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Optimising Existing Software with
Genetic Programming

William B. Langdon and Mark Harman

Abstract—We show genetic improvement of programs (GIP)
can scale by evolving increased performance in a widely-used
and highly complex 50 000 line system. GISMOE found code
that is 70 times faster (on average) and yet is at least as good
functionally. Indeed it even gives a small semantic gain.

Index Terms—automatic software re-engineering, Bowtie2GP ,
genetic programming (GP), multiple objective exploration,
search based software engineering (SBSE).

I. INTRODUCTION

GENETIC improvement [1; 2; 3; 4] is the process of
automatically improving a system’s behaviour using

genetic programming. Starting from a human written system,
genetic improvement tries to evolve it so that it is better
with respect to given criteria. The criteria for improvement
are typically non-functional properties of the system, such as
execution time and power consumption, though many others
are possible [1; 4]. The functional properties of the evolved
system are usually required to mimic as faithfully as possible
those of the original system. However we show that it may
also be possible to improve the program’s outputs.

In order to check that the original’s semantics are not
disturbed, the genetic improvement process relies on a set
of test cases, obtained from running the original system.
Notice we can always do this [5]. Even where the existing
system lacks a formal specification, its existing behaviour is
its own de facto specification. The answer given by the new
code can be compared with that given by the original code
(which is assumed to be correct). Thus the original code is a
“test oracle”. The system may also have additional automated
oracles which are able to check an output’s validity and/or
quality. These can also be used to test the functional behaviour
of the genetically improved program. (See Figure 1.)

Genetic improvement has many potential applications. An
existing program can be ported from one platform and lan-
guage to another [2], thereby helping to manage software
multiplicity [6]. Genetic improvement also allows programs to
be automatically sped up [4] or to consume less power, while
still performing the useful functions offered by the original.

The goal of genetic improvement research is to automate
as much of the improvement process as possible. Thus new
implementations can be discovered by an evolutionary process,
rather than being hand-crafted by human programmers, in the
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Fig. 1. Major components of GISMOE approach. Left: system to be improved
and its test suite. Right: genetic programming optimises modifications which
originate from a grammar that describes the original system line by line.
Each generation mutation and crossover create new modifications. Each
modification’s fitness is evaluated by applying it to the grammar and then
reversing the grammar to get a new variant of the system. Each modified
system is tested on a randomised subset of the test suite and its answers and
resource consumption compared to that of the original system. Modifications
responsible for better systems procreate into the next generation.

currently familiar (yet time-consuming, tedious and expensive)
method. Ultimately, genetic improvement looks forward to a
world in which our successors regard human programmers as
a ‘quaint anachronism of the past’ in much the same way that
we now regard the human computers of our nineteenth and
twentieth century forbearers.

Genetic programming provides a way to automate one of the
most expensive and time-consuming aspects of the software
engineering process: the production of the code itself. How-
ever, achieving genetic improvement for real world programs
presents many challenges. The size and complexity of the
programs to be evolved are considerably more demanding than
those previously attempted.

We report the results of applying genetic improvement to
a real-world system. Our GISMOE (Genetic Improvement
of Software for Multiple Objective Exploration) approach
reduces the search space for genetic improvement and manages
the scalability of testing for functional and non-functional
properties. We report the results of applying genetic improve-
ment to Bowtie2 [7], a widely-used DNA sequencing system,
consisting of 50 000 lines of C++ code for which we evolved
20 000 LoC (excluding headers and conditionally compiled
debug code). In fact by also excluding code that is not executed
we focus the search on 2744 LoC. We used test cases from
the 1000 genomes project [8]. In this case, the test cases are
backed up by the Smith-Waterman score (as an automated test
oracle, see Section IV-A).

http://www.cs.ucl.ac.uk/staff/W.Langdon/index.html
http://www.cs.ucl.ac.uk/staff/M.Harman/
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Fig. 2. a) Initial approaches considered whole program equally (shaded). They
update code (dark shading) which may be throughout the single source file.
b) Bug fixing. Genetic programming is directed to parts of code needing fixing
(shaded) and the bugfix (star) is small. c) GISMOE: Evolution is directed to
used and heavily used code (light shaded, shaded, heavily shaded) several
lines of code may be updated (stars).

Our primary finding is that genetic improvement can find
new evolved versions of Bowtie2 that are, on average, 70
times faster than the original (and produce on average slightly
improved answers) when applied to DNA sequences from the
1000 genomes project. This is an important finding because
genetic improvement (as opposed to automatic bugfixing) has
previously only been applied to laboratory programs (of up to
about 100 lines of code). This previous work demonstrated
proof of concept, but not the practical scalability required
for realistic program improvements on real-world systems
containing many thousands of lines of code. Bridging this
divide entails catering for all of the complexity and scale of
real world systems.

Genetic programming (GP) has been used to fix bugs in real
world programs of a similar scale to Bowtie2. However, this is
the first approach to genetic improvement that has been applied
to a real-world system. Though both genetic improvement and
bug fixing have used GP as an underlying technique, the two
applications of GP are different and pose different technical
challenges as a result.

The difference in previous approaches to GP for software
engineering is illustrated in Figure 2. Figure 2 consists of three
lines. In each line, the icons denote the files that comprise a
program or system. The first line depicts a program consisting
of a single file containing a single procedure. The second and
third lines depict entire systems (comprised of several files,
each of which may have many procedures and functions).

Previous work on genetic improvement [2; 4] is depicted
in the first line. This applies genetic operators to the entire
program to improve it with respect to non-functional properties
while maintaining [2] (or gracefully reducing [4]) functional
properties. Initial, foundational, proof-of-concept work on GP
for bug fixing [5] also applied genetic operators to small
laboratory programs and so this initial work is also depicted
in the first line of Figure 2.

Subsequent work on bug fixing [9] extended this initial
work to whole systems, using fault localisation techniques to

identify the parts of the system that might require changing.
This demonstration of scalability of bug fixing is depicted in
line two of Figure 2; though the whole system is executed, the
GP search is concentrated on only that small part to which the
bug is localised. This localisation is depicted by the horizontal
shaded lines. Only a specific location (depicted by the star) is
actually modified by the genetic operators to fix the bug.

Here we extend genetic improvement [2; 4] from proof-of-
concept to real-world applicability. In order to do this we apply
GP to multiple points in a system (of multiple files), guided
by a sensitivity analysis that identifies parts of the system that
are most relevant to the non-functional property of interest.
(In our case, the most frequently executed code.) This modus
of operation is depicted in the last line of Figure 2; the whole
system is executed and the GP search is directed to multiple
parts of the system (shaded). Although multiple parts of the
system, may be modified by GP to improve the performance
of the overall system the final number of lines changed may
be modest (stars).

The primary contribution is to demonstrate that genetic
improvement, previously only applied to laboratory programs,
can scale to real-world systems of tens of thousands of lines
of code. We show that genetic improvement can produce
dramatically faster versions of the program, for well-defined
and useful subsets of the input domain and without loss of
semantics. (Indeed, even with some modest improvement in
semantics). In order to achieve this overall goal we introduce
a number of techniques and approaches that may prove to
be useful contributions for the future development of genetic
improvement:

1) Semantic Improvement: We show that the presence
of an automated test oracle opens up the possibility
that genetic improvement might improve not only non-
functional properties, but also a system’s behaviour (e.g.,
its accuracy), rather than merely seeking to maintain
faithful semantics.

2) Sensitivity Analysis: We introduce a pre-analysis phase
that tests the sensitivity of the program to the non-
functional property we seek to improve (in this case
execution time). As expected, improvements are most
often found in the identified resource hungry code. We
show how our grammar-based GP approach suits this
sensitivity analysis, because it can identify the parts of
the system to be evolved and those that are to remain
untouched. This reduces the search space that genetic
improvement has to consider.

3) Output Bins: We introduce an approach that caters
for disparity between test cases by binning test cases
according to the amount of output they produce. This
allows a more uniform sampling, rather than merely
sampling over the happenstance of test data availability.
Our Output–Bin approach is also used to assess the
algorithmic complexity of the non-functional properties
as they are empirically observed at each line of the
program. (See also Section III-A.)

4) Operator Choice: We demonstrate that our simple
genetic operators, extending those used in automated bug
fixing work, can also apply to genetic improvement.
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5) Grammatical Representation: We introduce an
adapted form of our grammar-based representation [10]
to help to guide the GP search.

6) Local Search: We show how a local search post process-
ing phase can be used to address the potential (observed
widely in many GP applications) for the solutions to
become bloated. The local optimisation is sufficient to
reduce the modification required to a surprisingly small
(and thus manageable) set of cut–and–paste operations.
(See Section III-F.)

Section II presents an overview of the real-world system,
Bowtie2, to which we apply genetic improvement, motivating
our selection of this system. Section III outlines the GISMOE
approach we use for genetic improvement, which is applied to
Bowtie2 in Section IV using DNA data from the 1000 genomes
project as test cases and the Smith-Waterman algorithm as
an automated test oracle. The improvements we find using
our approach are described (and investigated on held-out data
sets) in Section V. Section VI describes related work and the
relationship of our contributions to it. Section VII considers
where else our approach might be successfully applied, while
Section VIII concludes.

II. REAL WORLD SYSTEM GENETICALLY IMPROVED:
BOWTIE2

The exponential growth in DNA sequence data and the ever-
changing analysis requirements for computer systems that
operate on this data have lead to many systems being created
for DNA matching and analysis. Naturally, since genetic
improvement techniques are in their infancy, these systems
have been entirely hand-coded. In October 2012, Wikipedia
alone listed more than 140 Bioinformatics tools that perform
some aspect of sequence analysis either on protein databases
or DNA sequences. The production of so many tools requires
a large amount of human effort, making this a natural target
application domain to evaluate an automated genetic improve-
ment approach.

One of the most popular tools for querying next genera-
tion DNA sequences is the Bowtie system1. Bowtie is very
fast: however, its speed comes at the cost of some loss of
functionality. Although derived from the Bowtie system, the
Bowtie2 system [7] was written from scratch. It consists of
50 000 lines of C++ spread over 50 main system modules and
67 header files (plus documentation, scripts and support mod-
ules). These were downloaded from sourceforge. Although
the system comprises more than one hundred source files,
the final modification (see Figure 15) changes only three of
them. The Bowtie2 development effort is an attempt to emulate
the functionality of tools like BLAST which is missing from
Bowtie, while retaining the speed of the original Bowtie
system. However, though Bowtie2 is much faster than BLAST,
it is, nevertheless, slower than Bowtie.

The 1000 genomes project [8] uses Solexa and other scan-
ners to generate vast numbers of DNA sequences, in order to
map human genetic variation. These data are publicly available

1As of Oct 2012, according to Google Scholar, Bowtie had been cited 1706
times.

and can be obtained via FTP 2. For experimenting with genetic
improvement applied to real world programs it is important to
have a realistic pool of test data.

The properties of Bowtie2 and the test data make this an
ideal target for the application and evaluation of our approach.
More specifically:

1) The code is available, supporting full replication by
subsequent authors.

2) There are realistic test cases available.
3) Test cases come from a non-trivial application (the

analysis of human genetic variation, particularly with
regard to disease factors and medical applications) that
generate much interest. They are therefore more likely
to involve real-world challenges than the artificially
constructed code examples used so far.

4) Bowtie2 is much larger (being at least two orders of
magnitude larger) than previously studied systems in
work on genetic improvement.

5) Bowtie2 it is not merely larger, but also more complex
than any previously studied systems for which results
are reported for genetic improvement. Its scale crosses
complexity boundaries not previously encountered. It
includes many software engineering and programming
features that any practical genetic improvement ap-
proach would need to address, yet which have been
left unaddressed in previous work. Such features include
modularisation (functions and procedures), distinctions
between main and support code (libraries, test harnesses
etc.), separation into files, use of complex data struc-
tures, file access, pre-processing and macro calls.

Previous work on genetic improvement has demonstrated
the possibility of using genetic programming to improve a pro-
gram’s non-functional properties and this has been very impor-
tant. However, it is insufficient on its own. The development
of techniques that apply to programs like Bowtie2 provide
evidence that genetic improvement can be applied to programs
used in demanding, complex, real-world applications.

III. THE GISMOE APPROACH

This section outlines our GISMOE (Genetic Improvement of
Software for Multiple Objective Exploration) framework [1]
and how its principle components are instantiated to achieve
genetic improvement for the Bowtie2 System.

A. O–Bins: Output Bins for Test Cases

We use Output Bins (O–Bins) to partition the available test
cases. Our motivation for this is that testing practitioners
intuitively have a concept of the difficulty of a test case. In
many cases this is related to the amount of output that the
test case causes the program to create. I.e., tests that cause
the generation of a lot of output are, in some sense, more
difficult than those that cause comparatively little output to
be produced. However, testers might have other appropriate
measures. These might be easily measurable (e.g., run time) or
require the code to be instrumented (e.g., length or complexity

2E.g., ftp.1000genomes.ebi.ac.uk

http://en.wikipedia.org/wiki/List_of_sequence_alignment_software
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of execution path, such as number of branches). Alternatively
the tester may have their own subjective way of partitioning
test cases to give a spread of difficulty.

O–Bins play a role in the assessment of both functional
and non-functional properties of the code. For the functional
properties, we use F different O–bins. Test cases (n per
bin) are sampled uniformly from these F O–bins (rather than
uniformly over all available test cases). The binning process
ensures that we sample demanding test cases for fitness eval-
uation as well as less demanding ones, even though we only
sample n×F test cases for fitness at each new generation. For
the assessment of the non-functional properties, we also use
O–bins to ensure that tests are sampled uniformly over their
perceived difficulty (rather than merely over their availability).
This use of O–bins is explained in more detail in Sections III-C
and III-D.

B. Determining Functional Correctness

The functional properties of a system are typically assessed
by GP using a test-based approach. However, testing suffers
from the oracle problem. That is, we need an automated oracle
that will determine whether a given output observed is correct.
Fortunately, one of the advantages of genetic improvement is
that the original program can serve as an oracle. That is, it
can be used as an automated system that provides a reasonable
output for a given input. This has been the basis of previous
approaches to both genetic improvement and bug fixing [1; 2;
9; 4].

However, using the original program as an oracle has its
drawbacks. The original program may be buggy, in which case
the ‘improved’ program may merely faithfully replicate buggy
behaviour. The original may also be either partially defined or
non-deterministic, in which case it will not provide a reliable
oracle for every possible input.

It is therefore always advisable to supplement the original
program with an automated oracle (or partial oracle) if one is
available. The use of partially automated oracles (other than
the original program) also brings with it additional advantages:
the genetically improved program may improve the functional
properties of the system as well as its non-functional prop-
erties. Our approach to functional faithfulness is therefore to
use the original program as one source of oracle information,
but to additionally seek other partial oracles in order to check
the output produced by the genetically improved system.

C. Sensitivity Analysis for Non-Functional Properties

In order to evolve systems to better meet non-functional
requirements, we first apply a form of sensitivity analysis
to determine the parts of the system that have the greatest
effect on the non-functional property of interest. The parts of
the system with greatest impact will have the highest priority
during GISMOE’s evolutionary phase.

Depending upon the requirements, there are a number
of techniques that can be used to measure non-functional
properties of software. Some of these can be fairly direct. On
a server there is usually accounting information (e.g., number
of page faults or number of pages of RAM in use), which

can be harnessed as part of a fitness function. Similarly the
operating system might keep track of bytes sent/received via
a wireless port. In other cases, the accounting information
may not be available or may be too inaccurate and so the
experimenter may have to devise their own measures. It is not
common to keep track of the power consumed by individual
software components. However, White et al. [4] demonstrated
how simulators can do this, and that they can be incorporated
into a GP fitness measure.

In this paper, the non-functional property of concern is
the execution time of the system. As might be expected,
typically, which lines are used and how many times they are
executed varies a great deal. We use execution frequency as
an indication of those lines of code that are likely to have the
strongest influence on our non-functional property of interest.
We weight lines of code both in proportion to how much they
are used and also how this use scales with the difficulty of the
problem.

We use a non-linear weighting in order to try to ensure
that GP samples critical parts of the system to be improved
more heavily. The determination of what makes parts of
systems ‘critical’ depends both on the domain and upon the
non-functional properties to be improved. Hence it must be
defined for each kind of system to be improved. If such
domain knowledge is unavailable or there is no meaningful
characterisation of ‘difficulty’ of the non-functional properties,
then this aspect of our weighting scheme can simply be
ignored. However, where there is domain information, it makes
sense to ensure that it plays a role in the determination of
weights.

We are interested in assessing the way in which the non-
functional values observed vary with test case difficulty. The
test cases are therefore partitioned into N O–bins. Conceptu-
ally, we plot the variation of the non-functional property (on
the vertical axis) against the test case bin-number (ordered
by output size on the horizontal axis). Using this plot we
determine the ‘algorithmic complexity’ of the non-functional
property for each line of code.

We assess the algorithmic complexity of this conceptual
plot allocating a score of 10 for any complexity up to linear,
100 for quadratic and 1000 for cubic and higher complexity.
We combine this algorithmic complexity measurement with a
scalar measurement that is simply a measure of the number of
times that the line is executed on average by a set of test cases,
sampled uniformly from the O–Bins. The overall measurement
of the sensitivity of a line of code is the maximum of the scalar
and algorithmic complexity measurement obtained for the line.
To prevent search concentrating overmuch, during a GP run
each line of code that is mutated has its weight reset to 1.
Thus encouraging GP to move on to also consider other lines.

D. Testing for Fitness According to both Functional and
Non-Functional Properties

1) Compilation: To reduce compilation time, an instru-
mented version of the system is compiled without optimi-
sation, with the gcc -Wfatal-errors option and using
precompiled header files. Initially compilation time will be
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light because there will be few changes, but this will increase
as more files are touched and re-compilations requires a larger
‘build’. For example, in our experiments with Bowtie2, com-
pilation time was observed to grow by an order of magnitude
during the genetic improvement process (from below a second
at the start, up to about 10s by the end).

2) Randomised Test Suite Sub-sampling: We give each
evolved version several tests. To make them independent and
so prevent an error on an earlier test affecting later tests, each
evolved version is run on each test case separately. (See also
Table II on page 128.)

There are many test cases available for most programs we
might wish to genetically improve. We therefore adapt our
sampling approach [11; 2]. That is, at each generation, we
select a single test case from each of F O–bins to form a test
suite for that generation. At each generation the set of test
cases to be used is re-selected to ensure diversity of testing.
(To avoid retesting, we do not use elitism.)

E. Handling Infinite Loops

Since we allow for and while loops to be changed by
the genetic improvement process, it is quite possible that
the modified code could enter an indefinite loop. We do not
want non-termination of a genetically improved variant to
lead to non-termination of our whole genetic improvement
system. Several approaches have been suggested to handle
this problem. For example, Maxwell [12] suggests a way to
allow fitness comparison as programs run, while Teller [13]
suggests using an “anytime” algorithm whereby answers, and
hence fitness, can be extracted from an executing program,
rather than waiting for it to terminate.

We use the operating system to time out and abort any
evolved version that takes more than a pre-defined cut-off exe-
cution schedule. As the Bowtie2 documentation says “Bowtie2
is not particularly designed with –all mode in mind, and when
aligning reads to long, repetitive genomes this mode can be
very, very slow” , hence some test cases (especially those with
more than 100 matches, cf. Section IV-B) need longer time
outs than others. Pragmatically we impose a CPU limit of
twenty seconds on the first four test cases and one minute on
the last test case.

F. Representation of the System to be Evolved

The existing program is used as the template for its own
upgrade. The template (actually a special “one-sentence” BNF
grammar) is created automatically from the program’s source
code. Whilst evolution has great freedom to change the code,
it is constrained by the template. For example the template
ensures classes, types, functions and data structures are re-
tained. Similarly evolution cannot change the program’s block
structure. So for example, in C++, opening and closing { and }
brackets have to remain in the same place but lines between
them can be changed. Thus, for example, each function’s name
and arguments cannot be changed but their contents can be
re-written and indeed so too can the code that calls them.
Similarly variables retain their names and types but evolution
can use them, change their use or indeed ignore them totally.
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We use a specialised BNF grammar to ensure that the
evolved code has no parse errors. However, GP can generate
code with other language errors (e.g., referring to a nonexistent
variable). These are trapped by the compiler, causing the
modified code to fail at the compilation stage. Our experience
is that almost all such compilation errors involve variables
being out of scope. Earlier experimentation confirmed this to
be the case.

Such scoping issues might be tackled by a detailed type
analysis. However, increasing the fraction of shorter distance
moves by restricting moves to be within the same source file
has proved to be a simple and effective way of increasing the
fraction of evolved versions which compile. See Figure 3 and
Section III-I.

Although we have not found them to be needed here,
there are a number of “sand boxing” [10] and “virtualisation”
techniques to ensure C programs do not cause damage.

BNF rules that correspond to single lines of source code are
modified so that they now invoke another rule with the same
name but with a leading underscore inserted. (For example, for
the Bowtie2 program, the original rule <bowtie_main_46>
in Figure 4 was modified so that it invokes new rule
<_bowtie_main_46>.) GP can replace this (the underscore
rule) with another rule also starting with an underscore and
the resulting program will be syntactically valid.

For example <_bowtie_main_46> ("in.open(
file);") could be copied to replace
<_bowtie_main_51> ("args.push_back(string(
argv[0]));"). This gives two calls to open file but
now args.push_back is never called. The second call
of in.open finds that stream in is already open and does
nothing. The resultant code is syntactically valid and, in
this case, compiles. In some test cases (e.g., where the first
command line argument is not "-A", cf. line 43, Figure 4) the
variant runs despite the missing call to args.push_back
and generates identical output to the released code. Such test
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<bowtie_main_42> ::= "int main(int argc, const char **argv) {\n"
<bowtie_main_43> ::= "{Log_count64++;/*29823*/} if" <IF_bowtie_main_43> " {\n"
#"if
<IF_bowtie_main_43> ::= "(argc > 2 && strcmp(argv[1], \"-A\") == 0)"
<bowtie_main_44> ::= "const char *file = argv[2];\n"
<bowtie_main_45> ::= "ifstream in;\n"
<bowtie_main_46> ::= "" <_bowtie_main_46> "{Log_count64++;/*29826*/}\n"
#other
<_bowtie_main_46> ::= "in.open(file);"
<bowtie_main_47> ::= "char buf[4096];\n"
<bowtie_main_48> ::= "int lastret = -1;\n"
<bowtie_main_49> ::= "while" <WHILE_bowtie_main_49> " {\n"
#WHILE
<WHILE_bowtie_main_49> ::= "(in.getline(buf, 4095))"
<bowtie_main_50> ::= "EList<string> args;\n"
<bowtie_main_51> ::= "" <_bowtie_main_51> "{Log_count64++;/*29831*/}\n"
#other
<_bowtie_main_51> ::= "args.push_back(string(argv[0]));"
<bowtie_main_52> ::= "" <_bowtie_main_52> "{Log_count64++;/*29832*/}\n"
#other
<_bowtie_main_52> ::= "tokenize(buf, \" \t\", args);"

Fig. 4. Fragment of BNF grammar used by GP. Most rules are fixed but <IF_, <_, WHILE_ etc. can be manipulated using rules of the same type to produce
variants of Bowtie2. Log_count64++ etc. are automatically added to instrument Bowtie2. Lines beginning with # are comments.

cases do not reach the site of the modified code and so it
cannot propagate its effects and so, in such cases, the variant
is equivalent to the original code.

The conditional parts of if, else and while as well as
the initial, test and increment parts of for(;;) loops are
extracted into new rules. (With rule names beginning <IF_,
<ELSE_, <WHILE_, <for1_, <for2_ and <for3_, see
examples in Figure 4.) GP is free to exchange these with
other rules of the same type, to generate a syntactically valid
program.

We limit GP to evolving code in the main modules. That is
evolution cannot modify the include files. As in our previous
work [10], we used the gcc compiler’s -E option to strip
comments, to ensure compile time configuration (using the
release configuration) and to perform macro expansion on the
source code.

Human written code is highly repetitive; whole source lines
of code occur more than once. For example, Gabel and Su
recently found [14] that almost all small code fragments have
been written before, somewhere by someone. (I.e., not nec-
essarily in the same application.) Previous studies, e.g., [15],
have reported Zipf’s law in programmers’ use of language
tokens, e.g., () and if in Java, which are enforced by the
compiler.

Excluding white space, Figure 5 plots the number of times
lines of C++ code in Bowtie2 that are exactly repeated. It
is no surprise to discover lines composed of a single } or a
single ; occur many times. (Actually 2310 and 1255 times.)
But many more interesting lines are also repeated. E.g., the
eighth most commonly repeated line is a non-trivial line of 56
characters including, branches, variables and constants. This
is longer than most of the 5 848 (29%) lines that are unique.
(Their median length is 28 characters).
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Whilst Gabel and Su investigated code repetition across an
entire suite of programs and systems, we present in Figure 5,
results for code repetition within one single C++ system,
Bowtie2. We suspect that the results we observed and those
reported for much larger corpuses [14] reflect a wider trend.

It is also well known that crossover can produce large
amounts of repeats, both in natural DNA and in linear and
tree genetic programming.

Genetic improvement should take these observations about
code repetition into account. Therefore, instead of allowing
GP complete freedom to invent any syntactically valid code,
we insist it reuse code that has already been written by the
creator of the program to be genetically improved. Evolution
thus proceeds by “cut and paste”. “Cutting” i.e., removing
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lines of code, and “pasting” means to make a copy of a line
of code in another place.

We were surprised that such a simple approach to mod-
ification could yield dramatic genetic improvements (but see
also [9]). We believe that this is a potentially important finding
of our work.

Our approach is similar to the ‘plastic surgery’ approach
of Weimer et al. [9] in which code is ‘scavenged’ from
other parts of the program under evolution. However, whilst
Weimer et al. consider code at the statement level, we will
deal with lines of C++ code. The creation of a grammar
describing the existing source code (Figure 4 contains an
example grammar) identifies seven different types of source
code fragment (Section III-F above). As long as we only cut–
and–paste source code fragments of the same type, the new
code will be syntactically correct at this lexical level. (There
are some examples in the next section.)

G. Representation of a Genetically Improved Variant

In earlier work on genetic improvement [2; 4], the entire
program was evolved. This was feasible because there was
only a small program [4] or part of a program [2] to be
evolved. However, in order for genetic improvement to scale it
must cater for programs of several orders of magnitude larger
than have previously been considered. We therefore adapt an
approach recently used to scale up bug fixing [9]. We represent
a GP individual as an ordered list of changes [16] that are to
be made to the BNF grammar. To delete a line of code, the GP
individual gives the name of the line’s BNF rule. To replace a
line, the name of the corresponding BNF rule is given together
with the name of the line of code which is to replace it. An
insert operation is essentially the same, except we add + to
the text, so we know to add a copy of the line of code and
not to remove the original line of code.

Here are some examples of the application of this approach
to the Bowtie2 system:

<for3_sa_rescomb_111><for3_sa_rescomb_69>

This GP individual causes the increment part of the for
loop on line 111 of source file sa_rescomb.cpp to be
replaced by the increment part from the for loop on line 69.

<_aligner_swsse_ee_u8_804>

This individual causes line 804 of
aligner_swsse_ee_u8.cpp to be deleted.

<_aligner_result_47>+<_aligner_result_114>

This individual inserts a copy of line 114 in front of line 47
in file aligner_result.cpp.

The first generation is the initial random population. In it
all GP individuals contain exactly one change. In the second
generation we start to see individuals that make two or more
changes. These individuals are simply one line of text with a
space between each of their constituent mutations. Mutations
are applied in order. However, we can readily spot mutations
which replace the same line of code. In this case only the
last one need be applied. In fact we use genetic “repair”, so

where conflict arises an individual’s genome only contains the
relevant, i.e., the last, mutation. Notice we can easily keep
track of which source files have been changed and use a unix
“make” file to ensure only the modified files are recompiled.

All this manipulation is done in plain text, unlike other
work, based on CIL, which operates on abstract syntax trees
(AST) [9]. Our grammatical representation of the program to
be improved makes this practical, even though it operates at a
lexical level. Even for the largest set of genetic changes and
even prior to the final local search bloat-removal phase, the
time required to make the changes is typically less than that
required to compile the resulting modified system.

H. Selection

Up to half the current population can be selected. Those below
the cut point, as well as variants which failed to compile or
which never exceeded the released code in any way are not
transmitted to be parents of the next generation. As will be
mentioned in Section III-J, if fewer than half the population
are selected, two new children per missing member are created
from scratch. That is they are effectively reinitialised. The
new individuals are created in the same way as the initial
population was created in generation zero.

I. Mutation

An individual is mutated by appending a new grammar modifi-
cation to the list that denotes an individual (see Section III-G).
The additional line to mutate is chosen from all lines executed
at least once by the test cases selected from the O–Bins for
sensitivity analysis. The line to be mutated is chosen with a
probability that is defined by its sensitivity analysis weight.

One of the three types of mutation (deletion, replacement
and insertion) is chosen (with equal probability). Note that
these are the only permitted changes, in particular totally new
code cannot be introduced. However, it makes no sense to
delete one of the trivial lines (i.e., lines just containing a
single disabled assert or ;). Trivial lines can, with equal
probability, be used either as the point to insert new code or be
replaced with a non-trivial source line. The new code is chosen
uniformly at random from non-trivial lines of the same type
(captured by our grammatical representation approach) in the
same source file that were executed at least once. (The types
were described in Section III-F above.)

We avoid the generation of ‘no operation’ and duplicate
code. That is, a child is rejected if either it makes no change
(i.e., replacing self with self) or where the corresponding
sequence of changes already exists. (Both can be spotted effi-
ciently since changes are essentially cut-and-paste operations).
If a child is rejected in this way, then the parent is mutated
again until a non-duplicate is created.

J. Crossover

We anticipate that many changes are somewhat independent;
a genetically improved program can be found by combining
multiple changes. This is the role of crossover. In our case
crossover simply concatenates two individuals. The first par-
ent is selected from the current population according to its
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Fig. 6. Increase in mean number of mutations as evolution improves Bowtie2.
Note many members of population (10) reinitialised near generations 65
and 167, causing long mutation lists to be replaced by new (much shorter)
individuals.

fitness. The second is drawn uniformly from the members of
the current population which compiled (i.e., have a fitness
value). Naturally, such a crossover leads to rapid growth in
chromosome length (bloat [17]). See Figure 6 for an example
of the increase in genotype length which we observed in our
experiments with Bowtie2.

As with mutation (previous section) each child’s genotype is
reduced to canonical form and a crossover will be rejected if it
is already present in either the new or the previous generation.
If, after a small number of retries, crossover cannot find a
unique individual, the new child is created by mutating a fit
member of the population.

Normally half the new population is created by mutating the
fittest parents and half by crossing over the fittest parents with
other fit members of the population. (To ease reproduction all
the key parameters of our evolutionary system are given in
Table I.) However, if the number of fit parents in the current
population falls below half, mutation and crossover will not
create sufficient new children to fill the new population. In
this case, to restore diversity to the population, the missing
children are created at random (in the same way as the initial
random population).

K. Post Processing Solution Cleanup

It is common for solution programs evolved using genetic
programming to be ‘bloated’ [17]. That is, some parts of the
evolved changes make little or no difference. From the point of
view of software engineering, maintenance, ease of integration
of genetic changes into human written code, etc., it is easier
to work with a minimal number of changes. It is possible for
genetic programming to minimise evolved code, but previously
we had used larger populations. Therefore we decided to use
a simple hill climbing strategy to minimise the size of the
ordered list of changes after the end of the GP run.

Starting from the beginning of the best individual in the last
generation, each of the changes are disabled one at a time. If
removing the change makes the evolved version worse, then
the evolved change is kept. Otherwise it is removed. The hill

climber then goes on to test the effect of removing the next
evolved change and so on, until the whole evolved version has
been so-processed.

IV. APPLYING THE GISMOE GENETIC IMPROVEMENT
APPROACH TO BOWTIE2

In this section we explain how the GISMOE genetic improve-
ment approach we introduced in the previous section is applied
to the Bowtie2 program.

A. Determining Functional Correctness for Bowtie2

For the automated oracle we use the Smith-Waterman algo-
rithm to compare the answer given by Bowtie2 with the human
genome. Unlike Bowtie2 itself (and related tools), Smith-
Waterman performs a complete comparison, rather than using
heuristics. However, Smith-Waterman can only allow us to
check the reported sequence matches for correctness, it does
not allow us to check for missing answers. Smith-Waterman
thus provides a partial oracle, that can evaluate the answers
given.

In order to use the Smith-Waterman score, we need to
allow for partial matches (indels). To do this, the reference
string against which matches are checked is extended by nine
characters at either end. The genetically improved system’s
Smith-Waterman score for a test case is the mean of the Smith-
Waterman scores over all matches it suggests for that test
case. However, if the output from the modified system is a
match that fails to lie exactly where Smith-Waterman locates
the optimum match, then the match’s score is reduced by 1.0
for each DNA string position by which its output disagrees
(subject to the match’s score not going below zero).

Bowtie2 reports many accountancy details about the
matches it finds between the test Solexa DNA sequence and
the human genome. We give credit only for the matches
themselves. Potentially evolution can make minor saving by
mutating Bowtie2 so that it no longer generates this unwanted
output.

1) Training Data – Human Genome, Bowtie2 and the
1000 Genomes Project: The complete official release of the
reference human genome (release 37 patch 5) was down-
loaded from the National Center for Biotechnology Informa-
tion (NCBI). The NCBI also maintains BLAST. The 64 bit
Linux version of Blast was downloaded from its FTP site
(version 2.2.25+) and this version was used in the experimental
comparisons reported below. The C implementation of the
Smith-Waterman local alignment algorithm was down loaded
from Cologne University Biological Physics department. The
Smith-Waterman algorithm does a complete search to find the
optimum match between two strings.

The C++ sources for the 64 bit Linux version of Bowtie2
(version 2.0.0-beta2) were down loaded from sourceforge
(50 745 lines). This version of Bowtie2 was used to create an
ASM format database holding the reference human genome
from the NCBI DNA sequences. We have evolved all new
versions of Bowtie2 by fitness testing against the complete
human genome (3.9 GBytes). Fitness testing might be sped
up by using only part of the database or indeed a smaller

https://wiki.uni-koeln.de/biologicalphysics/index.php/Implementation_of_the_Smith-Waterman_local_alignment_algorithm
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TABLE I
GENETIC PROGRAMMING PARAMETERS(INCLUDING, FOR REPLICATION PURPOSES, THE SPECIFIC PARAMETERS USED FOR IMPROVING BOWTIE2 ON

1000 GENOMES PROJECT SOLEXA SHORT DNA SEQUENCES).

Representation: List of replacements, deletions and insertions into BNF grammar
Fitness: Based on compiling modified code and testing it. See Sections III-D and III-H and Table II
Selection: An evolved version cannot be selected to be a parent unless it does better on at least one test case than the original (instrumented) code.

A new individual is said to better if the unmodified code failed on the test case and it doesn’t or its mean Smith-Waterman score is higher
than that of Bowtie2 or if it used fewer statements. However, normally it must also report at least one match. Scores are sorted by number
of test cases where the evolved version returned an answer, mean Smith-Waterman, and finally by number of statements executed. The
first five are selected to have 2 children in the next generation. One child is a mutant, the second is a crossover between a selected parent
and another member of the current population. Children must be different from each other and from the current population. If crossover
can not create a different child, the child is created by mutating the selected parent.

Population: Panmictic, non-elitist, generational. 10 members. New training sample each generation.
Parameters: Initial population of random single mutants weighted towards heavily used statements. 50% append crossover. The 3 types mutation

(delete, replace, insert) are equally likely. No size limit. Stop after 200 generations.

genome from a non-human source (e.g., yeast or mycoplasma
bacteria). However, our goal was to tailor Bowtie2 to the task
of looking up human DNA sequences. Indeed, we wished to
create a version specific to real DNA sequences generated by
a particular sequencing technique, rather than synthetic data.

The 1000 genomes project [8] has sequenced, wholly or
in part, DNA from more than one thousand individuals us-
ing a variety of next generation sequencers. Our goal is
to show the automatic generation of improved software for
a particular task, so we use data from a popular scan-
ner make used in a laboratory for which we have copi-
ous training data. The data can be obtained via FTP from
ftp.1000genomes.ebi.ac.uk. We selected homoge-
neous data (i.e., DNA sequences with exactly 36 bases) from
one well studied CEU family and the Solexa data provided by
the Broad Institute, MA, USA.

The Solexa scanner output includes an estimate of the
quality of each base in the sequence. It also uses “N” to
indicate any DNA base which it cannot decide which of the
four bases (A, C, G, T) it really is. The data quality is highly
variable. In one dataset less than 1 in a thousand sequences
has an N. In the worst training dataset every record had at
least one (typically two or three).

2) Preparing the Training Data: The performance of
Bowtie2 depends strongly upon the number of matches it finds
between the query DNA sequence and the reference human
genome. To get a good spread of Solexa DNA sequences for
training we started by using the released version of Bowtie2
to annotate a sample of DNA sequences with the number of
times they occur in the human genome. We randomly selected
500 of the ≈8 million DNA sequences in each of 11 Solexa
runs for a CEU female (NA12878). Then we ran the released
version of Bowtie2 against the human genome on groups of 50
randomly chosen sequences and for each counted the number
of matches it reported. (Total 11 × 10 × 50 = 5500.) Even
on a 32GB 8-core server, in five cases Bowtie2 was aborted
(after failing to respond), leaving us with 5250 DNA Solexa
sequences. The distribution of the number of matches is plotted
in Figure 7.

B. O–Bin Sampling as Applied to Bowtie2

We implemented the O-bin sampling described in Sec-
tion III-A as follows: Each generation five DNA sequences
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Fig. 7. Distribution of number of matches in human genome for Solexa
DNA sequences found by Bowtie2. (Note non-linear scales. With more than
ten matches decile bins are used.)

are automatically chosen uniformly at random from the 5250
Solexa sequences described in the previous section:

1) a sequence which Bowtie2 cannot find in the human
genome

2) a sequence which it matches exactly once
3) a sequence which matches between twice and ten times
4) a sequence which matches between 11–99 times
5) a sequence which matches between 100–200 times

The first two cases can be viewed as positive tests to ensure
the modified Bowtie2s still retain their essential ability to both
report the absence of matches and find them. Test cases of
type 3, 4 and 5 are designed to detect modified Bowtie2s that
are faster. Cases 3 and 4 are intermediate. They seek to guard
against chance playing too great a role in parenthood selection.
Bowtie2 run time grows cubically with number of matches.
Figure 7 shows the number of matches (n) within the human
genome that Bowtie2 can find is essentially unlimited. Given
O(n3) run time we cannot possibly use the sequences which
match many times in fitness testing. Instead we imposed an
upper limit of 200 matches. Even so the fifth test case (which
is drawn from the O–Bin containing the most demanding test
cases) frequently takes the most computational effort.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 1, FEBRUARY 2015 127

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0  5000  10000  15000  20000  25000  30000T
im

es
 e

xe
cu

te
d 

on
 D

N
A

 s
eq

ue
nc

e 
w

ith
 9

93
4 

m
at

ch
es

Bowtie2 C++ source line

Fig. 8. Example when Bowtie2 finds many matches of the distribution of the
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C. Representing the Bowtie2 Source Code to be Evolved as a
Grammar

Following the general GISMOE approach outlined in Sec-
tion III-F (page 122) we limit GP to evolving code in the
main modules of Bowtie2. This yields 39 modules containing
about twenty thousand lines of code. These were automatically
translated line for line into a BNF grammar of 19 949 rules.
(See fragment in Figure 4.)

D. Sensitivity Analysis for Non-Functional Properties Applied
to Bowtie2

To illustrate the importance of our sensitivity analysis, con-
sider Figure 8, which shows the number of times individual
lines of code were executed in an example run of Bowtie2.
Of the 13 498 executable lines that were instrumented, 9 760
(72%) were never used, 1518 (11%) were used exactly once,
846 (6%) more than once but less than the number of matches
(9934), 309 (2%) were used exactly 9934 times and 929 (7%)
were used more than 9934 times. In fact 80 lines were used
more than a million times, with two being used more than
2 147 483 648 times.

Although Figure 8 describes a single test case, the GISMOE
weighting scheme (described in Section III-C, page 121)
is based on a large number of test cases. In more detail,
for Bowtie2, the 5250 DNA Solexa sequences described in
Section IV-A2 were sorted by number of matching strings
into decile O–bins. I.e., ten O–bins per order of magnitude.
(Meaning ten O–bins for numbers between 10 and 100, ten
for 100 to 1000 and so on.) That is the O–bins are spread
evenly on a logarithmic scale. If there were more than ten
DNA sequences in an O–bin, ten were chosen at random from
it. This yielded 362 DNA sequences with a wide variety of
number of matches in the human genome.

An instrumented version of Bowtie2 was run on them all
to give, for each of the 362 input test cases, which lines of
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Fig. 9. Example heavily used lines in Bowtie2 which scale differently with
number of matches found for the input Solexa DNA sequence in the human
genome. Constant +, linear (2), quadratic (�) and cubic (×). (Note log
scales.)

code were used and how many times. Figure 9 shows, for
4 example source lines, the relationship between the number
of times the query string matches in the reference database
and the number of times the source code is executed. The
instrumented version allows us to not only know which lines
of code are in use but also to estimate how their usage scales.
We find lines 1) which are never used, 2) which are used once
(or a constant number of times), 3) whose use varies linearly
with output size (n), 4) whose use varies as n2 and 5) whose
use varies in proportion to n3. This gives us a crude assessment
of the algorithmic complexity of each line of code.

For Bowtie2 the weights described in Section III-C. are
calculated as follows: If a C++ line is used in any of the
362 instrumented runs it will be given a weight between 1
and 1000 in proportion to the number of times it is used in
that test. If its not used at all, then GP ignores it and will not
mutate it. If it is heavily used in any test, it is given the higher
weight.

These weights are combined with the algorithmic com-
plexity assessment (which allocates weights of 10, 100 and
1000 for O(n), O(n2) and O(n3) complexity, as described in
Section III-C) by selecting the maximum of the two scoring
systems. Figure 10 (generation 0) shows the results of this non-
functional sensitivity analysis as applied to Bowtie2. Figure 10
shows 2111 lines have initial weight 1, 483 have weight 10,
103 weight 100 and 47 have weights of initially 723 or more.
(Total 2744.)

E. Combining Functional and Non-Functional Fitness to
Create an Overall Fitness for Bowtie2

Each genetically improved variant that compiles is compared
to the instrumented original on the five test cases selected
from the O–Bins (to be described in Section IV-F4, see also
Table II). Two fitness criteria are used corresponding to the
functional and non-functional criteria: Did the evolved version
run faster (which, in our case, is measured in terms of the
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execution of fewer lines of code) and did it produce better
answers on average (which is measured in a domain-specific
manner). It need only do better on either criteria on any of
the five test cases to be considered as a parent of the next
generation. (However, it is not considered better if it finds no
answers at all, no matter how fast it goes.) Those variants that
compiled and were judged better than the original code on
the current five test cases are sorted according to three fitness
criteria. The three fitness criteria (in order of precedence) are:

1) number of test cases completed without run time error
2) mean Smith-Waterman score
3) lines of C++ code executed (minimised)
We order the criteria in this manner to favour functional

faithfulness (to the original) highest, then the functional in-
formation from the oracle next highest, and finally the non-
functional property we seek to improve (execution time). This
is because we seek solutions that are better according to the
non-functional criteria, but at least no worse according to the
functional criteria. Other possibilities, that are more ‘heretical’
in their approach to correctness are discussed elsewhere [1].

F. Implementation Details

This section presents implementation details required to make
the genetic improvement process practical and which may be
required by other researchers for replication purposes.

1) Aborts, Heap errors, Segmentation Errors, Floating
Point Exceptions, assert exceptions: Almost all evolved
programs which compile run all of their test cases and produce
an answer on each. Only 6% fail. The most frequent causes
of run time failure are segmentation faults (≈3%) and CPU
time limit overruns (≈2%). The remaining 0.6% of runs either
abort (e.g., due to heap corruption), report a floating point error
(e.g., divide by zero) or fail one of Bowtie2’s own assert
exception checks.

2) Zombies: In unix, a process can sometimes fail in such
a way that the operating system has difficulty cleaning up after
it and instead of terminating it unix places it in a “zombie”
state. Since such zombie processes do not terminate or timeout
a zombie could potentially hold up our GP indefinitely. We

TABLE II
FITNESS FUNCTION

• Each generation chose uniformly at random one test case from each
O–Bin (Section III-A, page 120).

• Fitness test original (albeit instrumented) system on each of these
test cases

• Fitness test each member of the population
– Generate modified source code and then compile it.
– If fails to compile, GP individual cannot be a parent so skip

rest of fitness testing
– For each of the selected test cases:
∗ Run modified system (subject to time out, 20 or 60 secs)
∗ For each reported match with the human genome
· Calculate Smith-Waterman score for test case v. match
· If optimal Smith-Waterman match is not where it was

claimed to be, subtract the distance between claimed
match and Smith-Waterman match from Smith-Waterman
score (subject to score not being made negative).

∗ calculate mean Smith-Waterman score for this test case and
store number of instructions executed

• At the end of the generation, each member of the population which
compiled is compared with the original code on each of the test
cases.
If a modified version of the system takes fewer instructions or
has higher mean Smith-Waterman score (unless it never claims any
matches) it is eligible to potentially become a parent.

• The eligible variants are sorted in order:
1) Number of test cases where it did not fail or time out and was

not aborted by the zombie killer (Section IV-F2)
2) Mean Smith-Waterman score
3) Number of instrumented lines of C++ run (total on all test

cases). To be minimised.
• The top popsize/2 are selected to be parents of the next generation. If

fewer than popsize/2 variants are eligible, two children per missing
variant are created at random (in the same way that the initial
population was created.)

found that zombies only occur infrequently. Indeed, none
were created during the runs described in Section IV-F1.
Nevertheless, in order to guard against it we used a background
zombie killer.

If the machine is overladen then the failure of a process to
respond might be due to its failure to receive any computation
time. In our experiments we set this overladen threshold to 16.
This means that the machine is considered overladen should
there be 16 or more processes awaiting scheduling all of which
are able to proceed. 16 seemed to be a suitably conservative
value, given that our experiments ran on a machine with 8
cores. Once a minute the zombie killer background process
compares the CPU time taken by each fitness job with that
taken by it in the previous minute. If they are identical the job
is killed (provided the machine is not overladen), freeing the
GP to continue to the next fitness test.

3) Details of compilation failures and aborted runs:
Throughout the run (see Figure 11) about 26% of compilations
fail. (All but six compilation failures are caused by moving
variables out of their scope).

4) Comparing with the Original Program: As explained
in Section III-H (page 124) the instrumented (but otherwise
unchanged) Bowtie2 code is run on the test cases selected as
the training set for the current generation. (See Section III-D
page 121). This took an average of 38 seconds.
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G. The Role of the Smith Waterman Score in the
Post Evolution Clean

To avoid excessive run time, the hill climber used to minimise
the evolved solution (cf. Section III-K page 125) uses a (fixed)
subset of all the training data. One hundred different DNA
sequences were randomly chosen from each of the five classes
described in Section III-D. (Only 41 of the 5250 Solexa
training sequences match in the human genome reference
sequence between 100–200 times. So they are all used.) This
gives 441 training DNA sequences for the hill climber.

The Smith Waterman score is used to winnow the mutations
listed in each individual evolved by generic improvement. A
smaller mutation is considered worse if:

1) It does not compile.
2) It uses more than 1% more instructions than the evolved

version.
3) If fails to find a match.
4) The Smith-Waterman score of all the matches it reports

for a DNA sequence is on average more than 1.0 lower.
5) If ten or more of the matches it finds have on average

lower Smith-Waterman scores than the evolved version.

If, according to this definition of worse, the removal of a
change from an individual fails to make the resulting version
of Bowtie2 worse, the change is considered unimportant and
it is permanently removed from the individual.

V. GENETICALLY IMPROVED BOWTIE2

Section V-A will describe the evolution of performance, both
on the per generation training sets and on a fixed sample
representing all the training data. Section V-B describes out-
of-sample performance and then Section V-C describes out-
of-sample performance of Bowtie2 when modified by the
minimised genetic change. Section V-D tries to explain the
minimised change’s impact on Bowtie2.
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A. Performance During Evolution

We evolved a population of ten Bowtie2 variants for two hun-
dred generations. Figure 12 shows the best in the population’s
fitness at each generation. There is a dramatic improvement
in speed and a very small improvement in mean Smith-
Waterman score. Figure 6 (page 125) plots the evolution of
genotype size. Notice that size increases (bloat) under the
action of our crossover (Section III-J). However, the population
is reinitialised near generations 65 and 167. That is, twice
during evolution the population contained very few good
individuals and, as described in Section III-H, the poor ones
were replaced by reinitialising them in the same way that the
initial population is created.

To show training performance in general, every ten gen-
erations, we re-tested the best-of-generation program on a
much bigger and fixed subset of the 5250 training Solexa
DNA sequences described in Section IV-A2 (page 126). Apart
from the random number seeds, we used the same procedure
as in Section IV-G to select 441 DNA sequences. In the
last generation the best individual used only 1/290th of the
instructions used by the instrumented Bowtie2 on the five DNA
sequences used for training in generation 200. When both were
tested on the 441 DNA sequences, one at a time, the ratio was
one to five hundred.

The speed (as a fraction of the number of instructions used
by the unmodified instrumented version of Bowtie2) of the
best of each generation is plotted in Figure 13. Figure 13,
shows the performance of the best in the population every
tenth generation. Note that the versions of Bowtie2 are run
once on the 441 test cases. (Rather than 441 times, once on
each test case.) The best of generation 135 is described in the
supplementary information.

As suggested in Section III-D, GP has been able to improve
the initialisation code. Therefore when we use the 441 DNA
sequences in a single file, improvements in the initialisation
code have less proportionate effect. Nevertheless, Figure 13
shows that in most cases the best evolved version of each
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Fig. 13. Speed of best-in-population every ten generations on a fixed training
set. (Note Figure 12 gives GP fitness with training set which is changed every
generation.) Here we run each genetically improved version of Bowtie2 on
all 441 DNA sequences together.

generation still uses only about a fifth of the instructions used
by the unmodified Bowtie2. Also Figure 13 shows that in most
generations the best of generation evolved version finds DNA
matches in the human genome which on average are at least as
good as the original unmodified version of Bowtie2. Again the
improvement in Smith-Waterman score is small (e.g., 0.5% in
generation 200.)

B. Performance Comparison on Hold Out DNA Sequences

For verification, ten DNA scans were randomly chosen from
two different individuals (one male, one female, NA12891
NA12892, being the parents of NA12878) giving 20 complete
Solexa scans (a total of 176 893 951 DNA sequences). Ten
DNA sequences were chosen from each Solexa scan. The
distribution of the number of matches for these 200 DNA
sequences, which is strongly related to run time, is shown in
Figure 14. Apart from sampling noise, it should be the same
as the whole of the Solexa scans. Notice that it contains a few
sequences which match a very large number of times. As we
described in Section IV-A2 (page 126), such sequences were
deliberately excluded from the training data, as they cause the
released version of Bowtie2 to become very slow.

The released version of Bowtie2 and the evolved version
were both tested on the 200 hold out DNA sequences. Neither
was instrumented and both were compiled with the same
compiler optimisations as are used in Bowtie2’s installation
kit (i.e., gcc -O3). The evolved version took 3.9 hours. The
released code took 12.2 days. Thus, we observe that, on
average, the genetically improved program is seventy four
times faster on out-of-sample data.

In 178 cases (89%) the GP version of Bowtie2 produced
identical results to the released code. In 17 of the remaining 22
cases the GP version found fewer matches (median reduction
0.8%, p = 2 10−5 sign test). In three cases (1.5%), the
reduction in the number of matches found was more than 40%
but, in each case, the matches had a much better mean Smith-
Waterman score. The GP version never reported more matches
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Fig. 14. The distribution of the number of matches in the human genome for
verification Solexa DNA sequences. Note non-linear scales. With ten or more
matches each bin contains data covering an order of magnitude. Cf. Figure 7
.

nor did it ever incorrectly report zero matches. Recall that
multiple matches, particularly if low quality, are not normally
useful to the Biologists. In 18 cases (9%) the GP version
was better (i.e., the matches it reported had a mean Smith-
Waterman score better than that of the released code). In one
case the Smith-Waterman score was identical and in three
(1.5%) the scores were worse but differed only in the 4th

and 6th significant decimal place (p = 0.001 sign test). The
median improvement was 0.1 (max 6.32).

C. Minimising the Final Evolved Variant

The best-in-generation 200 evolved individual (see supple-
mentary information) makes 39 changes to the released ver-
sion of Bowtie2. Using the clean up procedure described in
Section IV-G (page 129), this was reduced to seven changes
(shown in Figure 15). Of course other techniques, such as
diffx, might also be able to simplify it. The reduced version
was compiled in the same way as the released code (i.e., gcc -
O3) and tested on the 200 verification DNA sequences. It
produced identical output to the evolved “39 changes” version
and was 4% faster, giving a speed up compared to the released
code on the hold out DNA sequences of 77 times.

D. Optimisations Provided by Bowtie2GP

The following sections (V-D1–V-D5) try to explain the impor-
tant optimisations found by GP (given in Figure 15).

1) bt2 io.cpp line 622: Source file bt2 io.cpp is
concerned with reading the indexed human genome
reference sequence from disk files (total 3.79 GB).
In training cases with the original Bowtie2, line 622
(top of Figure 15) is used 179 215 892 times at the
start of each run (Figure 9). Line 622 is a for loop:
for(uint32_t i = 0;i < offsLenSampled;i++)
which genetic programming replaces with
for(uint32_t i = 0; i < this->_nPat; i++).
Since this->_nPat typically has a value of 84 (rather
than offsLenSampled’s 179215892) the whole loop is
iterated far fewer times. However, the loop’s body comprises
only various assert statements. Eventually, in optimised
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Weight Mutation Source file line type Original Code New Code
999 replaced bt2 io.cpp 622 for2 i < offsLenSampled i < this->_nPat

1000 replaced sa rescomb.cpp 50 for2 i < satup_->offs.size() 0
1000 disabled sa rescomb.cpp 69 for2 j < satup_->offs.size()

100 replaced aligner swsse ee u8.cpp 707 vh = _mm_max_epu8(vh, vf); vmax = vlo;
1000 deleted aligner swsse ee u8.cpp 766 pvFStore += 4;
1000 replaced aligner swsse ee u8.cpp 772 _mm_store_si128(pvHStore, vh); vh = _mm_max_epu8(vh, vf);
1000 deleted aligner swsse ee u8.cpp 778 ve = _mm_max_epu8(ve, vh);

Fig. 15. Minimised evolved solution. After unneeded changes have been removed, we are left with 7 changed lines, in three C++ source files. This version of
Bowtie2 is 77 times faster on average than the released version on short DNA sequences generated by the Broad Institute’s Solexa next generation scanner.

non-instrumented production code, they are all removed
by the compiler. Thus while substituting this->_nPat
for offsLenSampled reduces the instrumented number
of lines used in a run by 179 215 808, it has no effect on
(production) run time. (We can view this as GP rediscovering
a gcc -O3 optimisation.)

2) sa rescomb.cpp lines 50 and 69: Bowtie2 starts from
exact matches between the DNA sequence and the human
genome which are given by a hashing algorithm. (These are
known as seeds). Since, in general, each seed covers only a
part of the input DNA sequence, Bowtie2 uses C++ source file
sa rescomb.cpp to see if the matching region can be extended
to cover the whole of the input sequence.

Lines 50 and 69 of sa rescomb.cpp (3rd and 4th rows of
Figure 15) are both for loops in C++ method SAResolveCom-
biner::tryResolving(). In both cases, GP modifies the central
loop control part and sets it to false. This means neither
loop body is ever executed. Figure 9 shows the unmodified
scaling characteristics of these two for loop bodies. Line 51
in sa rescomb.cpp � is inside the line 50 for loop. It scales
as O(n2). Where n is the size of Bowtie2’s output. Line 70 ×
is inside the line 69 for loop. Unmodified, it scales as O(n3).
The line 50 for loop counts how many elements are yet to be
resolved in satup_

size_t needResolving = 0;
for(size_t i=0;i<satup_->offs.size();i++){

if(satup_->offs[i] == 0xffffffff) {
needResolving++;

}
}
Typically replacing i < satup_->offs.size() with 0
means instead of needResolving being set to up to 335,
it remains as zero and the function immediately returns. (So
line 69 is never executed and the fact that it has also been
disabled by GP never comes into play.) Typically, disabling
the line 50 for loop reduces the number of lines executed by
0–20%. (The order plus the interaction between mutations to
lines 69 and 50 mean the hill climbing simplification stage,
Section III-K, could not spot that the change to line 69 was
not needed as well as the change to line 50.) Exiting the
method early (i.e., just after the for loop on line 50) typically
has no effect. This is because mostly nfound (set by for
loop on line 69) is a lot smaller than needResolving so
the condition if(nfound == needResolving) is false.

(I.e., typically many elements in refscan_ are also in
satup_.) This means all the remaining code which might
update values used outside the method is not executed. Also
the method’s return value is always ignored. I.e., GP avoids an
expensive O(N3) nested loop. The optimising compiler cannot
remove it because it does not know that typically it makes no
difference to the final output.

3) aligner swsse ee u8.cpp line 707:
aligner swsse ee u8.cpp lines 707, 766, 772 and 778 are in
C++ method SwAligner::alignNucleotidesEnd2EndSseU8().
alignNucleotidesEnd2EndSseU8 uses Intel SSE instructions
that operate on 16 unsigned 8-bit values packed into a single
128-bit register to solve the current alignment problem.
All four modified lines are in a loop which processes each
character in the reference text. This scales as O(n). However,
lines 766, 772 and 778 are in a nested while loop which
causes them to be executed about four times as many times
as line 707. (Still O(n) of course.)

Starting with line 707, its replacement vmax = vlo; has
no effect since vmax is already assigned to vlo;. Thus
the change effectively deletes line 707. In the original code
vh = _mm_max_epu8(vh, vf); vh is used as a scratch
variable for 16 parallel SSE instructions. The instruction
on line 706 vh = _mm_max_epu8(vh, ve); sets each
element of vh to the maximum of the corresponding elements
of vh and ve. Line 707 should have set them to the maximum
of vh, ve and vf. Typically, only in 4% of cases is an element
vf bigger than both vh and ve.

4) aligner swsse ee u8.cpp lines 766 and 772: As with
line 707, the replacement for line 772 makes no difference
(since it too repeats exactly an existing calculation). Hence
line 772 _mm_store_si128(pvHStore, vh); is effec-
tively deleted. pvHStore is a pointer (type __m128i*)
to where the 16 results in vh should be stored next. It is
incremented by ROWSTRIDE (4). As the store instruction
on line 772 has been deleted, pvHStore should not be
incremented. GP achieves this by deleting line 766. (Prob-
ably a human programmer would have deleted the identical
instruction on line 773, but deleting line 766 has the same
effect.)

It appears the immediate effect of not saving vh comes on
lines 788 and 796 where the next value of vh should have been
loaded but instead the old one is reloaded. It appears that this
terminates the inner while loop after the next iteration. So
typically reducing the number of times the while loop loop
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is used by a factor of about twelve, with almost no impact
on the output. I.e., it appears GP has discovered that later
gap extensions are relatively unimportant, whereas originally
Bowtie2 spent a long time searching for them.

5) aligner swsse ee u8.cpp line 778: Line 778
ve = _mm_max_epu8(ve, vh); (cf. line 707 above)
has the effect of updating elements in ve in the 25% of cases
where vh is bigger than the element in ve. Thus in three
quarters of cases removing line 778 has no effect.

The net combined effects of all seven modifications in
Figure 15 are somewhat subtle. They are somewhat like “loop
perforation” [18]. However, loop perforation acts on complete
loop iterations, e.g., to speed convergence, rather than manip-
ulating program instructions which are repeated many times
as they lie within nested loops. Indeed, the interactions of the
modified program instructions may indirectly determine if the
loop is repeated or not.

VI. RELATED WORK

Whilst genetic programming has been used many times in
Software Engineering, e.g., in project management [19] and
testing [20], we are particularly concerned with evolving
code. GP has not demonstrated an ability to write large
programs normally associated with “programming”. However,
even modest amounts of evolved code can be useful.

A. Current and Existing Research

Martin [21] showed that genetic programming can build a
telephone call re-routing service (home/office) from existing
telephony components. Although clearly not a like-for-like
comparison, Martin claimed GP elapsed times of about a
minute, whereas a commercial “study showed that for a
complex service a team of engineers required 4.5 Man years
of effort to analyse, design, code and test the service.” (Note
the commercial study also includes non-coding business ac-
tivities whereas GP elapsed time covers only coding.) More
recently, Rodriguez-Mier et al. [22] showed that GP can create
novel web services by combining human written existing web
services using the web ontology language (OWL). Notice the
power of web mashups comes from quite small amounts of
“glue” logic. Glue logic might also be usefully evolved to
combine other types of software: perhaps on the same server,
perhaps written in the same or different languages (e.g., PHP
and Cobol). Combinations that are rare or difficult for a human
programmer or where skills are difficult to find may turn out to
be no more difficult for a machine than a routine combination.
Similarly, once objectives can be quantified, it may be as easy
for a machine to juggle multiple objectives (perhaps a mixture
of functional and non-functional requirements) which a human
programmer would be hard pressed to meet simultaneously
and would, in practice, tackle only one at a time.

Another approach to side-stepping the scaling problem
is Yamamoto and Tschudin’s [23] “fraglets” approach. This
uses GP in an artificial chemistry-like approach, whereby
small fragments of existing code are combined. Yamamoto
and Tschudin [23] considered evolving network communica-
tions protocols. More recently, Weise and Tang [24] evolved

distributed algorithms (election, critical selection for mutual
exclusion distributed locking and distributed greatest common
divisor) using a GP rule based approach.

One of the earliest attempts to evolve software considered
evolving hashing functions [25]. (See also [26], [27] and [28]).
Hashing is often used to speed up search. A hash function
takes an object (typically a string) and deterministically con-
verts it to one of the legitimate indexes into a data store.
Whilst hashing typically takes constant time, the search in
the data store typically grows with the number of items with
the same hash index. An efficient hash function will ensure
commonly used objects hash to (relatively) unique indexes.
There are many good hash functions but how good a hash
function is in practice depends upon the distribution of objects
it has to deal with. Often this is not known in advance by the
programmer. So a generic hash function may do poorly with
specific examples. Human written hash functions may be tuned
for a certain load. Tuning usually means the hash function
is coded, tested and recoded in response to the tests, tested
again and so on. Notice this is effectively a manual version
of the classic evolutionary algorithm: generate and test, then
regenerate and retest and so on.

Memory management is another area where traditionally
people try to write generic code by making assumptions about
typical patterns of use but a specific implementation may turn
out to be inefficient when used in unanticipated ways. Risco-
Martin et al. [29] showed grammatical evolution [30] is able
to evolve efficient heap managers for specific circumstances.
They also considered non-functional requirements, like power
consumption.

Another case where there is no universal optimal strategy
is data caching. For caching between CPU and RAM to be
effective it must be very fast. Hence its algorithms are simple
and implemented in hardware. Whilst both word size and
number of independent cache stores vary, even in the same
product line, the use of “cache lines” is very common. Both
Paterson and Livesey [31] and O’Neill and Ryan [32] evolved
software that decides which data to expel from the cache. (I.e.,
which cache line to flush.) Both claim to do better than the
common heuristic “least recently used” LRU and their evolved
code is small enough (1–3 lines typically) that it might be
implemented in hardware. O’Neill and Ryan also suggest their
solutions are more generic than those in [31].

Sipper et al. used GP to improve existing Java programs
(symbolic regression, artificial ant on the Santa Fe trail,
separating intertwined spirals, array sum and tic-tac-toe [3]).
Their initial population is seeded with Java byte code [33]
from an existing poor program.

Weimer et al.’s work on using GP to automatically fix
bugs [9] is increasingly well known. Most of this work is
at the level of C source code but his group has also shown
bugs can be fixed in lower levels. They have also used
GP to improve GPU shaders [34]. Rinard’s group have also
used non-evolutionary ways to make non-semantic preserving
transformations to GPU kernels [18]. Other recent work on
evolving fixes for bugs include [35; 16].
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Arcuri and White (e.g., [4]) considered not only automatic
bug fixing [5] but also have shown GP can improve pro-
grams. They considered several well-known software engineer-
ing benchmarks, including triangle, sort, factorial, remainder,
switch 10 and select. (Select is the largest at 94 LOC.)
They showed GP can improve the source code and find
optimisations which the compiler was unable to find. For
example, they showed GP reduced the number of instructions
executed by factorial (in Java) by 87.4%. They also showed
GP can optimise non-functional properties. For example, they
evolved pseudo random number generators (PRNG) which
trade “randomness” (as measured by information entropy)
against reduction in power consumption.

In previous work [2] we showed that non-trivial amounts
of code can be automatically created with a test based fitness
function and starting from a BNF grammar that constrains
the code to be legal, compilable, executable and terminating.
We chose the unix gzip compression utility and demonstrated
the evolution of the longest match routine within it. GP was
asked to evolve a replacement for longest match which ran
on different hardware (an nVidia graphics card) and slightly
different programming language (nVidia’s CUDA).

GP offers a potential way of moving existing applications to
mobile platforms [36] where, not only is the hardware radically
different, but so too are user interfaces and expectations. Com-
piler based re-optimisation is not sufficient but evolutionary
computation may be able to provide the more radical changes
to the program sources needed.

The grammar approach we have described here is based
on our earlier work on mutation testing [10] where a gram-
mar is used to describe a source code and the mutations
(variations) that can be applied to it. Grammars have been
used widely in genetic programming however, except for
work on bug fixing [9] and our own, the grammars tend to
be general and try to represent any solution, rather than to
represent a substantial existing human written program and
variations from it. Grammatical evolution (GE) [30] is the
most widespread grammar based GP approach, with several
hundred papers. As yet, GE has been used only a few times
in software engineering (for compiler optimisation [37] and,
as mentioned above, for memory heap management [29]).
Non-GE grammar based genetic programming approaches to
software engineering include project effort estimation [38] and
web services composition [22].

B. Less Explored areas for Evolving Software

Another potential software engineering application of GP is
to use evolutionary computation to produce diverse variants
of programs [39]. While multiplicity computing [6] currently
considers a few different versions of programs, GP can already
produced populations of variants. Whilst some of the popula-
tion are not suitable for use, if evolution is allowed to continue
after it finds the first solution, in subsequent generations the
population can contain hundreds of solutions [2]. Obviously,
the number of program variants could be increased still
further. Additional non-functional criteria might be introduced
into fitness selection. These criteria might ensure a certain

minimum level of variation [40] or ensure evolved version are
not too extreme. In some cases it might even be possible to
ensure every user had their own variant of the program. Uses
of diverse software might include resilience, both to attack and
faults, and for watermarking.

Software product lines present a slightly different need.
Instead of wanting different versions of the same program,
software product lines represents a way to manage functionally
different versions of a program to meet different customer
needs. This might be for customers who speak different
languages (internationalisation) but also covers things like em-
bedded controllers in similar but not identical hardware. E.g., a
deluxe microwave oven may have many features not available
in the economy version; both have the same controller chip but
need different software. Current approaches mostly consider
only enabling and disabling parts of the source code but in
future these parts might form the components of more flexible
systems glued together by evolutionary computing.

VII. DISCUSSION

In future we intend to use GISMOE to optimise the non-
functional properties of a number of diverse programs. We
hope that GISMOE, perhaps incorporating hyperheuristics,
will form the basis for dynamically adapting computing.

We have demonstrated the GISMOE approach on C/C++
and related languages, i.e., CUDA, nevertheless GISMOE
should be applicable to improving software written in other
high level languages. Indeed similar approaches could well
work on assembler programs and even at the binary level.
Each new programming language would need a set of mutation
operators which change the target program and yet retain a
reasonable chance that the modified code will compile and
run. We expect that initially these will be based on our cut-
and-paste operators (Section III).

Although there has been interesting work on interactive
evolution, it appears that user fatigue will limit subjective
fitness functions to applications which can effectively use
crowd sourcing. Therefore GISMOE really needs a cheap
automatic way of rating the relative effectiveness of individual
members of a population of program modifications during
evolution. There may be a connection with automatic test
case generation whereby tests can be cheaply created which
target modifications created by GP. Once the population has
evolved one or more potential solutions, more expensive
testing, analysis and proving techniques might be applied
to the final outcome. To be cheap enough during evolution,
testing will probably not use all of the available test cases.

We feel we have been fortunate in that the evolved program
gives an immediate and large payback for about one CPU
core day computation. Other applications may yield less. Still
larger applications might increase the cost, but this might
be offset by other improvements. We have used “make”
and precompiled headers to reduce compilation cost. These
and similar incremental compilation approaches are widely
available.

In many cases it will be straightforward to estimate the
benefit by multiplying the improved performance by the num-
ber of users and the number of times they run the program.
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However, a future benefit may be more valuable: where the
optimisation enables the program to be used where initially it
would have been impracticable. E.g., optimising existing code
for mobile or embedded systems or other resource constrained
platforms. It is interesting that modern “just in time” compilers
find the cost of monitoring/optimising code can be offset
against the improved performance of the optimised code, even
for a single user. The GP approach is currently more expensive
than an optimising compiler. However, it might be run over
night while the user is sleeping (dream optimisation), and it
can readily be parallelised. Also the optimisations GP can
consider are much wider, so we may one day see embedded
JIT evolutionary optimisation.

VIII. CONCLUSIONS

Considerable manual effort is needed to create programs. Even
identifying new operating points for tools that are suitable
for new circumstances or new user requirements is labour
intensive and few can afford to even explore more than one
possibility by hand. Automated software production offers the
prospect of exploring complete Pareto trade-off surfaces, for
example, between functionality and speed.

With this in mind for the first time we have evolved specific
improvements to substantial multi-file C++ code using a fitness
function which compares the output of new code with that
of the old to ensure a principled trade-off between existing
functionality and improved non-functional requirements. In
this example we find a trade-off which improves both func-
tional and non-functional performance. Starting from 50 000
lines of code, the search is progressively concentrated. It
first focuses in on 20 000 lines, then 2744 lines (page 127),
then using weights (Section III-C) GP finds a solution of 39
changes, which can be reduced to just 7 changes in 3 source
files (Figure 15). While we may not be so fortunate with
other programs, on held out test cases, the evolved version
of Bowtie2, on average, yields slightly better answers and is
more than 70 times faster.
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