
© LogOn Technology Transfer 1996 1

Managing
Object Oriented Projects

Dr. Jim Arlow, Senior Consultant
LogOn Technology Transfer

© LogOn Technology Transfer 1996 2

Contents

lWhy is an OO project Different?
lWhat do you need to know?

– OO Principles
– Lifecycle
– Deliverables
– Team Structure
– Reuse (come to my talk tomorrow!)

© LogOn Technology Transfer 1996 3

Basic Concepts

Managing OO Projects Part 1

© LogOn Technology Transfer 1996 4

What is OO?

Data Function New Data

Procedural

Object Oriented

MessagesObjects

© LogOn Technology Transfer 1996 5

Conventional SE

if (pPsngr != NULL)
 {
 print(pPsngr);
 }

Users Analyst/Designers Programmers

© LogOn Technology Transfer 1996 6

Object Oriented SE

Users Analyst/Designers Programmers

© LogOn Technology Transfer 1996 7

Abstraction, Inheritance and
Polymorphism

BankAccount

balance : double
Withdraw()
A

CurrentAccount DepositAccount BonusAccount

Withdraw() Withdraw() Withdraw()

Base
Parent
Superclass

Child
Subclass

“IS A”

© LogOn Technology Transfer 1996 8

Advantages of OO

lConceptual continuity
lManaging Complexity

– Semantic richness
– Objects allow partial systems to work

lQuality
lMaintenance - resilience to change
lTime to market
lReuse

© LogOn Technology Transfer 1996 9

What is an OO Project?

lAn OO project is a sequence of unique,
complex and connected activities having
one goal or purpose that must be completed
by a specific time, within budget and
according to specification, that uses Object
Technology to help reach its goal.

lClarity of purpose
– Conditions of Satisfaction

© LogOn Technology Transfer 1996 10

Why is an OO Project
Different

lLifecycle
– Scheduling

lSkills (manager and programmer)
lDeliverables

– Classes

lTeam Structure
– Small teams

© LogOn Technology Transfer 1996 11

OOPM and Corporate Culture
l“The system structure reflects the culture and

organisation of the group that creates it”

lWide-scale introduction of OO can change
Corporate Culture

lThere is no single strategy for managing an
OO project

© LogOn Technology Transfer 1996 12

Reasons why Projects fail

lDon’t manage risks
– “Management must actively attack a project’s

risks, otherwise they will actively attack you”1

– Build the wrong thing
– Don’t involve users at all stages

lTechnology fails
– Don’t use system architecture to reduce impact

of technology failure
1. [Gilb 1988]

© LogOn Technology Transfer 1996 13

Why OO Projects often
succeed

lConceptual continuity
– Common vocabulary

l Iterative Lifecycle
– Manage risks
– You tend to build the right thing

lOO Architecture
– Clear separation of concerns
– Resilience to change

© LogOn Technology Transfer 1996 14

Booch’s 5 habits of a
successful OO Project

lFocus on essential characteristics
lArchitectural vision
lCulture

– Centred on results
– Communication
– Not afraid to fail

l Iterative and incremental Lifecycle
lEffective OO Modelling

© LogOn Technology Transfer 1996 15

LogOn’s habits for a
successful OO Project

lSimplify
lGeneralise
lPlan for reuse (if you want it)
lDo the high risk parts first
l Involve end-users as much as possible
l If it’s broken, fix it

© LogOn Technology Transfer 1996 16

The bottom line...

lDelivering a system that meets users’
present requirements and that can be easily
extended to meet users’ future requirements
on time and within budget

lA Quality System requires a Quality System
Architecture

© LogOn Technology Transfer 1996 17

System Architecture

lPhysical Architecture
– Machines
– Networks

lLogical OO Architecture
– Classes
– Class Libraries
– Frameworks
– Design patterns

Different to
Conventional

Projects

Same as
Conventional

Projects

© LogOn Technology Transfer 1996 18

Always focus on
“minimal characteristics”

lProject team must have a clear shared
vision of the desired characteristics

lAll decisions must contribute to achieving
this vision

lAny decision counter to the vision must be
abandoned

lAll neutral decisions are luxuries

© LogOn Technology Transfer 1996 19

Deliverables

Managing OO Projects Part 2

© LogOn Technology Transfer 1996 20

What the Users Wanted...

1. As proposed by
Project Sponsor

2. As specified in
Project Requirements

3. As designed by
System Architect

4. As produced by
Programmers

5. As installed What the Users wanted

© LogOn Technology Transfer 1996 21

Deliverables of OO Projects

lManagers need to understand exactly what
it is that their team is going to deliver!

lMany of the Deliverables of an OO project
are significantly different to those of a
conventional project

lUltimately we deliver a working system

© LogOn Technology Transfer 1996 22

Classes

lThe Class is the most basic unit of
decomposition in an OO project
– Embodies one abstraction in problem or

solution domain
– Small number of well-defined responsibilities
– Separates interface from implementation
– Simple and extendible
– Generic as possible

© LogOn Technology Transfer 1996 23

Class Rules of Thumb

lEach class should have about 3 to 5
responsibilities

lNo class stands alone
lBeware many very small classes
lBeware few but very large classes
lBeware of “functoids”
lBeware of “God” classes
lAvoid deep inheritance trees (C++)

© LogOn Technology Transfer 1996 24

Case Study: Cohesion and
Coupling

lA project we reviewed had a very large
number of classes, and most of these classes
did not embody a crisp abstraction.
Furthermore most classes were coupled to
most other classes in an ad-hoc manner.
Even a small change to this system often
necessitated a complete recompilation - a
task that took 24 hours to complete.

© LogOn Technology Transfer 1996 25

Design Patterns

l“Each pattern describes a problem which
occurs over and over again in our
environment, and then describes the core
solution to the problem in such a way that
you can use this solution a million times
over, without ever doing it the same way
twice”[Alexander], [Gamma 1995]

lMicroarchitecture

© LogOn Technology Transfer 1996 26

Design Pattern Properties

lTried and true recipe for solving a general
class of problem
– Needs to be coded for each specific case

lProvides architectural elements
lSystem architecture might prove to be a

collection of design patterns
lExample: “Chain of Responsibility”

© LogOn Technology Transfer 1996 27

Frameworks

lA collection of classes that co-operate
together to provide an architectural unit

lA framework
– is more than the sum of its parts
– embodies an element of system architecture

l e.g.
– Model View Controller architecture
– Taligent Document Framework

© LogOn Technology Transfer 1996 28

Using a Framework

Cold spots

Hot spots

Framework

Application

© LogOn Technology Transfer 1996 29

Framework Properties

lFor a powerful framework there should be
many cold spots and few hot spots

lThe “Hollywood Principle”
– Don’t call us, we’ll call you!

lMechanism for reusing system architecture

© LogOn Technology Transfer 1996 30

Project Culture

Managing OO Projects Part 3

© LogOn Technology Transfer 1996 31

Drivers for OO projects

lArchitecture
– Maturity and reuse

lRequirements
lQuality

– Metrics, expense

lCalendar
lDocumentation

– “Paper envy”, [Booch 1995]

© LogOn Technology Transfer 1996 32

Case study: Documentation

lWe once recommended a small change to
the code of a system that would have
significantly increased its overall quality.
The change was estimated at 2 man-hours
work. It was rejected as it was estimated
that it would take 2 man-days to update the
systems documentation to reflect the
change.

© LogOn Technology Transfer 1996 33

Case Study: Requirements

lA project to display a chart for planning
purposes met all user requirements and was
well-received and liked. However, when the
users asked for a modification so that they
could edit the charts, the system architecture
could not absorb the change, and the system
had to be rewritten.

© LogOn Technology Transfer 1996 34

Requirements vs. Architecture

Common
Infrastructure

Common
Infrastructure

Requirements Driven Architecture Driven

System
Functions

© LogOn Technology Transfer 1996 35

OT Impact on Project

Scope

Quality

Cost

TimeResources

Object
Technology

© LogOn Technology Transfer 1996 36

The OO Project Lifecycle

Managing OO Projects Part 4

© LogOn Technology Transfer 1996 37

The Six Phases of a Project

lEnthusiasm
lDisillusionment
lPanic
lSearch for the Guilty
lPunishment of the Innocent
lPraise and Honours for the non-participants

© LogOn Technology Transfer 1996 38

Four Types of Project
Business Value

Risk

Low

Low

High

High

Who cares?

OT
can lower risk and
increase value

© LogOn Technology Transfer 1996 39

Project Management Lifecycle

Scope Project

Develop Plan

Launch Plan

Monitor/Control

Close

OT

© LogOn Technology Transfer 1996 40

Conventional Lifecycle
Requirements

Analysis

Design

Build

Deliver

Cascade or Waterfall approach

© LogOn Technology Transfer 1996 41

Cascade Lifecycle Properties
lLinear

– Assumes initial requirements are correct,
complete and do not change

– Responds poorly to changing business needs

lBig projects mean long time to delivery
– Can deliver a system no one wants to use
– Long time before any business advantage

lOnly works well when we know exactly
what we want and this does not change

© LogOn Technology Transfer 1995 42

Whirlpool or Spiral Lifecycle

AnalysisDesign

Implementation

Keep iterating around the loop until you’ve had enough!

© LogOn Technology Transfer 1996 43

Spiral Lifecycle Properties

lGood for small projects

lDifficult to know when to stop!

© LogOn Technology Transfer 1996 44

The Iterative and Incremental
Lifecycle

Requirements

System

Analyse

Design

Build

Business Needs

• Regular Incremental Releases
• Macro and Micro Process

Increment

Change

© LogOn Technology Transfer 1996 45

Iterative & Incremental
Lifecycle Properties

lResponds well to changing business needs
lEasier to monitor and control
lGreater probability that delivered system

will match users’ requirements
lCan more easily manage user expectations
l“Homes in” on desired outcome

– Outcomes are often moving targets

© LogOn Technology Transfer 1996 46

Impact on Deliverables

l Iterative Lifecycle
– Incremental delivery
– Step-wise refinement

to final system
– Mitigate risk at each

increment

l Conventional
Lifecycle
– Big-bang approach
– All or nothing
– High risk

© LogOn Technology Transfer 1996 47

Iterations and Increments
l Iteration

– One pass around the ADB loop
– 2 to 5 iterations generally constitute an

increment
– Not a milestone

l Increment
– A deliverable which is a useable piece of

functionality
– Increments are milestones

© LogOn Technology Transfer 1996 48

Summary: Axioms for the
OO Lifecycle

lKnow your purpose
l“Test your theories against reality at the

earliest possible opportunity”
lMonitor your goals, and modify your

actions to achieve those goals
lActions affect outcomes

© LogOn Technology Transfer 1996 49

Team Building for OO Projects

Managing OO Projects Part 5

© LogOn Technology Transfer 1996 50

How not to organise
your team...

© LogOn Technology Transfer 1996 51

OO Learning Curves

lProgrammer
– 1 month to learn C++ language syntax
– 6 to 9 months to become proficient

lAnalysts/Designers
– 12 to 18 months to become proficient
– OO Design is hard
– No substitute for experience

© LogOn Technology Transfer 1996 52

How to Kick-Start an OO
Project

lMentoring!
lSeed project with experienced people
lExternal/internal consultants at key stages

– Planning
– Project start up
– Regular reviews

lboth design and code

– Post-project review

© LogOn Technology Transfer 1996 53

Team Structure: Sub-teams
Architecture

Team

Analysis
Team

Design
Team

Implementation
Team

Deployment
Team

Tiger
Team

Aim for fluid sub-teams:
Roles blur in an OO project

© LogOn Technology Transfer 1996 54

Staffing

Architecture 10%

Abstractionists
30%
Application
engineers 50%
Supplemental
10%

© LogOn Technology Transfer 1996 55

Staffing Profiles

Architect

Analyst/Designers

Programmers

N
um

be
rs

Time

© LogOn Technology Transfer 1996 56

Team Structure

Architect

Abstractionist Abstractionist

Programmer

© LogOn Technology Transfer 1996 57

Roles

lArchitect
– System architecture and vision

lAbstractionist
– Micro-architectures
– One Abstractionist per class category

lProgrammer
– Implementing abstractions

© LogOn Technology Transfer 1996 58

Architect: Responsibilities

lSystem Architecture
lAssess technical risks
lDefine content of successive iterations

– Help in planning

lConsultancy
lMarketing

– Future product definition

© LogOn Technology Transfer 1996 59

Architect: Skills

lExperience
– Problem domain and general

software engineering

lVision
lLeadership
lCommunication
lProactive and goal-oriented
lRisk taker

© LogOn Technology Transfer 1996 60

Myth of the replaceable
programmer

lSome Project Managers view programmers
as the “lowest form of life”. They are just
replaceable parts

lThis ignores the fact that a good
programmer may be up to 10 times more
productive than a bad programmer

lGood programmers are very valuable and
need to be encouraged and rewarded

© LogOn Technology Transfer 1996 61

OO as an Amplifier

lObject orientation acts like an amplifier - it
makes the best programmers much better,
and the worse programmers much worse!

lThe same is true for Analyst/Designers !

© LogOn Technology Transfer 1996 62

Case Study: Team Building

lA company took a group of non OO
programmers and over a period of one
month trained them in C++ and an OO
methodology. They then launched them
straight into a full-blown OO project.
Naturally the project failed badly. How did
this happen? Management did not
understand that OT is different to
conventional software development.

© LogOn Technology Transfer 1996 63

Management Strategies for
Reuse (Introduction)

Managing OO Projects Part 6

© LogOn Technology Transfer 1996 64

Reuse Myths...

lWe are doing OO therefore we get reuse
lReuse is free
lWe don’t need to organise for reuse
lA Library Tool will give us reuse
lAll the programmers put reusable code in a

shared LAN directory (BPS strategy)

© LogOn Technology Transfer 1996 65

Reuse is a cultural issue

lYour project/organisation must decide
whether it is serious about reuse or not

l If you want reuse you must make it a
deliverable
– Schedule for reuse
– Organise the team for reuse
– Create new roles

© LogOn Technology Transfer 1996 66

Types of reuse

lReuse of Architecture
lReuse of Analysis
lReuse of Patterns
lReuse of Designs
lReuse of Documentation
lReuse of Code

– N.B. Cut and Paste is NOT reuse

© LogOn Technology Transfer 1996 67

Managing reuse

lBuilding with reuse
– Reuse existing components

lClass libraries

– Increases productivity

lBuilding for reuse
– Creating libraries of new reusable components
– Need new roles and responsibilities
– Initial decrease in productivity

© LogOn Technology Transfer 1996 68

Building for reuse
lCreating reusable components is expensive
lProductisation

– Quality
lTesting

– Completeness
– Documentation

lExample programs

– Support
lService level agreement

© LogOn Technology Transfer 1996 69

Reusable components cost
more

lNeed to put in extra effort to make the
component generic

lDon’t know how or where the component
will be used - needs to be more complete

lAs component may impact important
projects it needs thorough testing

lMust be well documented in order to be
reusable

© LogOn Technology Transfer 1996 70

Creating reusable
components: Staffing

lRequires best and most creative people
lThey must have a clear mandate to create

the components
lShould be well rewarded as they can have a

major impact on the project
lStaff for the maintenance phase
lStaff for support

© LogOn Technology Transfer 1996 71

Summary

lManaging an OO project is significantly
different to managing a conventional project

lUnderstanding OT and understanding the
different management strategies required
for the OO project will lead to success

© LogOn Technology Transfer 1996 72

Bibliography
l [Booch 1996] Booch, G. Object Solutions Managing the Object-Oriented Project, Addison-Wesley

1996, ISBN 0-8053-0594-7
l [Meyer 1995] Meyer, B. Object Success, Prentice Hall 1995, ISBN 0-13-192833-3
l [DeMarco 1982] DeMarco, T. Controlling Software Projects: Management, Measurement and

Estimation, Yourdon Press, Edgewood Cliffs, NJ 1982
l [Booch 1994] Booch, G. Object Oriented Analysis and Design with Applications (second edition),

Benjamin/Cummings 1994, ISBN 0-8053-5340-2
l [Wysocki 1995] Wysocki, R. Effective Project Management, Wiley 1995, ISBN 0-471-11521-5
l [Lorenz 1994] Lorenz, L. Kidd, J. Object Oriented Software Metrics, Prentice Hall 1994, ISBN 0-13-

179292-X
l [Gamma 1995] Gamma, E. Design Patterns Elements of Reusable Object-Oriented Software,

Addison-Wesley 1994, ISBN 0-201-63361-2
l [Brooks 1995] Brooks, P. The Mythical man-Month, Addison-Wesley 1995, ISBN 0-201-83595-9
l [Alexander 1977] Alexander, C. A Pattern Language, Oxford University Press, 1977
l [Parnas 1986] Parnas, D. A Rational Design Process: How and Why to Fake It, IEEE Transactions on

Software Engineering vol. SE-12(2) 1986
l [Gilb 1988] Gilb, T. Principles of Software Engineering Management, Addison-Wesley, 1988

