
© City University, School of Informatics, Object-Oriented Analysis & Design 6-1

- Object-oriented techniques, as earlier lectures should have shown, are based
on a simple principles. However application of these techniques and procedures
demands the production, manipulation and storage of large numbers of complex
textual and graphical representations. Manual manipulation and management of
these representations becomes a daunting task even for small scale projects.
The general theme of this lecture is the computer-based support that is available
for execution of analysis and design tasks. This requires some understanding of
the field generally known as CASE (computer-aided software engineering) and
an introduction to at least one of the latest tools. Fortunately the company whose
members have drafted the UML also produces a tool for which a demonstration
version is freely available, Rational Rose 4.0 (downloadable from
http://www.rational.com/demos/rose4.html). Showing this tool also provides an
opportunity to say something more about the link between design and code.

> First an overview of the lectures contents

CASE Support 8. 1

Lecture 8

Computer-Aided Software Engineering

Dr Neil Maiden
Dr Stephen Morris

Dr Wolfgang Emmerich

School of Informatics
City University

© City University, School of Informatics, Object-Oriented Analysis & Design 6-2

- The general motivation to increase productivity has been behind the
development and use of CASE as much as it has been behind the development
of all forms of tool. The specific objectives for the use of tools for the production
of software relate to their particular field of operation.
- A great number of tools, workbenches, toolsets and environments have come
to market, given a variety of names that often make it difficult to identify real
capabilities and features.
- In order to make sense of this proliferation Fuggetta has provided a
classification of CASE technology that offers a very useful framework for viewing
the field.
- In this context we can look at a the capabilities of a couple of tools intended
specifically to assist object oriented analysis, and then at the specific functinality
and interface of the Rational Rose tool which uses UML , including its code
generating facility.
- The final section will point out some of the drawbacks of these tools, in
particular those involved in there introduction into the workplace.

CASE Support 8. 2

Lecture Overview

• Motivation and objectives for CASE

• Achievements to date

• Classification of CASE technology

• Sample o-o tools

• A UML-based tool

• Link to code

• Caveat emptor

© City University, School of Informatics, Object-Oriented Analysis & Design 6-3

- In any industry there are obvious commercial advantages in being able to offer
an actual or potential customer aproduct at the earliest date. In software
production reducing the difficulties associated with large or complex products,
which were discussed in the first lecture, should increase speed and improve
quality. In the context of skilled labour shortages, both factirs should contribute to
improved productivity, thereby reducing costs. Another factor often mentioned is
flexibility, although this appears to be a desirable bye-product of other factors
- The specific objectives for CASE are often taken as given, but need to be clear.
Automation of atomic or composite tasks both increases speed and reduces
difficulty. For example, graphical modelling tools can produce composite
graphical and textual forms as single elements and also validate their
relationships with other instances or types of element. Integration needs to take
place between data objects and can be achieved with shared data models,
between system components and versions via configuration management
mechanisms and between multiple users involved in any single project. It is also
necessary, and should be possible, to provide some form of guidance (and
control) for the process of production, via the total set of activites, methods,
structures and tools that may be used, their order and relationships.

> Increased availabilty of CASE technology has not, however been uniform
across activities.

CASE Support 8. 3

Why CASE ?

Motivation
- increase speed
- reduce difficulties
- improve productivity
- cope with complexity

Objectives
- automate
- integrate
- guide

© City University, School of Informatics, Object-Oriented Analysis & Design 6-4

- This figure shows the process activities supported by different classes of CASE
tools. It would appear to suggest that there is good coverage of th whole
process. However as its originator (Sommerville ‘92) suggests, when you
consider this coverage in relation to alternative methods and approaches, it
appears much less strong in relation to the more recently expanding fields of
object-oriented design and programming.
- In addition this coverage indicates success more in achieving the first objective
of automation than the second and third (integration and guidance).
- In order to get a clearer view of what is involved in achieving these objectives, it
is worth looking at a structured view of CASE technology.

Sommerville, I. Software Engineering, Fourth Edition, Wokingham: Addison-
Wesley, 1992 (in particular Chapters 17 and 18)

CASE Support 8. 4

Tool support for process activities

S
pe

ci
fic

at
io

n
D

es
ig

n
Im

pl
em

en
-

ta
tio

n
V

er
ifi

ca
tio

n
an

d

va
lid

at
io

n

P
la

nn
in

g
an

d

es
tim

at
in

g
to

ol
s

 Te

xt
 e

di
tin

g
to

ol
s

 D

oc
um

en
t p

re
pa

ra
tio

n

to
ol

s
 C

on
fig

ur
at

io
n

m

an
ag

em
en

t t
oo

ls

 P
ro

to
ty

pi
ng

 to
ol

s

 D
ia

gr
am

 e
di

tin
g

to
ol

s

 D
at

a
di

ct
io

na
ry

 to
ol

s

 U
se

r
in

te
rf

ac
e

m

an
ag

em
en

t s
ys

te
m

s

 M
et

ho
d

su
pp

or
t

to
ol

s

 La
ng

ua
ge

 p
ro

ce
ss

in
g

to

ol
s

 P

ro
gr

am
 a

na
ly

si
s

to
ol

s

 In
te

ra
ct

iv
e

de
bu

gg
in

g

sy
st

em
s

 P

ro
gr

am
 tr

an
sf

or
m

at
io

n

to
ol

s

 M
od

el
lin

g
an

d

si
m

ul
at

io
n

to
ol

s

 Te
st

 d
at

a
ge

ne
ra

tio
n

to
ol

s

© City University, School of Informatics, Object-Oriented Analysis & Design 6-5

- The diagram shows at the top abstract processes and at the bottom concrete
technologies. In this view (Fuggetta ‘93) the software production process (top
left) embraces all its relevant activities, techniques, etc. and it evolves via some
kind of systematic metaprocess (top right). These processes require support in
the form of procedures, rules and technologies, all based on a common
infrastructure providing an integrated and homogeneous environmeent. The
implementation of this support comes by means of CASE technologies.
- Much of the justification and explanation for CASE tools often comes from the
two upper levels, but the lowest level provides the clearest view. In what follows
the emphasis is on production process technologies (bottom left), the subject of
metaprocess technologies being very much an area of advanced research and
experimental development (bottom right).

Fuggetta, A. A Classification of CASE Technology. In IEE Computer, Vol 26 No
12, December 1993 (pp 25-38)

CASE Support 8. 5

General framework for CASE

Production process Metaprocess

Software process

Production-process technology Metaprocess technology

Enabling technology

CASE technology

Production-process support Metaprocess support

Infra structure

Software-process support

supported by

implemented via

© City University, School of Informatics, Object-Oriented Analysis & Design 6-6

- Editing tools have two large subclasses: textual editors and graphical editors,
each including specialised subcategories such as syntax-directed editors.
- Programming tools also include numerous variants in three main groups:
coding and debugging, code generators that start from higher level descriptions
and code restructurers that can analyse, reformat and sometimes improve
source code.
- Validation and verification tools assist getting ‘the right thing’ and ‘the thing
right’ , e.g. test case generators.
- Configuration management help to coordinate and control the construction of a
system composed of many parts, versions, and individual items.
- Metrics and measurement tools collect data about programs and their
execution.
- Project management tools help to estimate costs, to support planning and to
aid communication and coordination within project teams.
- Other miscellaneoustools e.g. spreadsheets.

CASE Support 8. 6

Production process technology - TOOLS

Tools
support only specific tasks in the software process :

• editing
• programming
• verification and validation
• configuration management
• metrics and measurement
• project management
• miscellaneous

© City University, School of Informatics, Object-Oriented Analysis & Design 6-7

- Whereas tools can be seen as the means of achieving the first identified
objective of automation, workbenches serve as the principal means of achieving
the second, integration. Integrating tools in a workbench can provide:
a homogeneous and consistent interface (presentation integration), easy
invocation of tools and tool chains (control integration), and access to a common
data set, managed in a centralised way (data integration). Some products can
also enforce predefined procedures and policies (process integration).

> Before considering analysis and design workbenches in more detail, a
digression to complete the overall picture with comments about environments.

CASE Support 8. 7

Production process technology - WORKBENCHES

Workbenches
support sets of tasks (activities)

and integrate tools in a single application

• Business planning and modelling
• User interface development
• Analysis and design

• Programming
• Verification and validation
• Maintenance and reverse engineering
• Configuration management
• Project management

© City University, School of Informatics, Object-Oriented Analysis & Design 6-8

- Toolkits are loosely integrated collections of products easily extended by
aggregating different tools and workbenches, e.g. Unix Programmer’s Work
Bench
- Language-centred environments e.g. Smalltalk (for Smalltalk) offer a good level
of presentation and control integration but suffer from a lack of processs and
data integration.
- ‘Integrated environments’ have this name because they operate using standard
mechanisms, in particular specialised data repositories that manage all
information produced and accessed in the environment, so that users can
integrate tools and workbenches.
- ‘Fourth generation environments’ were precursors to and, in a sense are
subclasses of, integrated environments.They often support specific classes of
programs, e.g. business orientated applications. Four characteristics are :
simple operations in the application but complex information structure, criticality
of user interface, importance of prototype development because of imprecise
requirements, an evolutionary development process. Macromedia Director is an
example.
- Process-centred environments are based on a formal definition of the software
process, a process model itself created by specialised tools. A process driver or
engine uses this definition to guide development by automatically invoking tools
and work benches.

CASE Support 8. 8

Production process technology - ENVIRONMENTS

Environments
support (a large part of) the software process
using a collection of tools and workbenches

• Toolkits
• Language-centred
• Integrated
• Fourth generation
• Process-centred

© City University, School of Informatics, Object-Oriented Analysis & Design 6-9

- Workbenches are an important subclass, for which term CASE is often used
exclusively, automating most of the analysis and design methods developed that
have becomne widely used (structure analysis and design, Jackson System
Development, and now object-oriented analysis and design).
- The functionality provided depends heavy on the level of formality of the
notation used. The greater the formality the more precise the definition of the
syntax and semantics and the greater degree of automation that can be
achieved. At the most informal level only text editing and document production
are possible; with formal notations, e.g. finite state machines (FSMs) and Petri
nets, it is possible to have consistency checks and some automatic generation of
elements.
- There is also an important distinction between the uses of these notations and
hence of the types of applications that can be supported. Entity relationship
diagrams, for example, are most commonly used for data-intensive applications;
FSMs are more likely in the analysis and design of control-intensive applications.
some workmenches, e.g. Software through Pictures (StP), attempt to support
analysis and design with a variety of notations at different levels of formality and
for a variety of purposes.
> Now a more detailed look at some examples specifically intended for o-o
development

CASE Support 8. 9

Analysis and design workbenches

An important subclass of work benches
incorporating:
• one or more editors
• other tools to analyse

and transform their products

Classifiable according to :
• methods and notations automated
• level of formality
• class of applications supported

© City University, School of Informatics, Object-Oriented Analysis & Design 6-10

- HoodNICE is an example of a workbench developed explicitly for a particular
design method.
The main tools are:
 - The HOOD Diagram Editor (HDE) which provides graphical facilities for the
architectural design of the application.
 - The ODS Editor, which is a syntax directed editor that supports the textual
notation of HOOD.
 - The Informal Solution Strategy (ISS), which is an informal view of the project.
 - Import/Export of the Standard Interchange Format (SIF) representation of the
entire design trees and design fragments.
 - The Document Generator which generates design documentation according to
formats that can be customized by the user for the most popular publishing tools
(Ptroff, FrameMaker, TPS, LaTEX,..). Document structure, contents and physical
formatting can be customized by the users.
 - Off-line checker, which supports time consuming HOOD checks.
 - The Code Generator which generates Ada, C or C++ code.
 - The Reverse Code Generator which reconciles the design with the code if it has
been modified by the user.

CASE Support 8. 10

HOOD

- HOOD (Hierarchical Object Oriented Design)
 is an object-oriented method,
 based on hierarchical decomposition
 of the design into software units

- HoodNICE is a family of CASE products,
 an integrated set of tools (about 30)
 based on the HOOD method

- Developed for ESA and
 associated with the Ada language

© City University, School of Informatics, Object-Oriented Analysis & Design 6-11

- As this diagram suggests Software through Pictures (StP) is a very ambitious
family of tools aiming to help development teams working through all stages of
the planning, design and implementation of business systems. Integrated
graphical editors and tables support two popular object-oriented methodologies
(Booch and Rumbaugh’s Object Modeling Technique). Project model locking and
access control, checking for model syntax, semantics and completeness, and
code and documentation generation are basic features included with all the tools.
- StP/OMT integrates all OMT models into a multi-user environment via 7 editors
and an Object Model Browser:
Requirements Table Editor - Captures high level business rules and
requirements; Use Case Editor - Performs high level analysis with usage models
to identify requirements; Object Model Editor - Expresses classes, their attributes
and operations, and the relationship between classes; Dynamic Model Editor -
Models class behavior, events and timing; Functional Model Editor - Describes
the data transformations associated with a class operation; Object Interaction
Editor - Models how objects will interact, what events will invoke the class
operations and how interactions are sequenced; Class Table Editor - Provides a
textual expression of important class attribute and operation detail not desirable
in a graphical model; Object Model Browser - Browses the repository for detailed
understanding of class information and system designs.

CASE Support 8. 11

Software through Pictures (StP)

© City University, School of Informatics, Object-Oriented Analysis & Design 6-12

- Rational Rose is an set of tools (a workbench) developed by the company now
promoting UML. Its purpose is to support the analysis, design and
implementation of object-oriented systems in an integrated way.
- The assistance it provides takes the form of text and graphical tools, most
importantly the latter, plus a common database containing the characteristics of
all the elements created. There is also a code generation facility which translates
these characteristics into a correctly structured and coded (C++) form.
- The workbench does not provide any specific process support, although
particular ‘views’ of the elements created correspond in part to the requirements,
design and implementation models in the OOSE method.
- The graphical tools automatically generate representations in UML (although
not in the latest v1.0)
and can also be switched automatically to Booch and Rumbaugh modes.
- The ‘Demo Walkthrough’ provide by Rational gives a good general view of its
features.

[A demo version of this workbench, which requires Windows 95 or NT to run, is
downloadable from http://www.rational.com/demos/rose4.html]

CASE Support 8. 12

Rational Rose 4.0

Workbench supporting UML developed by
Booch and Rumbaugh

• Aid to analysis, design and implementation
• Automated assistance
• Code generation
• O-O models
• UML v0.8 notations

© City University, School of Informatics, Object-Oriented Analysis & Design 6-13

- There are three resizable windows, but only the ‘Browser’ (lower left) can be
used for creating new elements in the database, which can then be combined
and amended in different diagrams in the window on the right. It is possible to
‘sketch’ on the right, but this does not create new elements in the scope of the
Browser.
- Although the documentation window can contain text associated with any
element, there is no suggestion that scenarios should precede the generalised
actors and use cases.

CASE Support 8. 13

Rational Rose 4.0

Walkthrough steps 0 - 8

© City University, School of Informatics, Object-Oriented Analysis & Design 6-14

- These steps show the creation of a standard UML-type sequence diagram, but
the objects are created independent of any analysis of the problem domain
objects suggested by a particular case.
- Note also that sequence diagrams form part of the design model in OOSE and
no special support is provided for the analysis phase.

CASE Support 8. 14

Rational Rose 4.0

Walkthrough steps 9 - 16

© City University, School of Informatics, Object-Oriented Analysis & Design 6-15

- The ‘logical view of the model’ corresponds to the design model in OOSE.
- Note that in 17 you create classes in the Browser which in 23 are ‘dragged
onto’ the appropriate objects in the sequence diagram, thus giving them a class
identity automatically.

CASE Support 8. 15

Rational Rose 4.0

Walkthrough steps 17 - 27

© City University, School of Informatics, Object-Oriented Analysis & Design 6-16

- This section deals principally with associations and at the end with inheritance.
- At step 33 the demo version reaches its maximum number of saveable
elements.

CASE Support 8. 16

Rational Rose 4.0

Walkthrough steps 28 - 33

© City University, School of Informatics, Object-Oriented Analysis & Design 6-17

- This section is concerned with the creation of logical packages and the
mapping to sub-systems (physical packages) created in the Component view.
- Note in 36 that scenarios/sequence diagrams can be updated, which would be
forbidden in OOSE given the fixed nature of the analysis model and of the use
case descriptions contained in it, and the likely prejudice to the contents of the
requirements model.

CASE Support 8. 17

Rational Rose 4.0

Walkthrough steps 34 - 41

© City University, School of Informatics, Object-Oriented Analysis & Design 6-18

- This section demonstrates the code generating capability, translating the
defined structure and its characteristics into compilable C++ code.

CASE Support 8. 18

Rational Rose 4.0

Walkthrough steps 42 - 46

© City University, School of Informatics, Object-Oriented Analysis & Design 6-19

- Rational Rose illustrates the benefits of automation and integration that have
been achieved using CASE technology. It also shows the problems that might
arise if it were to be used independent of any coherent method.
- There are also a number of general caveats regarding the introduction of
CASE, and particularly comprehensive environments, sometimes called SDE or
SEE. These provide considerably increased management control over the
process and conversely may reduce individual creativity and satisfaction. There
may also be a need for a considerable investment in training which, if it is not
made, will reduce the value of both staff and investment. The cost advantages of
what may be a large investment are unlikely to be quantifiable, leading to
management reluctance to introduce the latest technology and techniques.

CASE Support 8. 19

CONCLUSIONS

 Demonstrated value
• Benefits of automation and integration
• Need for process guidance

 Some caveats
• User resistance
• Lack of training
• Management resistance

