Managing
Object Oriented Projects

Dr. Jm Arlow, Senior Consultant
LogOn Technology Transfer

© LogOn Technology Transfer 1996

contents

® Why is an OO project Different?
® What do you need to know?

— OO0 Principles

— Lifecycle

— Deliverables

— Team Structure

— Reuse (come to my talk tomorrow!)

© LogOn Technology Transfer 1996

Basic Concepts

Managing OO Projects Part 1

© LogOn Technology Transfer 1996

What is OO?

Procedural

Object Oriented

Objects M essages

—

© LogOn Technology Transfer 1996

Conventional SE

if (pPsngr != NULL)

{
print(pPsngr);
}

Analyst/Designers Programmers

© LogOn Technology Transfer 1996 5

Object Oriented SE

Analyst/Designers Programmers

© LogOn Technology Transfer 1996 6

Abstraction, Inheritance and
Polymorphism

© LogOn Technology Transfer 1996 7

Advantages of OO

@ Conceptual continuity
® Managing Complexity
— Semantic richness
— Objects allow partial systems to work

® Quality

® Maintenance - resilience to change
® Time to market

® Reuse

© LogOn Technology Transfer 1996 8

What is an OO Project?

® An OO project is a sequence of unique,
complex and connected activities having
one goal or purpose that must be completed
by a specific time, within budget and
according to specification, that uses Object
Technology to help reach its goal.

o Clarity of purpose
— Conditions of Satisfaction

© LogOn Technology Transfer 1996 9

Why is an OO Project
Different

® Lifecycle
— Scheduling

® Skills (manager and programmer)
® Deliverables

— Classes
@ Team Structure

— Small teams

© LogOn Technology Transfer 1996 10

OOPM and Corporate Culture

® “ The system structure reflects the culture and
organisation of the group that creates it”

® Wide-scale introduction of OO can change
Corporate Culture

® Thereis no single strategy for managing an
OO project

© LogOn Technology Transfer 1996 11

Reasons why Projects fail

® Don’'t manage risks

—“ Management must actively attack a project’s
risks, otherwise they will actively attack you™?!

— Build the wrong thing
— Don't involve users at all stages

® Technology fails

— Don’t use system architecture to reduce impact

of technology failure
1. [Gilb 1988]

© LogOn Technology Transfer 1996 12

Why OO Projects often
succeed

@ Conceptual continuity

— Common vocabulary
@ |terative Lifecycle

— Manage risks

— Y ou tend to build the right thing
® OO Architecture

— Clear separation of concerns

— Resilience to change

© LogOn Technology Transfer 1996 13

Booch’s 5 habits of a
successful OO Project

@ Focus on essential characteristics
® Architectural vision
® Culture

— Centred on results

— Communication
— Not afraid to fail

@ |terative and incremental Lifecycle
@ Effective OO Modelling

© LogOn Technology Transfer 1996 14

LogOn’s habits for a

successful OO Project
® Simplify
® Generalise
® Plan for reuse (if you want it)
® Do the high risk parts first
® I nvolve end-users as much as possible
o If it's broken, fix it

© LogOn Technology Transfer 1996 15

The bottom line...

® Delivering a system that meets users
present requirements and that can be easily
extended to meet users' future requirements
on time and within budget

® A Quality System requires a Quality System
Architecture

© LogOn Technology Transfer 1996 16

System Architecture

@ Physical Architecture
— Machines
— Networks

® Logical OO Architecture
— Classes

— Frameworks

— Design patterns

© LogOn Technology Transfer 1996 17

Always focus on
“minimal characteristics”

® Project team must have a clear shared
vision of the desired characteristics

® All decisions must contribute to achieving
this vision

® Any decision counter to the vision must be
abandoned

® All neutral decisions are luxuries

© LogOn Technology Transfer 1996 18

Deliverables

Managing OO Projects Part 2

© LogOn Technology Transfer 1996 19

What the Users Wanted..

e Or i

1. Asproposed by 2. As specified in 3. Asdesigned by
Project Sponsor Project Requirements System Architect

N

4. As produced by 5. Asinstalled
' What the Users wanted
Programmers © LogOn Technology Transfer 1996 20

N

Deliverables of OO Projects

® Managers need to understand exactly what
it is that their team is going to deliver!

® Many of the Deliverables of an OO project
are significantly different to those of a
conventional project

@ Ultimately we deliver a working system

© LogOn Technology Transfer 1996 21

Classes

® The Class is the most basic unit of
decomposition in an OO project
— Embodies one abstraction in problem or

solution domain

— Small number of well-defined responsibilities
— Separates interface from implementation
— Simple and extendible
— Generic as possible

© LogOn Technology Transfer 1996 22

Class Rules of Thumb

® Each class should have about 3to 5
responsibilities

® No class stands alone

® Beware many very small classes

® Beware few but very large classes

® Beware of “functoids’

® Beware of “ God” classes

® Avoid deep inheritance trees (C++) &

© LogOn logy Ti

23

Case Study: Cohesion and
Coupling

® A project we reviewed had avery large
number of classes, and most of these classes
did not embody a crisp abstraction.
Furthermore most classes were coupled to
most other classes in an ad-hoc manner.
Even a small change to this system often
necessitated a complete recompilation - a
task that took 24 hours to complete.

© LogOn Technology Transfer 1996 24

Design Patterns

@ " Each pattern describes a problem which
occurs over and over again in our
environment, and then describes the core
solution to the problem in such away that
you can use this solution a million times

over, without ever doing it the same way
twice’ [Alexander], [Gamma 1995]

® Microarchitecture

© LogOn Technology Transfer 1996 25

Design Pattern Properties

® Tried and true recipe for solving a general
class of problem
— Needs to be coded for each specific case

® Provides architectural elements

@ System architecture might prove to be a
collection of design patterns

@ Example: “ Chain of Responsibility”

© LogOn Technology Transfer 1996 26

Frameworks

® A collection of classes that co-operate

together to provide an architectural unit
® A framework

— is more than the sum of its parts

— embodies an element of system architecture
®cg.

— Model View Controller architecture

— Taligent Document Framework

© LogOn Technology Transfer 1996 27

Using a Framework

> Cold spots
7) Hot spots

© LogOn Technology Transfer 1996 28

Framework Properties

® For a powerful framework there should be
many cold spots and few hot spots

® The “ Hollywood Principle”
— Don't call us, we'll call you!

® Mechanism for reusing system architecture

© LogOn Technology Transfer 1996 29

Project Culture

Managing OO Projects Part 3

© LogOn Technology Transfer 1996 30

Drivers for OO projects

® Architecture ;/
— Maturity and reuse J

® Reguirements ~/

o Quality

— Metrics, expense

@ Calendar

® Documentation
_“ Paper envy" , [Booch 1995]

© LogOn Technology Transfer 1996 31

Case study: Documentation

® \We once recommended a small change to
the code of a system that would have
significantly increased its overall quality.
The change was estimated at 2 man-hours
work. It was rejected as it was estimated
that it would take 2 man-days to update th
systems documentation to reflect the @
change. =

f

N
=

w

© LogOn Technology Transfer 1996

Case Study: Requirements

® A project to display a chart for planning
purposes met all user requirements and was
well-received and liked. However, when the
users asked for a modification so that they
could edit the charts, the system architecture
could not absorb the change, and the system

had to be rewritten.

© LogOn Technology Transfer 1996 33

Requirements vs. Architecture

Requirements Driven

"

System
Function

Architecture Driven

o

© LogOn Technology Transfer 1996 34

OT Impact on Project

Object
Technology

Cost

Resources

© LogOn Technology Transfer 1996 35

The OO Project Lifecycle

Managing OO Projects Part 4

© LogOn Technology Transfer 1996 36

The Six Phases of a Project

® Enthusiasm

@ Disillusionment

® Panic

® Search for the Guilty

@ Punishment of the Innocent
@ Praise and Honours for the non-participants

© LogOn Technology Transfer 1996 37

Four Types of Project

BusinessValue
Low High

F <
vigh| [BNCE 24
Nis=| oT
Risk = i can lower risk and
increase value
Low Who cares?

© LogOn Technology Transfer 1996 38

Project Management Lifecycle

Close
M onitor/Control
Launch Plan
oT \ /
Develop Plan
Scope Project
© LogOn Technology Transfer 1996 39

Conventional Lifecycle

Requirements
Analysis

Design

Build

Deliver

Cascade or Waterfall approach

© LogOn Technology Transfer 1996 40

Cascade Lifecycle Properties

® Linear

— Assumes initial requirements are correct,
complete and do not change

— Responds poorly to changing business needs
® Big projects mean long time to delivery

— Can deliver a system no one wants to use

— Long time before any business advantage

® Only works well when we know exactly
what we want and this does not change

© LogOn Technology Transfer 1996 41

Whirlpool or Spiral Lifecycle

Keep iterating around the loop until you' ve had enough!

Design

I mplementation
© LogOn Technology Transfer 1995 42

Spiral Lifecycle Properties

® Good for small projects

@ Difficult to know when to stop!

© LogOn Technology Transfer 1996 43

The Iterative and Incremental

Lifecycle
System

* Regular Incremental Releases
* Macro and Micro Process

Increment

Design

Build

Anal
nalyse Change

m—- REQUIrements h} Business Needs

© LogOn Technology Transfer 1996 44

lterative & Incremental
Lifecycle Properties

® Responds well to changing business needs
@ Easier to monitor and control

@ Greater probability that delivered system
will match users' requirements

@ Can more easily manage user expectations

® “Homes in” on desired outcome
— Outcomes are often moving targets

© LogOn Technology Transfer 1996 45

Impact on Deliverables

@ lterative Lifecycle e Conventional
— Incremental delivery Lifecycle
— Step-wise refinement — Big-bang approach
to final system — All or nothing
— Mitigate risk at each — Highrisk
increment

© LogOn Technology Transfer 1996 46

Ilterations and Increments

® |teration
— One pass around the ADB loop

— 2to 5iterations generally constitute an
increment

— Not amilestone

® | ncrement

— A deliverable which is a useable piece of
functionality

— Increments are milestones

© LogOn Technology Transfer 1996

47

Summary: Axioms for the
OO Lifecycle

® Know your purpose

® “Test your theories against reality at the
earliest possible opportunity”

® Monitor your goals, and modify your
actions to achieve those goals

® Actions affect outcomes

© LogOn Technology Transfer 1996

48

Team Building for OO Projects

Managing OO Projects Part 5

© LogOn Technology Transfer 1996 49

How not to organise Z ¢
your team... (,‘i ARKIM ‘.\5,_-\:\."«?

© LogOn Tech

OO Learning Curves

@ Programmer
— 1 month to learn C++ language syntax
— 6 to 9 months to become proficient

® Analysts/Designers
— 12 to 18 months to become proficient
— OO Designis hard
— No substitute for experience

© LogOn Technology Transfer 1996 51

How to Kick-Start an OO
Project

® Mentoring!
® Seed project with experienced people
@ External/internal consultants at key stages
— Planning
— Project start up

— Regular reviews
e both design and code
— Post-project review

© LogOn Technology Transfer 1996 52

Team Structure: Sub-teams

Architecture
Team
I
Analysis
Team
I
Design Tiger
Team Team
I
I mplementation Deployment
Team Team

© LogOn Technology Transfer 1996 53

Staffing

O Architecture 10%

U Abstractionists
30%

@ Application
engineers 50%

O Supplemental
10%

© LogOn Technology Transfer 1996 54

Staffing Profiles

Programmers

Numbers
>
=)
D

<
4
O
8.

«Q
>
@
(7]

Time

© LogOn Technology Transfer 1996 55

Team Structure

Architect

Abstractionist Abstractionist

!_k_\ | |

Programmer

© LogOn Technology Transfer 1996 56

Roles

® Architect

— System architecture and vision
® Abstractionist

— Micro-architectures

— One Abstractionist per class category
@ Programmer

— Implementing abstractions

© LogOn Technology Transfer 1996 57

Architect: Responsibilities

® System Architecture

® Assess technical risks

@ Define content of successive iterations
— Help in planning

@ Consultancy

® Marketing
— Future product definition

© LogOn Technology Transfer 1996 58

Architect: Skills

® Experience

— Problem domain and general
software engineering

® Vision

® Leadership

@ Communication

® Proactive and goal-oriented
® Risk taker

© LogOn Technology Transfer 1996 59

Myth of the replaceable
programmer

@ Some Project Managers view programmers
as the “lowest form of life”. They are just
replaceable parts

® Thisignores the fact that a good
programmer may be up to 10 times more
productive than a bad programmer

® Good programmers are very valuable and
need to be encouraged and rewarded

© LogOn Technology Transfer 1996 60

OO as an Amplifier

® Object orientation acts like an amplifier - it
makes the best programmers much better,
and the worse programmers much worse!

® The sameistrue for Analyst/Designers!

© LogOn Technology Transfer 1996 61

Case Study: Team Building

® A company took a group of non OO
programmers and over a period of one
month trained them in C++ and an OO
methodology. They then launched them
straight into a full-blown OO project.
Naturally the project failed badly. How did
this happen? Management did not
understand that OT is different to
conventional software development.

© LogOn Technology Transfer 1996 62

Management Strategies for
Reuse (Introduction)

Managing OO Projects Part 6

© LogOn Technology Transfer 1996 63

Reuse Myths...

® We are doing OO therefore we get reuse
® Reuseisfree

® \We don’'t need to organise for reuse

® A Library Tool will give us reuse

® All the programmers put reusable code in a
shared LAN directory (BPS strategy)

© LogOn Technology Transfer 1996 64

Reuse Is a cultural issue

@ Y our project/organisation must decide
whether it is serious about reuse or not
® If you want reuse you must make it a
deliverable
— Schedule for reuse
— Organise the team for reuse
— Create new roles

© LogOn Technology Transfer 1996 65

Types of reuse

® Reuse of Architecture

® Reuse of Analysis

® Reuse of Patterns

® Reuse of Designs

® Reuse of Documentation

® Reuse of Code
— N.B. Cut and Pasteis NOT reuse

© LogOn Technology Transfer 1996 66

Managing reuse

@ Building with reuse

— Reuse existing components
o Class libraries

— Increases productivity
@ Building for reuse
— Creating libraries of new reusable components
— Need new roles and responsibilities
— Initial decrease in productivity

© LogOn Technology Transfer 1996 67

Building for reuse

@ Creating reusable components is expensive
@ Productisation
— Quality
e Testing
— Completeness
— Documentation
e Example programs
— Support

e Service level agreement
© LogOn Technology Transfer 1996 68

Reusable components cost
more
® Need to put in extra effort to make the
component generic

@ Don’'t know how or where the component
will be used - needs to be more complete

® As component may impact important
projects it needs thorough testing

® Must be well documented in order to be
reusable

© LogOn Technology Transfer 1996 69

Creating reusable
components: Staffing

® Requires best and most creative people

® They must have a clear mandate to create
the components

@ Should be well rewarded as they can have a
major impact on the project

@ Staff for the maintenance phase

@ Staff for support

© LogOn Technology Transfer 1996 70

Summary

® Managing an OO project is significantly
different to managing a conventional project

@ Understanding OT and understanding the
different management strategies required
for the OO project will lead to success

© LogOn Technology Transfer 1996 71

Bibliography

® [Booch 1996] Booch, G. Object Solutions Managing the Object-Oriented Project, Addison-Wesley
1996, ISBN 0-8053-0594-7

® [Meyer 1995] Meyer, B. Object Success, Prentice Hall 1995, ISBN 0-13-192833-3

® [DeMarco 1982] DeMarco, T. Controlling Software Projects: Management, Measurement and
Estimation, Y ourdon Press, Edgewood Cliffs, NJ 1982

® [Booch 1994] Booch, G. Object Oriented Analysis and Design with Applications (second edition),
Benjamin/Cummings 1994, ISBN 0-8053-5340-2

® [Wysocki 1995] Wysocki, R. Effective Project Management, Wiley 1995, ISBN 0-471-11521-5

® [Lorenz 1994] Lorenz, L. Kidd, J. Object Oriented Software Metrics, Prentice Hall 1994, ISBN 0-13-
179292-X

® [Gamma 1995] Gamma, E. Design Patterns Elements of Reusable Object-Oriented Software,
Addison-Wesley 1994, ISBN 0-201-63361-2

® [Brooks 1995] Brooks, P. The Mythical man-Month, Addison-Wesley 1995, ISBN 0-201-83595-9
® [Alexander 1977] Alexander, C. A Pattern Language, Oxford University Press, 1977

® [Parnas 1986] Parnas, D. A Rational Design Process: How and Why to Fake It, |EEE Transactions on
Software Engineering vol. SE-12(2) 1986

® [Gilb1988] Gilb, T. Principles of Software Engineering Management, Addison-Wesley, 1988

© LogOn Technology Transfer 1996 72

