
7 PROBLEMS SOLVED USING DATA

STRUCTURES

In this chapter we show that data abstraction can be beneficially used within genetic
programming (GP). Work so far[Teller, 1994a; Andre, 1994b; Brave, 1995; Jannink,
1994] shows GP can automatically create programs which explicitly use directly ad-
dressable (indexed) memory to solve problems and Chapters 4, 5 and 6 demonstrate
that GP can automatically generate abstract data structures such as stacks, queues and
lists. In this chapter we show that GP can evolve programs which solve problems
using such data structures. In two cases we show better GP performance when us-
ing data structures compared to directly addressable memory. In the remaining case
(which is the first problem presented) the evolved solution uses an unexpected data
structure which is appropriate to the problem rather than indexed memory when both
are available. Section 7.4 reviews published GP work where explicit memory is used
and concludes that in most successful cases data structures appropriate to theproblem
have been provided for the GP (although the experimenter may not have used the term
“data structure”).

Three example problems are presented. In each the task is to induce a program
which processes a context free language given training samples of the language. We
chose problems that should be solvable using stack data structures as stacks were
the easiest of the data structures investigated in Chapters 4, 5 and 6 to evolve. In
general, data structures at least as powerful as stacks are required to process context
free languages.

In Section 7.1 GP evolves a program which classifies sequences of brackets as being
correctly or incorrectly nested. Section 7.2 evolves programs which classify sequences

143

144 GENETIC PROGRAMMING AND DATA STRUCTURES

of multiple types of bracket as being correctly nested or not (a Dyck language)and
Section 7.3 evolves programs which evaluate Reverse Polish (postfix)expressions.
The structure of Sections 7.1, 7.2 and 7.3 is based on the structure ofChapters 4, 5 and
6. For example Sections 7.1.1, 7.2.1 and 7.3.1 each contain the problem statement for
one of the three problems. Section 7.5 summarises this chapter.

7.1 BALANCED BRACKET PROBLEM

Other work on GP evolving language recognizers has concentrated upon usingGP to
evolve tree based specifications for abstract machines, such as finite state machines
[Dunay et al., 1994; Longshaw, 1997; Slavov and Nikolaev, 1997], deterministic push-
down automata[Zomorodian, 1995], machines composed of simple Turing machines
[Dunay and Petry, 1995; Petry and Dunay, 1995] or special memory nodes within the
tree[Iba et al., 1995]. While[Falco et al., 1997] uses GP to generate a number of formal
languages. However[Koza, 1992, page 442] recasts a simple language recognition
problem in terms of classifying DNA sequences asintrons or exons and shows GP can
evolve a correct program for this task and[Wyard, 1991; Wyard, 1994; Lucas, 1994]
use GAs operating on formal grammar rules of various types to induce grammars for
a number of regular and context free languages. In contrast we wish to usethe task of
evolving a language recogniser to investigate the impact of providingdata structures
versus indexed memory, and so we follow normal GP practice and our GP executes
the GP tree directly i.e. treats it as a program.

In this section we show GP can solve the balanced bracket problem directly when
given an appropriate data structure ([Zomorodian,1995] previously solved this problem
using GP to evolve a specification for a pushdown automaton,[Wyard, 1991] used a
GA operating on formal grammar rules to induce a grammar for it and[Lankhorst,
1995] used a fixed representation GA to specify a pushdown automaton, while[Sun
et al., 1990] solved it by training a neural network in combination with a stack). The
balanced bracket language is a context free language and so can be recognised by a
pushdown automaton (which implies use of a stack) and not a regular language, which
could be recognised by a finite state machine. However a pushdown automaton is not
required, the balanced bracket language can be recognised by an intermediate machine,
a finite state automaton with a counter. The solution found by GP was of this form.
In a run where both index memory and register memory were available, theevolved
solution used the register memory, NB GP selected the appropriate data structure for
the problem.

7.1.1 Problem Statement

The balanced bracket problem is to recognise sentences composed of sequences of two
symbols,(and), which are correctly nested. E.g.(()) is correctly nested but())
is not. A limit of ten symbols per sentence was assumed.

7.1.2 Architecture

Two automatically defined functions (ADFs) (see Section 2.3.2 for an introduction to
ADFs) are available to assist the main result producing branch (or tree).The first,

PROBLEMS SOLVED USING DATA STRUCTURES 145

Table 7.1. Tableau for Balanced Bracket Problem

Objective Find a program that classifies sequences of((represented
by 1) and) (-1) as being correctly nested or not.

Architecture Main tree, adf1 (no arguments) and adf2 (one argument)
Primitives (any tree) ADD, SUB, PROG2, IFLTE, Ifeq, 0, 1, -1, max, forwhile,

i0
(rpb, adf1) adf2, aux1, read, write, swap, SetAux1
(rpb, adf2) arg1
(rpb only) adf1

Max prog size 4� 50 = 200. In initial population each tree is limited to
50 primitives.

Fitness case 175 fixed test examples, cf. Table 7.2
Fitness Scaling Number of test examples correctly classified (scalar).
Selection Tournament group size of 4 used for both parent selection

and selecting programs to be removed from the population.
Steady state population (elitist).

Hits Number test sentences correctly classified
Wrapper Zero represents False (i.e. not in language) otherwise True.
Parameters Pop = 10,000, G = 50, 3� 3 demes, no CPU penalty, no

aborts.
Success predicate Fitness� 175

adf1, has no arguments and has the same terminal and function sets as the main tree.
However as it does not have any arguments, it does not use the primitive arg1.

The second, adf2, has one argument but cannot contain terminals and functions with
side effects. This allows a cache of previous values returned by it to be maintained, thus
reducing run time. (Caches of ADF values were also used in Chapter 5, cf. Table 5.11
(page 118). See also Section D.6).

7.1.3 Choice of Primitives

Table 7.1 shows the parameters used and the terminals and functions provided, NB
they include indexed memory but not stacks.

For ease of comparison the same sized indexed memory and stacks were used in all
three sets of experiments in this chapter. Both were deliberately generously sized to
avoid restricting the GP’s use of them. The indexed memory consistedof 127 memory
cells, addressed as�63 : : : +63, and the stack allowed up to 99 32-bit signed integers
to be pushed. As in the previous chapters, memory primitives had definedbehaviour
which allows the GP to continue on errors (e.g. popping from an empty stack or writing
to a non-existent memory cell). All stored data within the program isinitialised to
zero before the start of each test sentence. Tables 7.9 and 7.10 (pages 165–166) give
the actions of terminals and functions used in this chapter.

146 GENETIC PROGRAMMING AND DATA STRUCTURES

Table 7.2. Number of correctly nested and incorrectly nested bracket test sentences of

each length used in the nested bracket test case. Longer incorrect sentences were chosen at

random from all the possible incorrect sentences of the same length.

Length Positive Negative
1 all 2
2 all 1 all 3
3 all 8
4 all 2 all 14
5 random 4
6 all 5 random 5
7 random 5
8 all 14 random 14
9 random 14

10 all 42 random 42

Totals 64 111

7.1.4 Fitness Function

The fitness of each trial program was evaluated on a fixed set of 175 example sentences
containing both correctly nested (positive tests) and incorrectly nested brackets (neg-
ative tests). The test case includes all the positive cases up to a length often symbols
and all the negative examples up to a length of four. The number of negative examples
grows rapidly with sentence length and so above a length of four a limited number
negative examples were chosen at random (see Table 7.2). The program is run once for
each symbol in the sentence. Thus each program is run 1403 times (674 for(and 729
with an argument of)). The value returned by the program on the last symbol of the
sentence gives its verdict as to whether the sequence is correctly nested, i.e. the value
returned by the program is ignored, except on the last symbol of each test sentence.

This test case and the test cases used in Sections 7.2.4 and 7.3.4 are availablevia
anonymous ftp. Section D.9 gives the network addresses.

7.1.5 Parameters

The default values for parameters given in Section D.3 were used except the population
size and the maximum program length. The parameters used are summarised in
Table 7.1.

Earlier work (cf. Chapter 5) had shown even a large population had a great tendency
to converge to partial solutions which effectively trapped the whole population prevent-
ing further progress. In this (and the following section) the population was partitioned
into demes so crossover is restricted to near neighbours in order to reduce the speed of
convergence (see Section 3.8). As in Chapter 5 the population is treated as a 50� 100
torus with two members of the population per square on its surface. Each time a new
individual is created, a 3� 3 square neighbourhood on the torus (known as a deme) is
selected at random. Parents and the individual their offspring will replaceare selected
from this deme rather than from the whole population[Tackett, 1994; Collins, 1992].

PROBLEMS SOLVED USING DATA STRUCTURES 147

1 adf1

Ifeq

arg1

-1

aux1 0-1

SUB

-1 max

forwhile

adf2

-1

adf1

ADD

Set_Aux1

ADD

arg1 ADD

adf2

SUB

read

arg1

aux1

adf1

0

ADD

arg1

forwhile

PROG2

arg1

adf1

max

forwhile

arg1arg1

PROG2

arg1

Set_aux1

forwhile

arg1arg1 arg1

arg1

PROG2

arg1

PROG2

arg1arg1

ADD

1 arg1

PROG2

arg1 arg1 forwhile

arg1 arg1arg1

PROG2

max

adf2

ADDarg1

ADD

Set_Aux1

aux1

PROG2

Set_Aux1

Set_Aux1

ADD

arg1 ADD

adf2

-1

aux1

Ifeq

Ifeq

rpb

0 0

forwhile

arg1

adf2

arg1

forwhile

arg1 arg1

forwhile

forwhile

Figure 7.1. Solution to Bracket Problem

7.1.6 Results

In the first run a general solution was produced by generation 19, which contained 88
primitives. This is shown in Figure 7.1 and a simplified version isshown in Figure 7.2.

In contrast to earlier work[Zomorodian, 1995], where GP was obliged to evolve
pushdown automata, the evolved solution is effectively a finite state machine with
a counter (NB less powerful than a pushdown automaton). The evolved solution
(cf. Figure 7.2) only uses a single integer memory cell (aux1), in which it counts the
depth of nesting. At the end of a legal sentence this count must be zero. Further,
should the brackets be unbalanced before the end is reached, this is recognisedand
aux1 is also used as a flag indicating this. This solution not only passesall the fitness
tests and is a general solution to the problem but (given suitable redefinition of max)
is a solution for sequences of any length.

To find the solution given in Figure 7.1 required 19�10; 000= 190; 000 individuals
to be processed. This is similar to that required in[Zomorodian, 1995] where a solution
was found in generation 24 with a population of 3,000. (24� 3; 000= 72; 000).

Given the readily found general solution did not exhibit stack like behaviour it was
decided not to repeat this problem with a GP that had stack primitives.

148 GENETIC PROGRAMMING AND DATA STRUCTURES

Set_Aux1

ADD

aux1

0 SUB

-1 max

0

Ifeqarg1 1

Set_Aux1

ADD

1 aux1

0

Set_Aux1

ADD

1 max

0

-1

PROG2 0

Ifeq

Ifeq

Figure 7.2. Solution to Bracket Problem (Simpli�ed)

PROBLEMS SOLVED USING DATA STRUCTURES 149

7.2 DYCK LANGUAGE

In this section we apply genetic programming to a solve a new problem,that of
recognising a Dyck language. Two sets of experiments were conducted, the first
provided the GP with primitives which implement a stack for it and the second provided
indexed memory and other primitives like those from which it has been shown GP can
evolve stack data structures, cf. Chapter 4. The same fitness function, population size
and other parameters were used in both sets of experiments. Solutions werereadily
found when the GP was provided with a stack data structure but no solutions have been
found when using indexed memory.

The Dyck problem was chosen as Dyck languages are context free languages and
require machines at least as powerful as pushdown automata (i.e. stacks) to solve them.
Dyck languages are generalisations of the balanced bracket problem to multipletypes
of bracket.

7.2.1 Problem Statement

The problem is to recognise which sentences are correctly bracketed, however there
are now four types of bracket pairs,(,), [,], f, g, ‘, ’. E.g.fg[] is correctly
bracketed but[g is not. As with the nested brackets problem, a limit of ten symbols
per sentence was assumed.

7.2.2 Architecture

In the first experiments (stack given) no ADFs were used, whilst in thesecond there
are three ADFs, having 0, 1 and 0 arguments. It was hoped that these could evolve to
operate like pop, push and top. Each could be called from the main tree, additionally
the third (which it was hoped might evolve to act like top) could be called by the first.

7.2.3 Terminals, Functions and Parameters

The terminals, functions and control parameters used in these two experiments are
as Section 7.1 except where given in Table 7.3. The differences between the two
experiments in this section are shown in the middle and right hand columns of Table 7.3.

The five stack primitives are based on the definition of a stack given in Table 4.1
(page 63), however they have been made more rugged by ensuring their behaviour is
defined in all circumstances, i.e. including errors such as popping from an empty stack.
Their behaviour is defined at the end of this chapter in Tables 7.9 and 7.10.

This problem is more complex than that in Section 7.1 and so the test case is longer.
To constrain the increase in run time, forwhile loops were not used.

7.2.4 Fitness Function

The fitness of every trial program is determined by presenting it with a series of
symbols from test sentences and counting how many times it correctly classifies each

150 GENETIC PROGRAMMING AND DATA STRUCTURES

Table 7.3. Tableau for Dyck Language Problem

Objective Find a program that classifies sequences of four types of bracket
(((represented as 5),) (71), [(13),] (103), f (31), g (137),
‘ (43) and’ (167)) as being correctly nested or not.

Primitives Common Stack Given Index Memory
All trees: ADD, SUB,

PROG2, IFLTE,
Ifeq, 0, 1, max, aux1

Makenull,
Empty, Top,
Pop, Push

read,
write, inc aux1,
decaux1

rpb: as all plus ifopen, ifmatch,
ARG1, SetAux1

adf1, adf2, adf3

adf1: as all plus adf3
adf2: as all plus arg1, arg2

Max prog size Initial tree limit 50 50 4� 50= 200
Fitness Case 286 fixed test examples, cf. Table 7.4
Fitness Scaling Number of correct answers returned.
Selection Tournament size 4 (After first solution CPU penalty used giving

a two dimensional fitness value, fitness niching used with a
sample of up to 81 (9� 9) nearest neighbours).

Hits Number test symbols correctly classified.
Wrapper Zero represents True (i.e. in language) and all other values

False.
Parameters Pop = 10,000, G = 50, Pareto, 3� 3 demes, CPU penalty only

after first solution found, Abort on first error in sentence.
Success predicateHits� 1756, i.e. all answers correct.

PROBLEMS SOLVED USING DATA STRUCTURES 151

as to whether it is the last of a correctly balanced sequence. All memory is initialised
to zero before the start of each test sentence.

Test Case. The number of possible test sentences of a particular length is much
larger than in Section 7.1 and so it was not practical to include sentences longerthan
eight symbols and even for lengths of six and eight symbols it was necessary to select
(at random) positive test examples to include.

In a correctly matched sentence there will be equal numbers of opening and closing
brackets of each type but this is unlikely to be true in a random sequence ofbrackets.
If the only negative examples are random sequences of symbols, a programcould
correctly guess most answers just by considering if there are equal numbersof each
pair of bracket. We anticipate that such programs can be readily evolved, for example
the program that evolved in Section 7.1 does this. However it may be anticipated
that evolving complete solutions from such partial solutions willbe very difficult.
(Chapter 8 suggests the evolution of correct stacks is made harder by the presence of
“deceptive” partial solutions). To penalise such partial solutions the test case included
examples where there are equal numbers but which are not correctly nested (referred
to as “Balanced” in Table 7.4).

As before it was not practical to include all cases and so longer negative examples
(both balanced and not balanced) were selected at random. Even so the fitness tests are
much longer than that in Section 7.1 and so to keep run time manageable the number
of times each program must be run was reduced by:

Only using the first half of the test case (i.e. tests up to length six).However if
a program passes all the shorter tests then it was also tested on test sentences of
length seven and eight. Thus most of the time the second half of the testcase is not
used. It is only used by programs that are nearly correct, which evolve laterin the
GP run.

In the first experiments in this chapter, each program is only tested at the end of
each test sentence. In these experiments the value returned for each symbol is used.
If a wrong answer is returned the the rest of the sentence is ignored. This reduces
run time as in many cases only part of the test sentence is processed.

Some shorter sentences are identical to the start of longer ones and so they need
not be tested explicitly as the same actions will be performed as part of a longer
test. Therefore such duplicates were removed from the test case. The test case after
removing such duplicates are summarised in the right hand side of Table 7.4.

Symbol Coding. Initially brackets were coded as�1;�2;�3;�4 but general
solutions proved difficult to find. Instead, despite the use of “balanced” negative
examples, partial solutions based upon summing up symbol values dominated. Since
the purpose of the experiment was to investigate learning correct nesting of symbols
rather than learning which symbols match each other the problem was simplifiedby
providing the GP with two new primitives (ifmatch and ifopen, cf. Table 7.10) which
say which symbols match each other. To further discourage partial solutions based
on summing symbol values the symbols were recoded as prime values with no simple
relationships between them (cf. Table 7.3).

152 GENETIC PROGRAMMING AND DATA STRUCTURES

Table 7.4. Number of correctly and incorrectly nested test sentences in the Dyck language

test case. The incorrect test sentences are divided into those with the correct number of

each type of bracket but which are in the wrong order (referred to as \Balanced") and others

(referred to as \Rand"). Longer sentences were chosen at random. The right hand side of

the table gives the number in each category actually used in the Dyck test case, i.e. after

removing duplicates.

Len- Positive Negative After Removing Duplicates
gth Balanced Rand Positive Balanced Rand Score

1 all 8 0
2 all 4 all 60 9 18
3 16 10 30
4 all 32 all 24 16 27 16 172
5 16 16 80
6 rand 32 rand 32 32 32 32 32 576

7 16 16 112
8 rand 32 rand 32 32 32 32 32 768

Totals 91 112 83 1756

Evolving Improved Solutions. The combination of Pareto fitness, a CPU
penalty and fitness niches introduced in Chapter 6 (Section 6.5.3) was used inthese
experiments. Briefly after an individual which passes all the tests is found the GP
run is allowed to continue using a modified fitness function which includes a CPU
penalty. Each program’s fitness now contains two orthogonal terms, the original score
and thebmeanc number of instructions run per program execution. Tournament se-
lection is still used for reproduction and deletion but now uses Pareto comparison (see
Section 3.9), so passing tests and using little CPU are equally important. The fitness
sharing scheme described in Section 6.5.3 was used. This introduces a secondary
selection pressure to be different from the rest the population so allowing high scoring
and high CPU programs to co-exist with programs with lower scores butusing less
CPU. This may reduced premature convergence.

7.2.5 Results

In three runs given the stack primitives general solutions were evolvedby generation
7 to 23 (in three identical runs but using simple non-demic (normal)populations, two
runs produced solutions in generations 30 and 39). Evolution was allowed to continue
after the first individual to pass all the tests was found. Under the influence of the
CPU penalty faster but still general solutions were found (see Figure 7.3). Figure 7.4
shows the first solution to evolve in a run using demes and Figure 7.5 shows one of the
fastest solutions produced in the same run after 50 generations. As in Section 7.1 the
solutions are not only general solutions to the given problem, but given a deep enough
stack would work with any sentences of any length.

As all runs given stack primitives and using demes succeeded in finding a solution
the best (i.e. most likely) estimate of the number of runs required to be assured (with

PROBLEMS SOLVED USING DATA STRUCTURES 153

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

I
n
s
t
r
u
c
t
i
o
n
s

r
u
n

Number of Individuals Created

 Dyck Solution (22.6)

Max
Mean
Min

Fastest solutions

Figure 7.3. Evolution of the number of primitives executed during �tness testing on the

Dyck problem, means of 3 runs using demes. Error bars indicate one standard deviation either

side of the population mean. The fastest solutions evolved in each run are also plotted. The

minimum number of instructions are executed by relatively unsuccessful programs as these

are run on few tests.

Arg1

0

0aux1

Push

ARG1

Push

aux1 1 max

Push

ADDARG1

IFLTE

Pop ARG1

ifmatch

ifmatch

Pop

0

ADDPop ARG1

Push

Push max1aux1

Push

Push

IFLTE

IFLTE

Figure 7.4. First Solution to the Dyck Problem. Evolved after 22.6 Generations

99% probability) of obtaining at least one solution is one. This would require a total
of up to 23� 104

� 1 = 2:3 105 trial programs.
In contrast none of 15 runs using the indexed memory primitives passed all the

tests. (The probability of the difference between the two experiments being due to
chance is� 0.1%). Some of the more promising runs were extended beyond 50
generations up to 140 generations without finding a solution. The best (produced after
84 generations) still failed 3 tests (on sequences of up to six symbols).It showed some
stack like behaviour which enables it to pass 13 of the tests of length seven and eight

154 GENETIC PROGRAMMING AND DATA STRUCTURES

ifopen

Push

Top

Pop max

Pop ARG1 Push

Push

ARG1

ifmatch

Figure 7.5. One of the Fastest Solutions to the Dyck Problem evolved after 50 Gener-

ations

but also showed some signs of over fitting to the specific test case used rather than
having learnt to solve the general problem.

A program which always returns zero (i.e. True) has a fitness of zero because it will
always fail on the first symbol of each test sentence (a sentence of odd length must be
unbalanced). In contrast a program which never returns zero will always be correct
on the first symbol of each sentence and so will get the opportunity to betested on the
second symbol which it may also pass. For the actual test case used a program which
never returns zero has a fitness of 714. While aborting a test sentence on the first error
reduces the number of times programs are run, it may also make it more difficult to
evolve a solution. In both experiments the GP population quicklylearns not to return
zero, but when using indexed memory it appears to be more difficult than when given
a stack to escape this local optima and learn to return zero at some points.

7.3 EVALUATING REVERSE POLISH EXPRESSIONS

In this section we describe the final comparison of appropriate data structures and
indexed memory. Once again solutions are readily evolved when the appropriate data
structure is provided but no solutions have been found when using indexed memory.

Two sets of experiments were made, the first provided the GP with primitives which
implement a stack for it and the second provided primitives like those from which it
has been shown GP can evolve stack data structures.

7.3.1 Problem Statement

In this section the GP evolves a four function (+,�, = and�) calculator, i.e. evaluates
integer arithmetic expression. The problem is simplified by presenting the expression in
Reverse Polish Notation (postfix), which avoids consideration of operator precedence
and by avoiding expressions which include division by zero. No limit on the length
of expressions was assumed, however the expressions tested were between three and
fifteen symbols long (see Table 7.6).

7.3.2 Architecture

The multi-tree architecture and multi-tree crossover described in Section3.6 and
employed in Chapters 4, 5 and 6 was used. This allows trees within each individual to
evolve to specialise in solving one of the operations that form the complete calculator
program. Each individual within the population consists of five separate trees (num,

PROBLEMS SOLVED USING DATA STRUCTURES 155

plus, minus, times and div) plus either zero or two ADFs. As in Sections7.1 and 7.2
each test sentence is presented a symbol at a time to the GP, however in this case
the appropriate tree is selected. E.g. if the symbol is an integer, then the num tree is
executed with the integer as its argument. Each tree returns a value as the current value
of the expression (num’s answer is ignored).

In the first experiments (stack given) no ADFs were used, whilst in thesecond there
are two ADFs, having 0 and 1 arguments respectively. It was hoped that thesecould
evolve to operate like pop and push. Both ADFs could be called from thefive main
trees.

7.3.3 Terminals, Functions and Parameters

The terminals, functions and control parameters are as Section 7.2 except where given
in Table 7.5.

Fears that run time might prove to be excessive led to the decision to remove some
unnecessary primitives from the function and terminal sets. Since all storage including
the supplied stack is initialised before the evolved programs can use it, the Makenull
operation is not needed. Therefore the terminal set was simplified by not including
Makenull and Empty (which is also not needed) in these experiments.

7.3.4 Fitness Function

In each individual in the population a separate score is maintained for itsfive operations
(num, plus, minus, times and div) plus a CPU penalty. Each time the individual returns
the correct answer (and it is checked) the score for each of its operations that hasbeen
used since the last time its result was checked is incremented. As in Section 7.2, these
scores are not combined and each contributes as a separate objective in multi-objective
Pareto selection tournaments.

Test Case. The fixed test case was created before the GP was run. Part of the test
case was devised by hand and the remainder was selected at random. However ran-
domly selected data values (from the range�99 : : : +99) proved to be unsatisfactory
for expressions containing “/” because division of two randomly selectedintegers has
a high chance of yielding zero or an integer near it and therefore data values were
changed by hand. (Less than one in eight divisions of randomly chosen values will
yield a value of 4 or more or�4 or less).

The following rules were used to create the test case:

It was expected that as minus and divide are not commutative they would bethe most
difficult operations to evolve and therefore the test case include a higher proportion
of minus and divide than the other two arithmetic operations (cf. Table7.7).

The test case was designed to include deeply nested expressions (cf. Table 7.8) as it
was anticipated otherwise non-general partial solutions only able to evaluate simple
expressions, which could be evaluated without using a stack, would predominate.

To avoid consideration of exception handling, and its associated complexity, divide
by zero was deliberately excluded from the test case.

156 GENETIC PROGRAMMING AND DATA STRUCTURES

Table 7.5. Tableau for Reverse Polish Notation (RPN) Expression Evaluation Problem

Objective Find a program that evaluates integer Reverse Polish (postfix)
arithmetic expressions.

Primitives Common Stack Given Index Memory
+��= trees: ADD, SUB, MUL,

DIV, PROG2, 0, 1,
aux1, SetAux1

Top, Pop,
Push

read, write, incaux1,
decaux1, adf1, adf2

num: as ops plus arg1
adf1: as ops but no adfs
adf2: as ops but no adfs and add arg1
adf3: as ops but no adfs and add arg1,

arg2
Max prog size Initial tree limit 50 5� 50= 250 7� 50= 350
Fitness Case 127 fixed test expressions, cf. Tables 7.6, 7.7 and 7.8.
Fitness Scaling Number of correct answers returned.
Selection Pareto tournament size 4, CPU penalty (initial threshold 50 per

operation), fitness niching used with a sample of up to 81 other
members of the population.

Hits Number of correct answers returned.
Wrapper Value on num ignored. No wrapper on other trees.
Parameters Pop = 10,000, G = 100, Pareto, no demes, CPU penalty (in-

creased after 1st solution found), abort on first wrong answer
given in expression.

Success predicateFitness� 194, i.e. a program passes all tests.

PROBLEMS SOLVED USING DATA STRUCTURES 157

Table 7.6. Length of reverse polish expressions at each point where answers are checked

in the �tness test case.

length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total
No. of cases 10 3 55 27 44 2 36 1 5 8 3 194

Randomly generated data values were manually changed so that only a few divisions
yield values in the range�3 : : : + 3.

To avoid problems with overflow, randomly generated expressions did not allow:
arguments to addition or subtraction outside the range�108

: : : +108 or arguments
to multiplication or division outside the range�65535 : : : + 65535.

Also to avoid overflow problems, data values set by hand were chosen so neither the
product of two arguments of divide nor the square of the second argument exceeded
2,147,483,647.

Most test expressions were well formed, with exactly the right numberof data
values for the number of operators (and vice-versa). (Since all four operators are
binary this means there is one more data value than the number of operators in
the expression). However, to test generality, one expression with fewer arithmetic
operations was included. In this case there should be multiple data values left after
evaluating the expression.

As before it was necessary to constrain run time. This was done by checking answers
during the evaluation of each expression and aborting evaluation following the first
error detected and removing test examples which essentially duplicated others.This
left 127 test expressions which include 194 points where the trial program’s answer is
checked.

CPU Penalty. The long run times encountered with these experiments led to
the decision to include a CPU penalty ofbmeanc number of primitives executed per
program run. Unlike the previous section, this CPU penalty was applied from the start
of each run. However initially only programs with long run times are penalised (by
ignoring the penalty where it was� 50. This was implemented by setting the penalty
is zero for such fast programs). Should a program be evolved which passesthe whole
fitness test case then the CPU penalty is increased by applying it to all programs.

7.3.5 Results

In eleven runs using stack primitives, six produced solutions which passed all the tests,
these were found between generations 11 and 23 (see Figure 7.6). In four cases the
first programs to pass all the tests were also general solutions to the problem. In the
other two the first solutions failed special cases such as 1�1 andx=y = 0 (which were
not included in the test case), however in both runs general solutions were evolved less
than 12 generations later (before 34 generations).

158 GENETIC PROGRAMMING AND DATA STRUCTURES

Table 7.7. Number of times each tree occurs in reverse polish expression (RPN) test case

and the score it has when the whole test case is passed.

Operation No. Max Score

num 550 163
plus 67 58
minus 103 85
times 85 64
divide 156 127

420

Totals 970 497

Table 7.8. Number of symbols (i.e. operators or numbers) used in the RPN test case for

each level of expression nesting. (Depth of nesting calculated after the symbol has been

processed).

depth 1 2 3 4 5 6 Total
No. of cases 387 390 149 31 12 1 970

Under the action of the increased CPU penalty, solutions which took aboutone third
of the CPU time of the first solution found were evolved. Figure 7.7 shows one of the
first general solutions to be evolved and Figure 7.8 shows one of thefastest solutions
evolved at the end of the same run.

In 59 runs with stack primitives replaced by indexed memory (see right hand side
of Table 7.5) no program passed all the tests. (NB the probability of the difference
between the two experiments being due to chance is� 1%). The highest number
of tests passed (148 of 194) was achieved by a program which used the first ADF to
implement DIVR (i.e. standard divide but with the arguments in reversed order, see
Table 7.9) and the second to approximate both push and pop on a three level stack.
Other unsuccessful trials included adding a third ADF (with two arguments) in the
hope that this might evolve the DIVR functionality leaving the other ADFs free to
implement push and pop (best 102 in 33 runs, of which 16 ran out of timebefore 50
generations) and supplying SUBR and DIVR functions (in place of SUB andDIV)
where the best score was 116, in 38 runs.

The probability of a general solution being found by generation 23 whengiven the
stack primitives is best estimated at 4=11. Using Equation 4.1 (page 75) the number
of GP runs required to be assured (with 99% probability) of obtaining at least one
solution is 11. This would require a total of up to 23� 104

� 11 = 2:53 106 trial
programs.

Discussion. The non-commutative functions (� and=) appear to be more difficult
to evolve than commutative ones because the arguments on the stack are in the opposite
order to that used by the SUB and DIV functions. (The problem can be readily solved,

PROBLEMS SOLVED USING DATA STRUCTURES 159

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

I
n
s
t
r
u
c
t
i
o
n
s

r
u
n

Number of Individuals Created

 Threshold

Max
Mean
Min

Fastest solutions (general)
Fastest solutions (other runs)

Mean CPU threshold

Figure 7.6. Evolution of the number of primitives executed during �tness testing on the

calculator problem, means of 11 runs. (Average data is not plotted after generation 70

as several runs run out of time by this point). Error bars indicate one standard deviation

either side of the population mean. The fastest solutions evolved during the six successful

runs and the population mean of the threshold above which the CPU penalty is applied are

also shown. The minimum number of instructions are executed by relatively unsuccessful

programs as these are run on few tests.

div

Set_aux1

PROG2

PROG2 0

Aux1Top

plus

Set_aux1

ADD

Pop aux1

Set_Aux1

minus

Set_Aux1

MUL

Pop Aux1

times

SUB

Pop aux1

num

ADD

Push

MUL

aux1 1

Push

arg1 PROG2

Top Pop

SUB

Set_Aux1

SUB

PROG2

Popaux1 aux1

PROG2

1

DIV

Figure 7.7. First Solution to the RPN Problem. Evolved after 11.0 generations (12240

instructions to complete test case)

160 GENETIC PROGRAMMING AND DATA STRUCTURES

num plus

MUL

Push

aux1

Set_Aux1

arg1

Set_aux1

ADD

Pop aux1 SUB

1 aux1 1

SUB

ADD

Set_Aux1

minus

Set_Aux1

MUL

Pop Aux1

Set_aux1

DIV

Pop aux1

divtimes

Pop

Figure 7.8. One of the Fastest Solutions to the RPN Problem evolved after 76 genera-

tions (4842 instructions to complete test case)

when given the stack primitives, by replacing SUB and DIV by SUBR and DIVR
which process their arguments in the opposite order, i.e. the order on the stack). The
div tree has to use some storage (i.e. aux1) to reverse the order of thestack arguments
(sub can simply negate the result of performing the operation in the wrong order to get
the right answer). The need to use aux1 makes the problem deceptive, in that many
programs can obtain high scores using aux1 as the top of the stack and only fail tests
which require deeper use of the stack.

Some of the difficulty the GP with indexed memory found may have been due to
trying to use aux1 both as stack pointer (for which incaux1 and decaux1 make it
suitable) and as the top of stack (as evolved in many cases where the stack primitives
were given). If this is case better results might be obtained by adding a second auxiliary
variable (aux2) so these two uses could be split between two variables.

The top curve on Figure 7.6 shows the initial CPU penalty threshold, i.e. before a
solution has been found. This shows on average the CPU threshold is higher than the
average maximum CPU used by any individual in the population. While this means
the CPU penalty has a small effect, the effect need not be negligible since anyprogram
which does exceed the threshold automatically has poor fitness and so is likely to
be removed quickly from the population (and so not be included in thesestatistics).
I.e. the penalty may still be effective in constraining growth in elapse time and program
size (often described as “bloat”).

Contrasting Figure 7.6 with a similar plot for the list problem (Figure 6.3, page 132)
we see in the list the CPU penalty is much more constraining, despite the threshold
being set at 120 per test rather than 50. This is probably simply due to the presence of
the forwhile primitive in the function set but may also be due in part to the problem
requiring more primitives to solve it (fastest evolved solution 29.1 per test versus 7.0
for the calculator).

7.4 WORK BY OTHERS ON SOLVING PROBLEMS WITH MEMORY

This section briefly reviews published work on solving problems using GP which
includes memory primitives. In most successful cases data structures appropriate to
the problem have been used although the term “data structure” may not havebeen. The
principle exception is Teller’s signal processing system PADO. This section groups
publications according to memory structure, starting with the simplest and finishes
with consideration of PADO.

PROBLEMS SOLVED USING DATA STRUCTURES 161

7.4.1 Scalars

[Cramer, 1985] showed programs which use simple scalar memory could be evolved,
however the paper concentrates upon program representation not use of memory.
[Huelsbergen, 1996] solved the same problem, albeit with different primitives etc., but
also uses simple scalar memory. Huelsbergen also shows the problem can be solved
by random search in a practical time.

[Koza, 1992, page 470] presents an example where a single variable is used to
maintain a running total during execution of a loop. While in[Koza, 1994, page 512]
a small number of variables are used in a protein classification problem wherethe
program processes proteins sequentially, a residue at a time. The variablesprovide the
ability to store information about previous parts of the protein which is expected to be
useful in this classification problem. NB in both cases programs were evolved using
memory appropriate to the problem.

7.4.2 One Indexed Memory

Most of the published work on using GP where use of memory is explicitly evolved
follows [Teller, 1993; Teller, 1994a] which introduced “indexed memory”, i.e. a single
multiple celled directly addressable memory, to GP. For example[Raik and Browne,
1996] use indexed memory to show that on a reactive task, GP with explicit memory
performs better than GP with implicit memory. Indexed memory, as it allows random
access, provides little “structure” and could be problem independent, however in
[Andre, 1994b; Andre, 1995b; Andre, 1995a] the indexed memory is made problem
specific by treating it as two dimensional and sizing it so that it is isomorphic to a small
problem “world”. That is the memory is given a structure appropriate tothe problem.
A similar approach is taken in[Brave, 1996c] where memory is isomorphic to a full
binary tree “world”.

The simple indexed memory used in[Crepeau, 1995] is not obviously structured
in a problem specific manner. The author suggests the success of GP at evolving a
“Hello.World” program by manipulating (a subset of) Z80 machine code may in part
be due to initialising memory with random 8 bit values. Thus it is “highly probable”
[Crepeau, 1995, page 132] that the needed ascii values are initially in the indexed
memory.

Another GP system which evolves machine code, based this time on the SUN RISC
architecture, allows large amounts of directly addressable memory, however[Nordin
and Banzhaf, 1995] does not describe experiments using it.[Nordin and Banzhaf,
1996] describes experiments using the system for sound compression where indexed
memory and structured memory (a stack) were tried. In these experiments “programs
took longer time to evolve and performed worse in fitness but had a softer sound
with less overtones” than experiments without memory. However other changes were
simultaneously made which may have made the task more difficult. Therefore it is
difficult to draw any conclusions regarding the benefits or otherwise of data structures
from this paper.

[Jannink, 1994] includes 16 memory cells in one experiment to evolve programs
which generate “random” numbers. This is said to give “the best average validation
score”, i.e. better than when the programs were not given access to memory. Details

162 GENETIC PROGRAMMING AND DATA STRUCTURES

of how the evolved programs use memory are not given and no comparison with other
memory sizes or structures is provided.

7.4.3 Case Base

[Spector and Alpern, 1995] presents a system which attempts to evolve music-making
programs, specifically producing jazz improvisation responses to supplied “single-
measure calls”. “While we (Spector and Alpern) have not yet succeeded in inducing
and recapitulating the deep structure of jazz melody” promising music generating
programs have been evolved and the authors “believe that our frameworkholds promise
for the eventual achievement of this goal.”

While the authors refer to their memory system as “indexed memory” it is problem
dependent. Consisting of 31 identical data structures, each of which is designed to hold
a melody (expressed as 96 MIDI values). One data structure holds the input, another
the output (i.e. the program’s jazz “response”) and the rest form a one dimensional
array of 29 elements containing a case base of human written music. Only the output
structure may be written to. Various problem dependent functions are provided for
cutting and splicing segments of melodies but data values within the data structures
cannot be directly manipulated.

7.4.4 Strongly Typed Genetic Programming

[Montana, 1995] presents two examples where GP is provided with local variables
which it uses to solve problems (the two other examples don’t allow explicit use of
evolvable memory). The use of the strong typing framework means the variables must
be typed. In both examples the variables are lists, which are either of thesame type as
the input or the same type as the output. That is with strongly typed GP data structures
appropriate to the problem are readily chosen (STGP also prevents some kinds of abuse
of the data structures).

7.4.5 Graph Data Structures

[Brave, 1995; Brave, 1996a] shows GP using a graph data structure which provides
primitives to connect nodes and follow connections. Using this data structure the GP
was able to solve a navigation problem which requires it to form a mentalmodel of
its world. This builds on[Andre, 1994b] but replaces a predetermined isomorphism
between indexed memory and the problem “world” by a more complex data structure
that is appropriate to the problem.

7.4.6 Linked List Data Structure

[Haynes and Wainwright, 1995] requires GP to evolve control programs for agents
which have to survive in a simulated world containing mines. The agent’s memory
is a dynamically allocated linked list, with a new list element representingthe current
location being automatically allocated each time the agent enters a new location inthe
world. Read and write access is with respect to the current location, e.g. the current
memory cell, the cell representing the location north of here, the cell north-east of that

PROBLEMS SOLVED USING DATA STRUCTURES 163

and so on. The list keeps track of the agent’s path allowing it to backtrack along its
path. (Since its path lies in a minefield a safe option is always for the agent to retrace
its steps). NB the memory is structured in an appropriate fashion for the problem.

7.4.7 Tree Structured Memory for Temporal Data Processing

[Iba et al., 1995] introduces “special ‘memory terminals’, which point at any nonter-
minal node within the tree.” The value given by a memory terminal is thevalue at the
indicated point in the tree on the previous time step. While this structure is applicable
to a range of signal processing problem, once again memory has been constrained for
the GP into a structure appropriate to the problem.

[Sharman et al., 1995; Esparcia-Alcazar and Sharman, 1997] similarly use memory
terminals to hold values previously calculated at nodes within the program tree, how-
ever the mechanism for connecting terminals to inner nodes is different; explicit “psh”
functions within the program tree save the value at that point in thetree by pushing it
onto a stack. The stack is non-standard as “psh” writes to the current stack whereas
“stkn” terminals provide a mechanism to read the stack created on the previous time
step. The stack is also non-standard in that the “stkn” terminals non-destructively read
data inside the stack (rather than from just the top of stack).

7.4.8 Object Oriented Programming

Some confirmation of the experimental results of Chapters 4 and 5 is provided by
[Bruce, 1995; Bruce, 1996]. Although Bruce casts his work in an object oriented light
rather than in terms of data structures there is much that is similar to this work. The
details of the data objects in Bruce’s experiments on evolving stack and queue data
objects are similar to the stack and queue data structures in Chapters 4 and 5.They
differ principally by the inclusion of a “Full?” object method and the lack of top or
front operations. Bruce also considers the evolution of a “priorityqueue”. While this
has some similarities with the list data structure evolved in Chapter6 it is significantly
simpler with only five data methods rather than the ten simultaneously evolved in
Chapter 6.

The details of the genetic programming system Bruce uses are similar to those used
in Chapters 4, 5 and 6. For example one tree per data method (making a totalof five
trees per individual, see Section 3.6), separating pointers from main indexed memory
(cf. Section 3.5), and use of tournament selection (cf. Section 3.2) with asteady state
population (cf. Section 3.3). However a population size of 1,000 is used throughout
rather than increasing to 10,000 for the more difficult problems.

Bruce conducts six experiments per object type in which he investigates the im-
pact of, evolving the data methods one at a time rather than simultaneously,allowing the
inspection of the internal operation of the programs and the impact of using strongly
typed genetic programming. As might be expected, evolving one thingat a time,
including a comparison of evolved program behaviour with a prescribedideal imple-
mentation in the fitness function, and ensuring the evolved program istype correct, all
make the GP’s task easier. If all three are avoided (as in our experiments),which he
labels experiments “3a”, then his GP was unable to evolve the data structure in 20 runs.
(Typically the experiments in Chapters 4 to 6 involve about 60 independent runs).

164 GENETIC PROGRAMMING AND DATA STRUCTURES

7.4.9 PADO

PADO [Teller and Veloso, 1995c; Teller and Veloso, 1995d; Teller and Veloso, 1996;
Teller and Veloso, 1995b; Teller, 1995a; Teller, 1995b; Teller and Veloso,1995a; Teller,
1996] is a GP based learning architecture for object recognition and has been shown
to be able to correctly classify real world images and sounds far better than random
guessing (albeit with less than 100% accuracy). PADO is a complex system with
many non-standard GP features. For example the classification system is built from
a hierarchy of individual programs which may use libraries of evolvingcode as well
as ADFs similar to Koza’s, repeated execution of programs within a fixed execution
time, programs are represented by a directed graph of execution nodes rather than as
trees and the genetic operators used to create new program are themselves evolved,
cf. Section 2.4.1. The programs it generates are large and their operation ispoorly
understood.

PADO was deliberately designed not to use domain knowledge and so only the
simplest memory structure (indexed memory) is used. It has been applied to complex
ill behaved problems where there is no obvious data structure. GP couldin principle
build problem specific structures on top of indexed memory which the complexity and
size of the evolved programs might conceal, however there is no evidence that this is
happening. The better than random performance of PADO may be due to its many
other features rather than its simple memory structure.

7.5 SUMMARY

The experiments described in Sections 7.1 to 7.3 (which were reported in part in
[Langdon, 1996c]) have shown GP can solve two new problems. In Section 7.2
we showed GP can induce programs which correctly classify test sentences as to
whether they are in a Dyck language or not and in Section 7.3 we showed GP evolving
code which evaluates Reverse Polish Notation (RPN) expressions. In Section 7.1 we
showed GP can solve the nested bracket problem without requiring an intermediate
step generating an abstract machine.

All three examples were solved by GP using the appropriate data structure for the
problem. The two more complex examples (Dyck language and RPN) proved to be
more difficult for GP when provided with indexed memory rather than whenprovided
with a stack. Despite indexed memory being more powerful than stacks or simple
scalars, none of the three problems has been solved using indexed memory.

Section 7.4 reviewed the current GP literature where problems have been solved
using evolvable memory. It shows many cases where appropriate data structures
have been used to solve problems. The principle counter example, where problem
specific data structures have not been provided, is PADO, where better thanrandom
performance has been achieved on classification problems with no obvious structure.

It has often been argued, e.g.[Kinnear, Jr., 1994c, page 12], that functional prim-
itives used with GP should be as powerful as possible, in these exampleswe have
shown appropriate data structures are advantageous, that is GP can benefit from data
abstraction.

These experiments have not provided evidence that existing GP can scale up and
tackle larger problems. If they had shown GP solving problems by evolving the

PROBLEMS SOLVED USING DATA STRUCTURES 165

Table 7.9. Actions Performed by Terminals and Functions

Primitive Purpose

DIV(x,y) if y 6= 0 return x=y
else return 1

SUBR(x,y) DIVR(x,y) As SUB andDIV except yieldy�x andy=x, i.e. operands
reversed.

max constant 10 (� max input size).
PROG2(t,u) evaluatet; return u
ARG1, arg1, arg2 arguments of current operation or ADF
aux1 an auxiliary variable (i.e. in addition to indexed memory).
Set Aux1(x) aux1 = x; return aux1

forwhile(s,e,l) for i0 = s; i0 � e; i0++
if timeout (128)exit loop
if l returns zeroexit loop

return i0
i0 Yields value of loop control variable of most deeply nested

loop or zero if not in a loop in current tree. NB loop control
variable in one tree cannot be accessed in another (e.g. an
ADF).

IFLTE(x,y,t1,t2) if x � y return t1
else return t2

Ifeq(x,y,t1,t2) if x = y return t1
else return t2

required data structures “on the fly” as it needed them this would have been powerful
evidence. However this was not demonstrated. The failure of GP to solvethe problems
when providedwith the more general (i.e. more powerful) directly addressable memory
data structure shows that data structures should be chosen with care and it may not be
sufficient to simply over provide, with more powerful structures thanare needed.

166 GENETIC PROGRAMMING AND DATA STRUCTURES

Table 7.10. Actions Performed by Terminals and Functions (cont)

ifopen(x,t1,t2) if x = 5, 13, 31 or 43return t1 //i.e. opening symbol
else return t2

ifmatch(x,y,t1,t2) if x = 5, 13, 31 or 43 evaluatey //i.e. opening symbol
if (x,y) = (5,71), (13,103), (31,137) or (43,167)return t1
else return t2 //x andy don’t match

else return t2

Makenull clear stack;return 0
Empty if stack is emptyreturn 0; else return 1
Top if stack is emptyreturn 0; else return top of stack
Pop if stack is emptyreturn 0; else pop stack andreturn popped

value
Push(x) Evaluatex;

if < 99 items on stack pushx; return x
else return 0

Indexed memory is held in store[�l : : : +l], wherel = 63, i.e. a total of 127 cells.

read(x) if jxj � l return store[x]
else return 0

write(x,d) if jxj � l store[x] = d; return original contents of store[x]
else evaluated; return 0

swap(x,y) if jxj � l and jyj � l exchange contents of store[x] and store[y]

if jxj > l and jyj � l store[y] = 0

if jxj � l and jyj > l store[x] = 0
return 1

