive 
generation to the data provided. LGP, unlike the 
methods of CART and MARS, can be continued 
infinitely. The user must decide what accuracy is 
suitable. The three major steps in this process are: 

1. Create an initial randomized pool of 
executable programs. 

2. Measure of the fitness of some of these 
programs to map the provided data 
accurately.  “Winners” and “losers” are 
selected at this stage from this fitness test. 

3. Modify the winning programs by mutation 
and crossover (techniques inspired by 
nature) to produce a new generation of 
candidate programs which replace those that 
are deemed “losers” in Step 2. The 
“winners” from Step 2 together with their 
offspring are then mixed into the population 
pool to repeat Step 2. 

Ultimately, this process, illustrated in Figure 3, 
produces a whole population fit for modeling our 
data. Each successive generation will introduce new 
programs that will perform the task better on the 
basis of natural selection. 
 

    
Figure 3: Linear Genetic Programming. 

A pool of random 
programs is generated. 

On the basis of fitness to 
the given data, “winners” 
and “losers” are chosen. 

Search operators are 
applied on the winners to 
produce new offspring 

Losers are replaced by 
the new generation in the 
population pool. 

The process is repeated with the 
new population. 



Major Controllable Search Parameters of 
Genetic Programming 

The three major search operators that are 
employed by Discipulus™ and the ones that we will 
discuss here are: 

• Mutation Rate 
• Crossover Rate 
• Reproduction Rate 
These three are the major methods in which the 

LGP algorithm will generate the new offspring that 
will be capable of producing better results.  

Each program that is selected as a “winner” in the 
run of a LGP algorithm is either mutated, reproduced, 
or program instructions are exchanged with the other 
winner to create an entirely new program which is put 
back into the pool.  We can vary the rate at which each 
of these search operators are applied by varying the 
mutation rate, the reproduction rate, and the cross over 
rate. These are generally kept at high, and the multiple 
run option in Discipulus™ software usually takes care 
of varying each of the parameters and to produce better 
and better results. 
 
DATA SET 

The data set, developed as described in 
(Deschaine, et. Al, 2002), held 7547 records.  With six 
different variables predicting the output, this was one 
vertical column of data, and thus we expected that the 
models that we obtain from the learning methods that 
are given above will be very accurate. Among the 7547 
data, 4967 or 66% of the available data records had 
zero as its output. The output variable, rapid at first, 
slows to increase to a little beyond one.  

The output variable with just the record number in 
an ascending order is graphed in Figure 4. Thus, we 
can see the output is nonzero for only 34% of the 
available data. This presents us with a challenge in 
modeling the data. However, we will see that the 
machine learning technique does well in modeling this 
data and is able to predict the output accurately 
throughout the range of the data. 

 
 

Figure 4. Sorted Depiction of the Output from the 
Physical Simulator. 

 
Now we will present the resulting accuracy of 

the models that we obtained from the various 
methods.  We will follow this order: 

1. Multiple Linear Regression, 
2. Classification and Regression Trees. 
3. Multivariate Adaptive Regression Splines, 

and 
4. Linear Genetic Programming. 
The data is always divided into thirds. For all 

methods sans LGP, two-thirds of the set is allocated 
for training, while the rest is used in testing the model 
after the methods have completed. However, for 
LGP, which we modeled using the software 
Discipulus™, we divided data into three equal parts: 
the training set, the validation set, and the testing set.  

The testing set is always the blind data set for 
each of the methods and is the best measure of the 
models produced. With Discipulus™, we also 
analyzed in two parts: first using the zeros and then 
without the zeros. Using the zeros produced a  
better result.  Therefore, for the rest of the analysis 
we only focus on the whole data set. Table 1  
summarizes the analysis and the accuracy of the 
models. The models themselves are available either 
in the software or exportable as computer programs.  

 

Table 1.  Summary of Analysis and Model Accuracy 
 

Methods Used 
 

FITNESS [R2] 
 

With Zeros 
 

Without Zeros 
Training         0.99077         0.97844 

Validation         0.99061         0.97928 
Linear Genetic Programming Applied         0.98863         0.97264 

Training         0.4900873402 
Multiple Linear Regression Testing         0.49563209 

Training         0.977 
Classification and Regression Trees Testing         0.937435855 

Training         0.983 
Multivariate Adaptive Regression Splines Testing         0.922904196  



     f[0]/=1.530829906463623f; Table 1 shows the fitness of the models that were 
developed. Most of the machine learning methods also 
provide extra information in that they tell which 
variables are the most important ones. 

      f[0]=Math.sqrt(f[0]); 
      f[0]/=v[2]; 
      f[1]+=f[0]; 

       f[0]+=v[3]; 
THE BEST MODEL       f[0]+=v[3]; 

      f[0]=Math.sqrt(f[0]); The best model is chosen on the basis of the R2 for 
the testing set of data.  The best model from each 
method is shown below in the Table 2. 

      f[0]+=f[0]; 
      f[0]*=f[0]; 
      f[0]-=f[1];  
      f[0]*=v[2]; Table 2.  Best Model Analysis 
  
(Note:  The entire model is not shown here.) 

Method Used 
R2 of the Best Model 

Obtained 
Linear 
Regression 
(with zeros) 0.489445672 
Discipulus 
(with zeros) 0.99077 
Discipulus 
(without zeros) 0.97844 
CART Analysis 
(with zeros) 0.937435855 
MARS 
Analysis 
(with zeros) 0.922904196 

 
Web-based Deployment 

For ease of model usage, data was converted into 
a Java™ web-based model. It was then possible to 
use this model as a service from the web and 
parameterize the output variable. 

Note in Figure 5, we can type input directly into 
the variable fields that are presented or we can input 
a whole file, which has formatted input present.  In 
either case, the output generated is in a tabular form.  

 
 

 

 
The chosen model was the model generated using 

LGP. This model was then converted into Java™ code 
using the facility provided by the Discipulus™ 
software. 

Excerpt from the model code is given below: 
 
f[0] is the output and the f[i] are the inputs: 
double DiscipulusJavaFunction(double  [ ] v )  
{    
      double [] f=new double[8];    
      double tmp = 0;           boolean cflag = false;    Figure 5: Input Screen for the Kodak Data Model         f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; Instantly with the web-based deployment, the 

result is displayed, as seen in Figure 6.  
      f[0]+=v[3];        f[2]+=f[0]; 
      f[0]*=f[0]; 
      f[0]/=v[1]; 



 
 

Figure 6: Output Generated by the Kodak Data Model. 
 
Note:  The output can easily be copied from this file into spreadsheet programs like OpenOffice™, StarOffice™, 
and MS Excel™. 
 
CONCLUSION 

The above model smoothly executes in 
milliseconds when the value of the inputs were 
increased and decreased by 25% of the range values 
used to develop the LGP model. The initial idea was to 
link an optimization algorithm to the LGP-derived 
JavaTM code for real-time optimization of plant 
processes. The JavaTM code executes so quickly that 
simple enumeration provides a suite of optimal 
operational conditions in seconds. The solution and 
tool developed around it requires no more skill than is 
available from personnel who use any common internet 
browsers, such as Mozilla™ or MSExplorer™.  

In the example, we have used the model only to 
display the output given the variables in a file or a 
single set of records, but this process could be extended 
to optimize a certain variable to within a given range.  

Using these fast executing models, we can get 
quick approximation to complex processes if we have a 
data set available to train one of the machine learning  
techniques. The model most suitable for our purpose 
could then be used in the above mentioned fashion, for 
increased productivity. 
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