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Abstract. We have previously shown on a range of benchmarks [Lang-
don and Buxton, 2001b] genetic programming (GP) can automatically
fuse given classifiers of diverse types to produce a combined classifier
whose Receiver Operating Characteristics (ROC) are better than [Scott
et al., 1998]’s “Maximum Realisable Receiver Operating Characteristics”
(MRROC). I.e. better than their convex hull. Here our technique is used
in a blind trial where artificial neural networks are trained by Clementine
on P450 pharmaceutical data. Using just the networks, GP automatically
evolves a composite classifier.

1 Introduction

There are an increasing range of cases where computer based systems are able to
provide huge volumes of data but rendering it intelligible is seldom attempted or
left to labour intensive intervention. This has provoked interest in artificial intel-
ligence techniques to try and extract information from the data. A common task
is classification. Here we are particularly interested in data rich Cheminformat-
ics applications where we wish to be able to predict how chemicals, particularly
potential drugs, will behave. Intelligent classification techniques such as artificial
neural networks (ANN) have had limited success at predicting potential drug ac-
tivity. Using genetic programming many diverse classifiers can be fused to yield
a superior classifier.

Any classifier makes a trade off between catching positive examples and rais-
ing false alarms. Where the costs of these are not known in advance it may be
useful to be able to tune the classifier to favour one over the other. The Re-
ceiver Operating Characteristics (ROC) of a classifier provides a helpful way of
illustrating this trade off.

[Scott et al., 1998] has previously suggested the “Maximum Realisable Re-
ceiver Operating Characteristics” for a combination of classifiers is the convex
hull of their individual ROCs. However the convex hull is not always the best
that can be achieved [Yusoff et al., 1998]. Previously we showed [Langdon and
Buxton, 2001b] in at least some cases better classifiers, in terms of their ROCs,
can be automatically produced. Here we apply our technique to a real world
application namely classifying potential drug compounds as to whether they are
inhibitors of a P450 enzyme.
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Section 2 gives the back ground to data fusion. The collection of the P450 data
at GlaxoSmithKline Pharmaceuticals is described in Sect. 3. Section 4 describes
using the SPSS Clementine data mining tool to train 60 artificial neural networks
on 699 chemical features. These ANN are used as the primary classifiers by the
genetic programming data fusion system, which is described in Sect. 5. The
results are given in Sect. 6. Finally we conclude in Sect. 7.

2 Background

There is considerable interest in automatic means of making large volumes of
data intelligible to people. Arguably traditional sciences such as Astronomy, Bi-
ology and Chemistry and branches of Industry and Commerce can now generate
data so cheaply that it far outstrips human resources to make sense of it. Increas-
ingly scientists and Industry are turning to their computers not only to generate
data but to try and make sense of it. Indeed the new science of Bioinformatics
has arisen from the need for computer scientists and biologists to work together
on tough, data rich problems such as drug discovery.

The terms Data Mining and Knowledge Discovery are commonly used for the
problem of getting information out of data. In addition to traditional techniques,
a large range of “intelligent” or “soft computing” techniques, such as artificial
neural networks, decision tables, fuzzy logic, radial basis functions, inductive
logic programming, support vector machines, are being increasingly used. Ge-
netic programming, using Receiver Operating Characteristics (ROC), offers an
automatic way of combining diverse classifiers to yield a superior composite.

More information on ROC curves can be found in our previous work [Langdon
and Buxton, 2001a; Langdon and Buxton, 2001b; Langdon and Buxton, 2001c]
and the companion web pages to this paper (http://www.cs.ucl.ac.uk/staff/
W.Langdon/wsc6/). Briefly any binary classifier can be characterised by two
scalars. Its “true positive” rate (TP) and its “false positive” rate (FP). I.e. the
fraction of positive examples it correctly classifies and the fraction of negative
examples it gets wrong (false alarms). When plotted against each other TP v. FP
lie inside a unit square. An ideal classifier has TP = 1 and FP = 0. I.e. the
upper left corner of the square (see Fig. 4). Many classifiers have a sensitivity
parameter. This allows the user to trade off TP against FP. By varying the
sensitivity the FP,TP point traces a curve. A good classifier will have a curve
which lies as close to (0,1) as possible. A very poor classifier’s ROC will lie near
the diagonal (0,0) – (1,1). It is common to use the area under the ROC as a
measure of the classifier’s performance. (Although a single scalar measurement
cannot capture all the possible variations between two curves it is widely used
and is in most cases satisfactory).

A new classifier can always be constructed by randomly choosing between two
available classifiers. [Scott et al., 1998] showed that the ROC of the new classifier
lies on a line between the ROC’s of the two real classifiers. If we choose evenly
(50%), then the new point lies halfway between them. (The element of chance
may mean it cannot be used in some applications). Changing the ratio from
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50% moves the point from the midpoint towards one of the existing classifiers.
Since this can be done for any number of classifiers operating at any of their
sensitivity parameter settings, a new classifier can be constructed at any point
within the convex hull of their ROC curves. In fact only those on the convex
hull are of interest, since they are bound to be better than points within the
hull. Scott showed a new classifier whose ROC is the convex hull of the input
classifiers ROC curves can indeed be constructed in practise. He called this the
“Maximum Realisable Receiver Operating Characteristics” (MRROC). In fact
it is possible in principle to do better and as we shall show, GP can do better in
this application.

3 The Pharmaceutical Data

Volume inhibition data was extracted from the GlaxoSmithKline biological re-
sults database for all compounds screened against a P450 enzyme assay using
high through put screening (HTS). If all data for an individual compound were
initially within 15% inhibition points of each other they were retained and aver-
aged. Otherwise noisy data was discarded. The clean data was then thresholded
at an appropriate level of inhibition dividing the compounds into “actives” (en-
zyme inhibitors) and “inactives” (non-inhibitors).

The actives were separated from the inactives and each set hierarchically
clustered separately using Ward’s linkage in combination with Tanimoto simi-
larity, computed from Daylight 2Kbit string chemical fingerprint data. Clusters
were defined at 0.8tan (Tanimoto) for the (smaller) actives set and at 0.75 for
the (larger) inactives set, as a first step to reduce the gross imbalance in actives
vs. inactives. Then, from each cluster in each partitioning, centroid compounds
were selected to reduce the internal chemical structure bias and the volume of the
original data. This noise removal and clustering resulted in a “controlled diver-
sity” dataset of 2256 compounds with a balance of approximately 4 inactives for
every active. A total of 699, 2-d numerical, chemical features from a diverse ar-
ray of families (electronic, structural, topological/shape, physico-chemical, etc.)
were then computed for each centroid molecule, starting from a SMILES repre-
sentation of it’s primary chemical structure. 1500 compounds (300 actives, 1200
inactives) were selected for use as the training set, whilst the remaining 756 were
retained as a separate “holdout” set.

4 Artificial Neural Networks

We used the Clementine data mining tool to train artificial neural networks
(ANN) to model the training data. These models were then frozen and made
available to genetic programming as a function. ANN models were generated
using “train net” node using the “Quick” (BackProp) method, with options to
prevent over training set (50% training data used) and to stop on 300 cycles. A
fixed random seed was employed.
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The ANN models were trained using Clementine on subsets of 1500 training
records, containing the 699 features. These were divided by GlaxoSmithKline
into 15 groups of about 50 attributes (features). Four single layer perceptrons
were trained on each group.

It is well know that this kind of neural network performs best when trained on
“balanced data sets”, i.e. data sets containing an equal mix of active and inactive
examples. However drug discovery tasks are seldom like this. It is common, as
here, for many compounds to be inactive and only a few to be active. Four
data sets were prepared. Each contained the same 300 active examples and 300
different inactive examples. That is each data set was balanced. Each neural
network was trained on one of the 15 groups of attributes selected from one of
the four balanced data sets. Making a total of 60 networks.

A script was written which automatically manipulated the Clementine stream
(see Fig. 2). The script feeds one of the four sets of balanced examples via a “type
node” (which selects the FEATURE SET) into Clementine’s artificial neural
network trainer (TRAIN NET NODE in Fig. 1). The script loops through each
of the four balanced training sets and loops through the 15 groups of chemical
attributes, exporting neural network models for each combination of FEATURE
SET and DATA SET.

Fig. 1. Clementine streams for training multiple Artificial Neural Networks. The
command script for switching the training stream between the data files is given
in Fig. 2
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For F in Feature_Set#’s 1 to 15 # selects FEATURE SET typenode name

For [dataset] N from 1 to 4 # select DATA SET

set m=F><N # concatenates FEATURE SET & DATA SET names

set :trainnet.netname = M # rename TRAIN NET node

connect ^F between select and ^M # connects dataset to ’feaset’

execute : trainnet

disconnect ^F

export generated ^M in [file directory] codexport

endfor

endfor

Fig. 2. Clementine script used to train 15 groups of Artificial Neural Networks.
The ANN in each group are trained on a group of about 50 chemical features.
Each group contains four networks, each trained on the same active chemicals
but different inactive examples. Cf. Fig. 1

5 Genetic Programming Configuration

The genetic programming data fusion system is deliberately almost identical to
that described in [Langdon and Buxton, 2001b].

5.1 Function Set

The Function set is the collection of basic floating point operations that are
available to form the individual programs in the GP population. They (and the
other GP parameters) are summarised in Table 1. The functions include the four
basic arithmetic operations “+”, “−”, “×” and “÷”. Note however ÷ by zero
always yields “1”. This “protects” it and prevents the GP system failing with
a divide-by-zero fault. Max (Min) takes two arguments and returns the value
of the largest (smallest). MaxA (MinA) also takes two arguments but returns
the signed value of the largest (smallest) in absolute terms. E.g. MaxA(-2,1)
returns -2. INT returns the integer part of its input. E.g. INT(3.23) returns 3.
FRAC returns the fractional part of its input. E.g. FRAC(3.23) returns 0.23.
Finally IFLTE takes four arguments. If the first is less than or equal to the
second, IFLTE returns the value of its third argument. Otherwise it returns the
value of its fourth argument. E.g. FRAC(0, 0.345, ANN1..., ANN2...) returns
the value given to it by the subtree starting with ANN1.

In order to use the neural networks within the GP they are packaged up and
presented to GP as 60 problem specific functions. (The GP is run separately
from Clementine using 60 files containing the ANNs. Note the ANN are frozen
and not retrained). Each returns the classification given by the corresponding
neural network for the current chemical. Clementine codes its multi-layer per-
ceptron neural networks to have one output neuron which yields a floating point
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value between zero and one. For a mid-point threshold, this is exactly the value
returned by the function inside the GP system. Values near either zero or one
mean the neural network is highly confident of its answer. While values near
0.5 suggest the classifier is less confident. Normally the output of the neural
network is converted into a binary classification (i.e. the chemical is active or is
inactive) by testing to see if the value is greater or less than 0.5. This gives a
single point in the ROC square. I.e. one trade off between catching all positives
but raising too many false alarms. However we can change this trade off. So that
instead of getting a single point, we get a complete curve in the ROC square.
This is easily done by replacing the fixed value of 0.5 by a tunable threshold. By
continuously varying the threshold from below zero to above one the (binarized)
output of any of the neural networks will be biased from saying every chemical
is inactive, through the usable range, to catching all positive examples but being
100% wrong on the negative examples (by saying all chemicals are active). In
fact we leave the choice of suitable operating point to the GP to automatically
evolve. This is done by making the threshold point an argument to the function.
These arguments are treated like any other by the GP and so can be any valid
arithmetic operation, including the neural networks themselves.

5.2 Terminal Set

The terminals or leafs of the trees being evolved by the GP are either constants
or the threshold (see Table 1). The threshold allows us to change the bias of
the tree produced by GP. As with the neural networks, changing the bias allows
each tree to sweep out an ROC curve rather than operate at a single point. This
is done by running each tree with the threshold taking values 0, 0.1, 0.2, ... 1.0
(i.e. 11 values). Note, as with all the functions and terminals, it is entirely up to
the evolutionary process how it uses the threshold parameter.

5.3 Representation

The GP is set up to signal its prediction of the class of each data value by return-
ing a floating point value, whose sign indicates the class and whose magnitude
indicates the “confidence”.

Following earlier work [Jacobs et al., 1991; Soule, 1999; Langdon, 1998] each
GP individual is composed of five trees. Each of which is capable of acting as a
classifier. The use of signed numbers makes it natural to combine classifiers by
adding them. I.e. the classification of the “ensemble” is the sum of the answers
given by the five trees. Should a single classifier be very confident about its
answer this allows it to “out vote” all the others. Note that although this has
some similarity with some neural network “ensembles”, the GP can combine
the supplied classifiers in an almost totally arbitrary non-linear way. It is not
constrained to a weighted linear sum of all or even a subset of them.
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Table 1. GP Data Fusion Parameters

Objective: Evolve a Non-Linear Combination of Neural Networks with Maximum
ROC Convex Hull Area on P450

Function set: INT FRAC Max Min MaxA MinA MUL ADD DIV SUB IFLTE
60 ANN trained on P450 data

Terminal set: T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 plus 100 unique random constants
0..1

Fitness: Area under convex hull of 11 ROC points.
Selection: generational (non elitist), tournament size 7
Wrapper: ≥ 0⇒ active, inactive otherwise
Pop Size: 500
No size or depth limits
Initial pop: ramped half-and-half (5:8) (half terminals are constants)
Parameters: 50% size fair crossover [Langdon, 2000], 50% mutation (point 22.5%,

constants 22.5%, shrink 2.5% subtree 2.5%)
Termination: generation 50

5.4 Fitness Function
The fitness function is crucial to any optimisation process, including evolutionary
computation techniques. By giving intermediate results a score (in GP known as
the individual program’s fitness) it guides the optimiser. Often fitness functions
are not given sufficient thought. For example when classifying, one scheme is
simply to assign an individual’s fitness equal to the number of correct predictions
it makes. In some cases this is sufficient. But where one class is much more
common than the other, this can lead to a trap where the optimiser creates a
classifier which always says which ever class occurs most often. This classifier
has a high score but no predictive ability. By using ROC curves we avoid this
trap.

Since we may not know in advance the trade off between the costs of misclas-
sification of the two classes, we use GP to produce a tunable classifier. We asses
the usefulness of each candidate classifier produced by GP from its Receiver
Operating Characteristics (ROC) curve.

To assign a fitness to each evolved classifier. The tuning parameter is set to
values 0.1 a part, starting at 0 and increasing to 1. For each setting it is used to
predict the activity of each chemical in the training set. These predictions are
compared with measured activity. The proportions of active chemicals correctly
predicted (TP) and the proportion of inactive one incorrectly predicted (FP) are
calculated. Each TP,FP pair gives a point on a curve. The fitness of the classifier
is the area under the convex hull of these (plus the fixed points 0,0 and 1,1).

5.5 Genetic Operations and other Parameters
As mentioned above, we used the same mix of genetic operators as had proved
themselves in earlier experiments. Other work (for example [Angeline, 1998])
has suggested that a high mutation rate and a mixture of different mutation
operators for evolving pattern matching functions. As described in Table 1, 50%
of new classifiers were created by random changes of a single parent from the
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previous generation. On average 112.5 programs per generation were created by
point mutation on the functions and 112.5 by random changes to the constants.
Point mutation was applied on average to 10% of functions within the program.
Point mutation on a function randomly replaces it with another (which takes
the same number of arguments). Mutating a constant, replaces it with another
randomly constant. However the new constant is not chosen uniformly, instead a
new value is chosen from an approximately Normal distribution centred on the
current value and standard deviation of 5% of the mean. There are 110 available
constants. The one closest to the randomly generated value replaces the original
constant. (The new constant will be different from the original). Note bigger
programs will on average have more changes made to them.

Two other mutation operators were also used. On average 12.5 programs in
each generation were created using “subtree” mutation and 12.5 by “subtree
shrink” mutation. Both select a subtree within (a copy of) the parent program
and replace it with another. Note unlike point mutation and constant mutation,
these mutation operators change the size and shape of the program. In subtree
mutation the new subtree is created using the same algorithm used to create the
initial random population, i.e. “ramped-half-and-half” [Koza, 1992, pages 92–
93]. This tends to increase the size of programs. (The behaviour of ramped-half-
and-half is discussed in [Luke and Panait, 2001]). In contrast “subtree shrink”
replaces the subtree with another chosen at random from within it. This must
be smaller leading to the new program being smaller than the program in the
previous generation from which it was created.

On average 250 of the new programs are created using size fair crossover
[Langdon, 2000]. In genetic programming crossover selects two fit programs to
be parents for a new one. The new program is composed of parts drawn from
(copies of) the two parents. It thus provides an analogue of sexual reproduction
in the artificial evolution used by genetic programming. There are a number of
crossover operators available in GP [Langdon and Poli, 2001], size fair crossover
was introduced to reduced the tendency seen in the usual GP crossover operator
[Koza, 1992] for programs in successive generations to increase in size (known
as bloat [Langdon et al., 1999]) but still allow size and shape to be determined
by the evolutionary process rather than by hard limits or initial conditions.

Size fair, like Koza’s subtree crossover, creates a new program by selecting
a subtree from each parent program. In one the subtree is discarded and re-
placed by the subtree selected in the other parent. The difference is, in the older
crossover both subtrees are selected independently at random. In size fair the
subtree to be removed is selected at random but the the subtree to be inserted is
chosen from those in the other parent program of a chosen size. The size is given
by the size of the subtree to be deleted. To allow size fair crossover to change
the size of the new program, the inserted subtree’s size need not be identical to
that being deleted but is randomly chosen from 1 to up to twice the size of the
subtree tree being deleted. However care is taken to ensure size fair does not, of
itself, lead to either an average increase or decrease in size. (Details are given in
[Langdon, 2000]).
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5.6 GP Training Data

The 1500 examples used to train the neural networks were randomly split into
1000 to be used to training the GP and 500 (containing 100 active examples)
kept back as a verification set.

6 Results

In one run the GP evolved a combined classifier with a fitness of 0.90 on the
training data and 0.86 on both the validation and holdout data. Figure 3 shows
its performance (on the training set vs. the holdout set) in comparison with
that of the neural networks. If performance on the training set and holdout were
identical, then all the points would lie along the diagonal and there would be no
over fitting. In practise, since we are dealing with finite samples, there is bound
to be some statistical scatter. As scatter of points is around the diagonal this
indicates there is little over fitting.

To obtain improved performance from any classifier fusion the input clas-
sifiers must be different. Figure 3 shows their performance varies considerably.
Doing pairwise comparisons, most ANN are significantly different (McNemar’s
test at 5%) from each other on the training data. The GP selected only 17 ANN
for inclusion in the evolved classifier. These are shown with double crosses in
Fig. 3. Figure 3 shows GP has selected a broad range of ANNs.

Figure 4 shows the Receiver Operating Characteristics of the evolved clas-
sifier, measured on its training data and on the holdout set. There is slight
reduction in performance on the holdout set, potentially indicating some over
fitting. Figure 4 also shows, for comparison, the ROC of the MRROC classifier
produced by taking the convex hull of the 60 ANNs. The MRROC is shown
measured on the training data and on the holdout data. Of course the MRROC
is convex on the training data, but need not be on the hold out data. On both
the training and holdout data, the evolved classifier is slightly better than the
MRROC combination of the 60 ANN trained by Clementine and therefore better
then each of the ANN individually.

7 Conclusions

Where accuracy is paramount (and so its stochastic basis can be ignored) [Scott
et al., 1998]’s convex hull classifier, MRROC, offers an automatic means of com-
bining classifiers. However it is not guaranteed to be optimal. In [Langdon and
Buxton, 2001b] we showed, using Scott’s own bench marks, that genetic pro-
gramming can do better than the MRROC both in theory and practise. Nev-
ertheless we cannot guarantee GP will always do better and so it is important
to demonstrate it on interesting applications. Here we have shown (cf. Figs. 3
and 4) that our GP technique can be used in a large classification application
related to drug discovery with just a few minutes of computer processing time.
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