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Abstract. The problem of evolving, using mutation, an artificial ant to
follow the Santa Fe trail is used to study the well known genetic program-
ming feature of growth in solution length. Known variously as “bloat”,
“fluff” and increasing “structural complexity”, this is often described in
terms of increasing “redundancy” in the code caused by “introns”.
Comparison between runs with and without fitness selection pressure,
backed by Price’s Theorem, shows the tendency for solutions to grow in
size is caused by fitness based selection. We argue that such growth is
inherent in using a fixed evaluation function with a discrete but variable
length representation. With simple static evaluation search converges to
mainly finding trial solutions with the same fitness as existing trial solu-
tions. In general variable length allows many more long representations
of a given solution than short ones. Thus in search (without a length
bias) we expect longer representations to occur more often and so repre-
sentation length to tend to increase. I.e. fitness based selection leads to
bloat.

1 Introduction

The tendency for programs in genetic programming (GP) populations to grow
in length has been widely reported [Tac93; Tac94; Ang94; Tac95; Lan95; NB95;
SFD96]. This tendency has gone under various names such as “bloat”, “fluff” and
increasing “structural complexity”. The principal explanation advanced for bloat
has been the growth of “introns” or “redundancy”, i.e. code which has no effect
on the operation of the program which contains it. ([WL96] contains a survey
of recent research in biology on “introns”). Such introns are said to protect the
program containing them from crossover [BT94; Bli96; NFB95; NFB96]. [MM95]
presents an analysis of some simple GP problems designed to investigate bloat.
This shows that, with some function sets, longer programs can “replicate” more
“accurately” when using crossover. I.e. offspring produced by crossover between
longer programs are more likely to behave as their parents than children of
shorter programs. [PL98] argues the fraction of genetic material changed by
crossover is smaller in longer programs. Such local changes may lead to GP
populations becoming trapped at local peaks in the fitness landscapes. [RB96a]
provides an analysis of bloat using tree schemata specifically for GP.

We advance a more general explanation which should apply generally to any
discrete variable length representation and generally to any progressive search
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technique. That is bloat is not specific to genetic programming applied to trees
using tree based crossover but should also be found with other genetic operators
and non-population based stochastic search techniques such as simulated an-
nealing and stochastic iterated hill climbing ([Lan98b] contains examples where
such bloat does indeed occur and [LP98a] investigates bloat in GP with dynamic
fitness functions).

The next section summarises our argument that bloat is inherent in variable
length representations such as GP [LP97b]. In Sects. 3 and 4 we expand our
previous analysis of a typical GP demonstration problem to include solution by
mutation in place of crossover, again showing that it suffers from bloat and also
showing that bloat is not present in the absence of fitness based selection. (This
improves earlier experiments [LP97c] by removing the arbitrary limit on program
size). Section 5 describes the results we have achieved and this is followed in
Sect. 6 by a discussion of the potential advantages and disadvantages of bloat
and possible responses to it. Finally Sect. 7 summarises our conclusions.

2 Bloat in Variable Length Representations

In general with variable length discrete representations there are multiple ways of
representing a given behaviour. If the evaluation function is static and concerned
only with the quality of each trial solution and not with its representation then
all these representations have equal worth. If the search strategy were unbiased,
each of these would be equally likely to be found. In general there are many more
long ways to represent a specific behaviour than short representations of the same
behaviour. Thus we would expect a predominance of long representations.

Practical search techniques are biased. There are two common forms of bias
when using variable length representations. Firstly search techniques often com-
mence with simple (i.e. short) representations, i.e. they have an in built bias in
favour of short representations. Secondly they have a bias in favour of continuing
the search from previously discovered high fitness representations and retaining
them as points for future search. I.e. there is a bias in favour of representations
that do at least as well as their initiating point(s).

On problems of interest, finding improved solutions is relatively easy initially
but becomes increasingly more difficult. In these circumstances, especially with
a discrete fitness function, there is little chance of finding a representation that
does better than the representation(s) from which it was created. (Cf. “death of
crossover” [Lan98a, page 206]. Section 5.6 shows this holds in this example). So
the selection bias favours representations which have the same fitness as those
from which they were created.

In general the easiest way to create one representation from another and
retain the same fitness is for the new representation to represent identical be-
haviour. Thus, in the absence of improved solutions, the search may become a
random search for new representations of the best solution found so far. As we
said above, there are many more long representations than short ones for the
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same solution, so such a random search (other things being equal) will find more
long representations than short ones. In GP this has become known as bloat.

3 The Artificial Ant Problem

The artificial ant problem is described in [Koz92, pages 147–155]. It is a well
studied problem and was chosen as it has a simple fitness function. [LP98b]
shows its simpler solutions have characteristics often associated with real world
programs but that GP and other search techniques find it difficult (possibly
due to bloat). Briefly the problem is to devise a program which can successfully
navigate an artificial ant along a twisting trail on a square 32× 32 toroidal grid.
The program can use three operations, Move, Right and Left, to move the ant
forward one square, turn to the right or turn to the left. Each of these operations
takes one time unit. The sensing function IfFoodAhead looks into the square the
ant is currently facing and then executes one of its two arguments depending
upon whether that square contains food or is empty. Two other functions, Prog2
and Prog3, are provided. These take two and three arguments respectively which
are executed in sequence.

The artificial ant must follow the “Santa Fe trail”, which consists of 144
squares with 21 turns. There are 89 food units distributed non-uniformly along
it. Each time the ant enters a square containing food the ant eats it. The amount
of food eaten is used as the fitness measure of the control program.

The evolutionary system we use is identical to [LP97b] except the crossover
operator is replaced by mutation. The details are given in Table 1, parameters not
shown are as [Koz94, page 655]. On each version of the problem 50 independent
runs were conducted. Note in these experiments we allow the evolved programs
to be far bigger than required to solve the problem. (The smallest solutions
comprise only 11 node [LP98b]).

Table 1. Ant Problem

Objective: Find an ant that follows the “Santa Fe trail”

Terminal set: Left, Right, Move

Functions set: IfFoodAhead, Prog2, Prog3

Fitness cases: The Santa Fe trail

Fitness: Food eaten

Selection: Tournament group size of 7, non-elitist, generational

Wrapper: Program repeatedly executed for 600 time steps.

Population Size: 500

Max program size: 32,767

Initial population: Created using “ramped half-and-half” with a max depth of 6

Parameters: 90% mutation, 10% reproduction

Termination: Maximum number of generations G = 50
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4 Tree Mutation

For our purposes it is necessary that the mutation operator be able to change
the size of the chromosomes it operates. Ideally this should be unbiased in the
sense of producing, of itself, no net change in size. The following operator, in all
cases examined, produces offspring which are on average almost the same size as
their parent (cf. Sect. 5.7). (Note this may not be the case with different ratios
of node branching factors in either the terminal/function set or in the evolving
populations). An alternative tree mutation operator which also tries to avoid size
bias by creating random trees of a randomly chosen size is proposed in [Lan98b].

The mutation operator selects uniformly at random a node (which may be a
function or terminal) and replaces it and the subtree descending from it with a
randomly created tree. The new tree is created using the same “ramped half-and-
half” method used to create the initial population [Koz92, Page 92–93] however
its maximum height is chosen at random from one to the height of the tree it
is to replace. Note a terminal will always be replaced by a randomly selected
terminal (i.e. there is no change in size) but a function can be replaced by a
larger (but not deeper) or smaller tree, so that the program’s size may change.

5 Results

5.1 Standard Runs

In 50 independent runs 9 found “ants” that could eat all the food on the Santa Fe
trail within 600 time steps. The evolution of maximum and mean fitness averaged
across all 50 runs is given by the upper curves in Fig. 1. (In all cases the average
minimum fitness is near zero). These curves show the fitness behaving as with
crossover with both the maximum and average fitness rising rapidly initially but
then rising more slowly later in the runs. The population converges in the sense
that the average fitness approaches the maximum fitness. However the spread
of fitness values of the children produced in each generation remains large and
children which eat either no food or only one food unit are still produced even
in the last generation.

Figure 2 shows the evolution of maximum and mean program size averaged
across all 50 runs. Although on average mutation runs show somewhat different
behaviour of program length compared to crossover they are similar in that after
an initial period bloat starts and program lengths grow indefinitely.

5.2 No Selection

A further 50 runs were conducted using the same initial populations and no
fitness selection. As with crossover no run found a solution and the maximum,
mean and other fitness statistics fluctuate a little but are essentially unchanged
In contrast to the case with crossover only, our mutation operator has a slight
bias. In the first 50 generation this causes the population to gradually increase
in size at the rate of 1

3 of a node per generation
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Fig. 1. Evolution of maximum and population mean of food eaten. t=1 curves
show effect of removing fitness selection after generation 25. Error bars indicate
one standard deviation. Means of 50 runs.

5.3 Removing Selection

A final 50 runs were conducted in which fitness selection was removed after gen-
eration 25 (i.e. these runs are identical to those in Sect. 5.1 up to generation 25,
12,500 programs created). The evolution of maximum and mean fitness averaged
across all 50 runs is given in Fig. 1. As expected Fig. 1 shows in the absence of
fitness selection the fitness of the population quickly falls.

After fitness selection is removed, the length of programs behaves much as
when there is no selection from the start of the run. I.e. bloat is replaced by the
slow growth associated with the mutation operator and the spread of program
lengths gradually increases (cf. Fig. 2)

5.4 Fitness is Necessary for Bloat – Price’s Theorem Applied to
Representation Size.

Price’s Covariance and Selection Theorem [Pri70] from population genetics re-
lates the expected change in frequency of a gene ∆q in a population from one
generation to the next, to the covariance of the gene’s frequency in the origi-
nal population with the number of offspring z produced by individuals in that
population:
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Fig. 2. Evolution of maximum and population mean program length. t=1 curves
show effect of removing fitness selection after generation 25. Error bars indicate
one standard deviation. Solid line is the length of the “best” program in the
population. Means of 50 runs.

∆q =
Cov(z, q)

z
(1)

We have used it to help explain the evolution of the number of copies of
functions and terminals in GP populations [LP97a; Lan98a]. In our experiments
the size of the population does not change so z = 1 and the expected number
of children is given by the parent’s rank so in large populations the expected
change is approximately Cov(t(r/p)t−1, q) as long as crossover is random. (t is
the tournament size and r is each program’s rank within the population of size p).

Where representation length is inherited, such as in GP and other search tech-
niques, (1) should hold for representation length. More formally Price’s theorem
applies (provided length and genetic operators are uncorrelated) since represen-
tation length is a measurement function of the genotype [Alt95, page 28].

Where fitness selection is not used (as in the previous sections), each indi-
vidual in the population has an equal chance of producing children and so the
covariance is always zero. Therefore Price’s Theorem predicts on average there
will be no change in length.
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5.5 Correlation of Fitness and Program Size

In all cases there is a positive correlation between program score and length of
programs. In the initial population the correlation is .37 on average, indicating
that long random programs do better than short ones. This may be because
they are more likely to contain useful primitives (such as Move) than short
programs. Also short ones make fewer moves before they are reinitialised and
re-executed. This may increase the chance of them falling into unproductive
short cyclic behaviour that longer, more random, programs can avoid. Selection
quickly drives the population towards these better individuals, so reducing the
correlation to .13 In the absence of selection (or after selection has been removed
halfway through a run) mutation tends to randomise the population so that the
correlation remains (or tends towards) that in the initial population.

5.6 Effect of Mutation on Fitness

In the initial generations mutation is disruptive with 64.6% producing a child
with a different score from its parent. However mutation evolves, like crossover,
to become less disruptive. By the end of the run only 25.4% of mutants have a
different score from their parent.

The range of change of fitness is highly asymmetric; many more children are
produced which are worse than their parent than those that are better. By the
end of the run, only 0.02% of the population are fitter than their parent. Similar
behaviour has been reported using crossover on other problems [NFB96] [RB96b,
page 183] [Lan98a, Chapter 8].

5.7 Mutation and Program Length

We see from Fig. 3 initially on average mutation makes little change to the
length of programs, however, after bloat becomes established, our mutation op-
erator produces children which are slightly shorter than their parents on average.
I.e. once the change in the fitness of the population slows, program size bloats
despite length changes introduced by mutation. The positive covariance of fitness
and length shows this bloat is driven by fitness selection.

6 Discussion

6.1 Do we Want to Prevent Bloat?

From a practical point of view the machine resources consumed by any system
which suffers from bloat will prevent extended operation of that system. However
in practice we may not wish to operate the system continually. For example it
may quickly find a satisfactory solution or better performance may be achieved
by cutting short its operation and running it repeatedly with different starting
configurations [Koz92, page 758].
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Fig. 3. Mean change in length of offspring relative to parent: normal runs.
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In some data fitting problems growth in solution size may be indicative of
“over fitting”, i.e. better matching on the test data but at the expense of general
performance. For example [Tac93, page 309] suggests “parsimony may be an
important factor not for ‘aesthetic’ reasons or ease of analysis, but because of a
more direct relationship to fitness: there is a bound on the ‘appropriate size’ of
solution tree for a given problem”.

By providing a “defence against crossover” [NFB96, page 118] bloat causes
the production of many programs of identical performance. These can consume
the bulk of the available machine resources and by “clogging up” the population
may prevent GP from effectively searching for better programs.

On the other hand [Ang94, page 84] quotes results from fixed length GAs
in favour of representations which include introns, to argue we should “not ...
impede this emergent property [i.e. introns] as it may be crucial to the successful
development of genetic programs”. Introns may be important as “hiding places”
where genetic material can be protected from the current effects of selection and
so retained in the population. This may be especially important where fitness
criteria are dynamic. A change in circumstance may make it advantageous to
execute genetic material which had previously been hidden in an intron. [Hay96]
shows an example where a difficult GP representation is improved by deliberately
inserting duplicates of evolved code.
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In complex problems it may not be possible to test every solution on every
aspect of the problem and some form of dynamic selection of test cases may be
required [GR94]. For example in some cases co-evolution has been claimed to be
beneficial to GP. If the fitness function is sufficiently dynamic, will there still be
an advantage for a child in performing identically to its parents? If not, will we
still see such explosive bloat?

6.2 Three Ways to Control Bloat

Three methods of controlling bloat have been suggested. Firstly, and most widely
used is to place a universal upper bound either on tree depth [Koz92] or program
length. ([GR96; LP97a] discuss unexpected problems with this approach).

The second (also commonly used) is to incorporate program size directly
into the fitness measure (often called parsimony pressure) [Koz92; ZM93; IdS94].
[RB96a] gives an analysis of the effect of parsimony pressure which varies linearly
with program length. Multi-objective fitness measures where one objective is
compact or fast programs have also been used [Lan96].

The third method is to tailor the genetic operations. [Sim93, page 469] uses
several mutation operators but adjusts their frequencies so a “decrease in com-
plexity is slightly more probable than an increase”. [Bli96] suggests targeting
genetic operations at redundant code. This is seldom used, perhaps due to the
complexity of identifying redundant code. [SFD96] showed bloat continuing de-
spite their targeted genetic operations. Possibly this was because of the difficulty
of reliably detecting introns. I.e. there was a route whereby the GP could evolve
junk code which masqueraded as being useful and thereby protected itself from
removal. While [RB96a] propose a method where the likelihood of potentially
disruptive genetic operations increases with parent size.

7 Conclusions

We have generalised existing explanations for the widely observed growth in GP
program size with successive generations (bloat) to give a simple statistical argu-
ment which should be generally applicable both to GP and other systems using
discrete variable length representations and static evaluation functions. Briefly,
in general simple static evaluation functions quickly drive search to converge,
in the sense of concentrating the search on trial solutions with the same fitness
as previously found trial solutions. In general variable length allows many more
long representations of a given solution than short ones of the same solution.
Thus (in the absence of a parsimony bias) we expect longer representations to
occur more often and so representation length to tend to increase. I.e. current
simple fitness based selection techniques lead to bloat.

In earlier work [LP97b] we took a typical GP problem and demonstrated with
fitness selection it suffers from bloat whereas without selection it does not. In
Sects. 3, 4 and 5 we repeated these experiments replacing crossover with muta-
tion and showed fitness selection can still cause bloat. ([Lan98b] shows bloat can
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also occur with simulated annealing and hill climbing). We have demonstrated
that if fitness selection is removed, bloat is stopped and program size changes
little on average. As expected in the absence of selection, mutation is free to
change program size at random and the range of sizes increases, as does the
mean size (albeit very slowly). Detailed measurement of mutation confirms after
an extended period of evolution, most are not disruptive (i.e. most children have
the same fitness as their parents).

In Sect. 5.4 we applied Price’s Theorem to program lengths within evolving
populations. We confirmed experimentally that it fits unless bias in the genetic
operators have significant impact. We used Price’s Theorem to argue fitness se-
lection is required for a change in average representation length. In Sect. 6 we
discussed the circumstances in which we need to control bloat and current mech-
anisms which do control it but suggest a way forward may be to consider more
complex dynamic fitness functions. Preliminary investigations in this direction
are reported in [LP98a].
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