
© City University, School of Informatics, Object-Oriented Analysis & Design 6-1

Last week, we have discussed the development of a class hierarchy that reflects
constraints imposed by the implementation environment. The class diagram,
therefore, has to be adjusted to take the programming language, the target
operating system(s), the underlying database management system, the user
interface management system, the available integration mechanism(s) and the
development process into account.
We then indicated how sequence diagrams are used in order to design the
control flow and the ordering of messages that are exchanged between objects
in order to invoke operations specified in other classes. The sequence diagrams
were then used to elaborate the class diagram with operations that were not
existing before.
So far, we have only focussed on the static export interface of classes. We have
not considered the operations that are internal to the class nor have we
addressed the behaviour of instances of the class in response to the receipt of
messages. Very often certain orders have to be enforced in order for an object to
behave properly. Sequence diagrams represent particular orders for certain
scenarios. These orders now need to be specified at the class level. A file, for
instance, has to be opened before it can be accessed or modified and only if it is
closed at the end will the changes be properly stored.
We are going to take these considerations into account and model the states
that classes can be in. The question that we aim to answer in this lecture is,
therefore: How can we model the complex dynamic behaviour internal to
classes?

OOAD Design 2 6. 1

Lecture 6

Object-Oriented Software Engineering:
Design Model - 2

Dr Neil Maiden
Dr Stephen Morris

Dr Wolfgang Emmerich

School of Informatics
City University

© City University, School of Informatics, Object-Oriented Analysis & Design 6-2

After a short indication where we are on our road map, we will discuss how
complex behavioural specifications can get. We will have to keep this in mind
when we devise solutions to the problem of specifying the class behaviour.
A technique for behavioural specification that has been around for very long are
finite state machines. Finite state machines have been used for language
specification (regular languages) and they are deployed for that purpose in every
compiler. While they are fully appropriate for machine understanding they do not
properly cope with abstraction and tend to get very complex.
Finite state machines are a mathematical concept and they have a graphical as
well as a tabular notation. State transition diagrams depict finite state machines
in a graphical form while state transition matrixes are a tabular representation.
David Harel has investigated the reduction of this complexity and has come up
with the concept of state charts [Hare82]. Any finite state machine can be
represented as a state chart that is considerably less complex than a state
transition diagram.
The Unified Modelling Language provides language mechanisms for state
charts. In UML Harel's state charts are referred to as state diagrams. tate charts
have the same expressive power as finite state machine a more concise for finite
state machines that is much more concise. We will spend most of this week's
lecture on the definition of these state diagrams and discuss the pragmatics
involved in their application.
OOSE incorporates a particular variant of state charts called ‘state transition
graphs’, aimed in particular at aiding the transition from design to code.

OOAD Design 2 6. 2

LECTURE OVERVIEW

• Tackling complexity of behaviour

• Finite state machines

• State transition diagrams

• State transition matrices

• UML state diagrams

• Role in OOSE

© City University, School of Informatics, Object-Oriented Analysis & Design 6-3

OOAD Design 2 6. 3

O
O

SE
 M

od
el

s
U

M
L

R
ep

re
se

nt
at

io
ns

S
eq

ue
nc

e
D

ia
gr

am

S
ta

te

D
ia

gr
am

C
la

ss
di

ag
ra

m

+
pa

ck
ag

es

C
la

ss
di

ag
ra

m

fir
st

 d
ra

ftU
S

E
 C

A
S

E

M
O

D
E

L

A
na

ly
si

s
m

od
el

S
eq

ue
nc

e
di

ag
ra

m

S
ta

te

di
ag

ra
m

D
es

ig
n

m
od

el

U
se

 c
as

e
m

od
el

R
eq

ui
re

m
en

ts
 m

od
el

pr
ob

le
m

do

m
ai

n
ob

je
ct

 li
st

U
se

 c
as

e
m

od
el

+

de
sc

ri
pt

io
ns

ob
je

ct
 r

ol
es

 a
nd

re
sp

on
si

bi
lit

ie
s

C
LA

S
S

D

IA
G

R
A

M

R
eq

ui
re

m
en

ts
 s

pe
ci

fic
at

io
ns

op
e

ra
tio

ns
se

q
ue

nc
e

op
er

at
io

n
st

at
es in

te
rf

ac
e

de
fin

iti
on

 1

in
te

rf
ac

e
de

fin
iti

on
 2

cl
as

se
s

at
tr

ib
ut

es
as

so
ci

at
io

ns

cl
as

 s
es

us
e

ca
se

s

'a
na

ly
si

s
ob

je
ct

s'

U
se

 c
as

e
m

od
el

Last week, we have discussed the notion of sequence diagrams and indicated
how they are derived from class diagrams and use case model descriptions. The
sequence diagrams had already an influence on the class diagram and we have
seen how they are used to find the need of operations that we had not seen
before.
During the course of this week's lecture we are going to introduce state
diagrams. The purpose of these state diagrams is to determine the relevant
internal states that objects that are instances of particular classes can have, the
transitions that are allowed between these states and the events that cause the
transitions to happen. Hence we will produce a state diagram for each class
identified in the class diagram.
The modelling of these states might again lead to modifications of the class
diagram. While the sequence diagrams led to the introduction of new operations
that are publicly available from a class and therefore contained in the (export)
interface of the class, state diagrams will most likely identify operations that are
internal to a class and that will be used during the implementation of the
exported operations. State diagrams will also allow us to carefully re-consider the
definition of attributes as attributes have to be available to reflect the definition of
the states that are identified for a class in the state diagram of that class.

© City University, School of Informatics, Object-Oriented Analysis & Design 6-4

The elements of the design that we have considered already are :
a) the set of sequence diagrams, each representing the temporal

interaction of all the objects in a single scenario, i.e an instance of a
particular use case, and,

b) the elaborations made to the class diagram, in the form of operations
derived from the sequenced diagrams and incorporated into the
interface of each class.

In preparing the next steps, we need to consider both the ‘system in use’ (as
represented in the various sequence diagrams) and the ‘objects in the system’
and how each will evolve in response to external stimuli.
State diagrams (the subject of the this lecture) provide the essential means of
describing the dynamic behaviour of a class, via the temporal evolution of an
object in response to interactions with other objects inside or outside the system.
The state diagrams are a mathematical well defined language. They are based
on the concept of finite state machines. Hence, we are going to introduce this
concept first...

OOAD Design 2 6. 4

Design elements already considered

Design outputs so far :

• set of sequence diagrams [diagram x use case]

• elaborated class diagram

Next step: Change perspective from `outside´ to `inside´ of class

• Need for further understanding
of each class

• Development of state diagrams
to define class behaviour

© City University, School of Informatics, Object-Oriented Analysis & Design 6-5

This example and other material for this lecture have been taken from [Davis90].
The problem is that with the specification techniques that we have seen so far
we cannot unambigously specify the behaviour of the system. Scenarios are not
suitable as we might have to include a very high number of scenarios in order to
completely describe the system.
Such questions often arise in dynamic or reactive systems in which input data
continues to arrive during processing to effect the program’s outcome, so-called
‘real-time’ systems.
Moreover, use cases are described in natural language (usually English in this
country) and the use of a natural language often leaves room for different
interpretations. This is particularly inappropropriate in situations where the
behaviour of the system must be specified very precisely (think of the bulbs and
buttons as part of an aircraft control panel). In these, so called safety-critical
systems, unprecisely specified behaviour risks human lifes.
What means are their for specifying and representing behaviour precisely?

OOAD Design 2 6. 5

TACKLING COMPLEXITY

A system containing four buttons (B1 - B4) and two lights (L1 - L2)

10. Since the last powering on, if B2 has been pushed more often than B3, then
L1 shall be lit.

11. Since the last powering on, if B2 has not been pushed more often than B3,
then L2 shall be lit.

12. At no time shall more than one light be lit.
13. If either light bulb burns out, the other bulb shall flash on and off in 2-second

increments regardless of the number of B2 and B3 presses. This flashing
shall cease when B4 is pressed and restart when B1 is pressed. When the
malfunctioning bulb is replaced, the bulb shall cease to flash, and the system
shall return to its normal operation.

What is normal operation, if we don’t know whether the system
records B2 and B3 presses while a bulb is broken ?

© City University, School of Informatics, Object-Oriented Analysis & Design 6-6

Both use cases and sequence diagrams (called interaction diagrams in OOSE)
are concerned with the system in use. They display the flow of messages
according to different scenarios, potentially involving a number of objects.
UML also provides a ‘collaboration diagram’ which shows interaction between a
set of objects as nodes in a graph, thus emphasizing relationships rather than
temporal flow of behaviour shown in the sequence diagram. This has not been
included because firstly it has no counterpart in OOSE and secondly the purpose
of collaboration diagrams can equally well be met through sequence diagrams.
State diagrams come in various forms and provide powerful tools for the design
of the behaviour in complex systems.
The concept of the ‘finite state machine’ underlies all state diagrams and
provides the theoretical means of defining the state of a system and its reactions
to new stimuli.

OOAD Design 2 6. 6

SPECIFYING COMPLEX BEHAVIOURS

Need to specify formally behaviour of :

• system in use
• objects in system

OOSE offers techniques
• use case diagrams, interaction diagram,
• state transition diagram

UML provides notations
• use case model, sequence diagram,
• collaboration diagram, state diagram

State diagrams provide essential means of
showing how a class of objects evolves
in response to external stimuli

© City University, School of Informatics, Object-Oriented Analysis & Design 6-7

A finite state machine is a hypthetical machine which allows, for example, the
modelling of the behaviour of this class in the context of this lecture.
The lecturer provides a series of inputs, causing actions of some kind of action in
the class, which then generates an output and, if the lecture is effective, causes
a permanent change in its state.
Let us know consider the mathematical definition of finite state machines...

OOAD Design 2 6. 7

MODELLING OF STATES AND TRANSITIONS

LECTURE

stimulus
(input)

stimulus
(output)

State of
CLASS

action

© City University, School of Informatics, Object-Oriented Analysis & Design 6-8

A finite state machine (FSM) includes a finite set of states (S) one particular
element of that set is a starting state (s) and a subset F of S is designated as the
set of ending states. Finite state machines in general work on alphabets of
characters. For the purpose of this lecture, we can consider these alphabets to
denote a finite set of events. The core of any FSM then is the transition function
that defines for a pair consisting of a state and an event the successor state.
For the defnition of the semantics of an FSM machine, we need the concept of a
configuration, which denotes the current state and a sequence of events that
remain to be processed.
The relation Γ gives the semantics to the FSM. It defines a single step of
execution. If the FSM is currently in state q and event α is the next event that is
to be processed the new state will be q' if σ(q,α)=q'. The transitive closure of Γ
denotes the set of reachable states and a sequence of events is acceptable only
if the state the application of the sequence of events to the start state leads to an
ending state.
This notation for finite state machines is mathematically sound. However, it is not
an appropriate notation for humans to understand these machines. We will now
use state transition diagrams and state transition matrices as notations whose
semantics is formally defined based on finite state machines...

OOAD Design 2 6. 8

FINITE STATE MACHINES

• A finite state machine FSM is a five-tuple FSM=(S,A,σ, s, F) where

i) S, is a finite set of states
ii) A is a finite alphabet of events
iii) σ: S×A → S, the partial function determining transitions
iv) s ∈ S, a start state
v) F ⊆ S, a set of ending states

• A configuration of an FSM is an element of SxA*

• If FSM=(S,A,σ,s,F) is a finite state machine then
i) A binary relation Γ is defined on configurations by

(q,w) Γ (q',w') ⇔ ∃α∈ A : (w=αw') ∧ (σ(q,α)=q')
ii) Γ* defines the transitive closure of Γ.
iii) A sequence of events is acceptable by the finite state machine

if there is an ending state f ∈ F such that (s,w) Γ* (f,ε).

© City University, School of Informatics, Object-Oriented Analysis & Design 6-9

State transition diagrams are a direct representation of finite state machines.
States are represented as circles and labelled arrows between states denote that
the function σ is defined for the state where the arrow starts and produces the
state where the arrow leads to if the event occurs that is recognised by the label.
All ending states are denoted as a double circle and the starting state is denoted
as a circle where an open arrow head leads to (idle in the example above). Note,
that there are also special forms of finite state machines that produce an output
whenever a transition occurs. Outputs, if any, are given after the event definition
and the two are separated by a slash.
The example displays states for a telephone. Initially, the telephone is in an idle
state. If the receiver is taken off the hook a dial tone will be played. If the receiver
is replaced the telephone will become idle again. If a number is dialled of a
phone that is busy, the busy tone will be played and the only possible event is to
replace the receiver onto the hook. If an idle number is dialed the ringing tone
will be played and as soon as the other party takes the receiver off the hook the
phone connection will be established.
An alternative notation to state transition diagrams are state transition matrices...

OOAD Design 2 6. 9

STATE TRANSITION DIAGRAM

circle = state

double circle = finishing state

directed arc = potential to make transition
between the two connected states

label = input triggering transition /
 output from system

busy

dial
tone

ringing

conn-
ected

idle
off hook/
dial tone

dial idle number/
ringing tone

dial busy number/
busy tone called party

off hook/
connected

on hook/
quiet

on hook/
quiet

STD for a
telephone

© City University, School of Informatics, Object-Oriented Analysis & Design 6-10

State transition matrices are an alternative representation for finite state
machines. In these matrices all possible states label the rows and all events that
can occur label columns. For each row, the cells identify the successor state into
which the machine transits if the event occurs that identifies the column of the
cell.
In the example, the transition from 'state' that is triggered by event 'off hook' to
state 'dial tone' is displayed as the first cell of that table.
Cells in the output column denote the output that occurs when a transition is
done to the state identified by the particular row. There is an implicit assumption
in this representation (and a weakness associated to it) in that it assumes that all
transitions leading to one state have the same output.
For the specification of the behaviour of complex systems, however, neither
state transition diagrams nor state transition matrices are appropriate...

OOAD Design 2 6. 10

STATE TRANISITION MATRIX

A matrix with :
• all possible states labelling rows
• all possible events labelling columns
• cells identify next states
• responses in separate column

STATE

EVENT
OUTPUT

idledial tone

busy

ringing

connected

on
hook

off
hook

dial
busy

dial
idle

called
party
off
hook

dial
toneidle

busy

idle

ringing

con-
nected

dial
tone

quiet

busy
tone

con-
nected

rin-
ging

© City University, School of Informatics, Object-Oriented Analysis & Design 6-11

If any realistic system is modelled with state transition diagrams these diagrams
get very complex. The reason for this complexity is that finite state machines
have exactly one active state and that state has to be explicitly modelled in the
respective state transition diagram.
In reality, however, states can be influenced by a number of different factors. A
telephone receiver can be either idle or it can be active. If it is active, it can be
playing a busy tone, a ringing tone or a dial tone. State transition diagrams do
not properly support the different levels of abstractions involved in this example.
This leads to an exponential growth in the number of states and transitions
needed and makes the resulting diagrams unmanageable.
David Harel had to formally define the behaviour of a fighter aircraft component
(on behalf of the Isralian air force). He found that engineers and pilots could
easily understand state transition diagrams and searched for a way to cope with
their complexity rather than introducing a completely different formalism nobody
would be familiar with. The approach he took is, in fact, based on the same that
we suggested in the first lecture: abstraction.
In the state charts that he suggested, he introduced facilities for considering
states at different levels of abstraction. He then introduced different notions for
composing abstract states from more concrete states which might have internal
state transitions embedded. These internal state transitions, however, would be
hidden at the more abstract level; hence he applied the principle of information
hiding also to modelling of states.
The UML includes state diagrams as a notation for state charts. State diagrams
will be used to model the behaviour of objects and in particular the state
transitions of objects in response to events, internal or external to the object.

OOAD Design 2 6. 11

MOTIVATION OF STATE DIAGRAMS

Realistic systems modelled with STDs get very complex.
Reasons of complexity:
• System as modelled by STD can only be in one state

• State is influenced by many factors
• All factors need to be considered leading to exponential proliferation of

states and transitions

Harel's State Charts: concepts to make complexity manageable:
• Composition of states
• Concurrent substates
• Conditional transitions
• History states

© City University, School of Informatics, Object-Oriented Analysis & Design 6-12

The representation of state charts in state diagrams takes the form of a
collection of nodes (the states) and directed edges (the transitions).
A ‘scenario’, being an instance of a use case and an instance of the execution of
a system, illustrates, but ultimately cannot define, behaviour. It is a ‘slice’ of
system behaviour across state diagrams from multiple classes. The state
diagram provides the means for describing the temporal evolutions of an object
of a given class in response to interactions with other objects. Hence, the state
diagram subsumes the different sequence diagrams that model scenarios from
an object-level perspective.
Each diagram is associated with one class, or with some higher level state. Only
a minority of classes undergo significant state changes necessitating diagrams.
The UML documention acknowledges the contribution of Harel. His important
extensions to state transition diagrams provide a useful basis for examining the
main elements of state diagram which can be modelled using the UML.

OOAD Design 2 6. 12

STATE DIAGRAMS

A state diagram is
• a directed graph of states

connected by transitions

• a formal specification
of the behaviour of a class

UML incorporates extensions
to basic STDs made by Harel :
• decomposition of states
• default entry states
• concurrent states
• conditions on transitions

© City University, School of Informatics, Object-Oriented Analysis & Design 6-13

The basic concepts of state charts are applicable at all levels of abstraction,
althouth state diagrams in UML (and the related notation in OOSE) are
principally intended to describe the behaviour of objects at a type-level of
abstraction, i.e. in classes (or design blocks in OOSE).
In defining an event, the emphasis is on its atomicity; it is a non-interruptible,
one-way transmission of information from one object to another, proceeding
independently (asynchronous).
The current state of an object is determined by the event that triggered its last
transition and lasts until the next significant event.
A transition may both a) cause a change of state and b) invoke object
operations. External transitions do a) and possibly b); internal transitions do b)
but not a).
UML provides a multi-featured graphical representation for these concepts as
detailed on the next slide...

OOAD Design 2 6. 13

STATE DIAGRAM CONCEPTS

Three fundamental ideas :

event - an atomic occurrence at a point in time

state - a period in time during which an
object is waiting for an event to occur

transition - a response to an external event
received by an object in a certain state

state A state B
event
causing

transition

© City University, School of Informatics, Object-Oriented Analysis & Design 6-14

Each state appears as a rounded box with the name of the state and optional
state variables and triggered operations.
A state variable is valid while the object is in the state and can be accessed and
modified by operations within the state.
Operations, called ‘actions’, must be non-interruptible. They can be implemented
as private methods (a method is the implementation of an operation in an object-
oriented programming language) on the controlling object. Operations can be
preceded by the pseudo-event names, ‘entry’ and ‘exit’, effectively making the
state into a self-contained module.
The transition notation remains the same (directed arc), but the label has a more
complicated syntax, of which the event name, with any associated parameters, is
the principal component. Operations, possibly of other objects, can also be
triggered by transitions and are included as the final component of the label.
Other components are discussed below.
States can also be composed of other states. For these composite states the
composition is drawn within the node representing the state. An example of
these composite states is shown on the next slide...

OOAD Design 2 6. 14

BASIC UML NOTATIONS

Typing Password

password: String = “”

entry/ set echo invisible
exit/ set echo normal

NAME

state variables
{optional}

triggered operations
{optional}

NAME
eventName (arguments)
[condition]
^target.sendEvent
(arguments)
/ operations (arguments)
{all optional}

type string
[valid]
/ logged on

Logged on

directory: home

entry/ display message

© City University, School of Informatics, Object-Oriented Analysis & Design 6-15

This slide displays the first example of the application of abstraction in state
diagrams. At a high level of abstraction, there are only two states in the
telephone, idle and active and two transitions between them. If a user lifts the
receiver the telephone transits from idle to active and if the user replaces the
receiver the system transits from active to idle.
At a more concrete level of abstraction, however, an active telephone can be
active in different ways. These are displayed in the refinement of state active.
The receiver can play the dial tone and then the user can start dialing. After that,
the telephone either plays the tone for busy or it tells the user that the phone of
the desired partner is ringing and if the partner responds the connection will be
established and the parties can talk to each other.
The meaning of the composition of a state in this way is that the state 'active' is
in exactly one of its substates.
A substate inherits the properties of its composite state, variables and
transitions. More precisely, outgoing transitions are inherited. This means that if
the caller replaces the receiver the telephone will become 'idle', irregardless in
which active state the telephone is.
Note that state composition is the first way how Harel managed to reduce
complexity. To clarify this and to explain the semantics of composition, the next
slide displays a state transition diagram with the same semantics.

OOAD Design 2 6. 15

COMPOSITE STATES

A composite state is composed of substates.

Dialling

Connecting

Active

DialTone

RingingTalking

Idle

lift receiver/
get dial tone

caller hangs up
/disconnect

Busy

© City University, School of Informatics, Object-Oriented Analysis & Design 6-16

For reasons of simplicity, we have omitted the definitions of start and ending
states in this diagram.
Note that a number of additional transitions are necessary in the state transition
diagram. These transition lead from each active state to the idle state. They were
subsumed in the state chart under a single transition leading from the composite
state 'active' to the state 'idle'.
Hence composite states manage to reduce the number of transitions that are
needed to model the behaviour of a class.
The next slide displays that we are able to hide the complexity of a composite
state completely...

OOAD Design 2 6. 16

EQUIVALENT STD

Dialling

Connecting

DialTone

RingingTalking

Idle

lift receiver/
get dial tone

caller hangs up/disconnect Busy

caller hangs up
/disconnect

caller
 hangs

 up

/disco
nnect

caller hangs up

/disconnect

caller hangs up
/disconnect

© City University, School of Informatics, Object-Oriented Analysis & Design 6-17

Besides the notation we have used so far for composite states, there is another
notation where we omit the substates of the composite state completely. The
composite states are indicated just as if they were regular states and their
definition is given in a separate diagram.
This diagram needs to identify the substate that becomes active if the composite
is activated. This is done by transition from a pseudo entry state that is
represented as a filled circle and represents the activation of the composite
state.
We can use a transition to another pseudo state that represents the deactivation
of the composite state and is represented by a bullseye. If we omit the bullseye,
the state transitions defined for the composite state are inherited by all
substates.
On termination the composite state is shown sending an event to its higher-level
self. In the ‘send event’ notation the ‘target’ is an expression designating a set of
objects, which is not require in this example because it is fixed and well known.
The composite states we have just introduced enable us to reduce the number of
transitions needed in a state chart as we can define transitions between
composite states that are then inherited by all its substates. There is, however,
further potential for reducing complexity if we can manage to reduce the number
of states needed. As the next slide shows, concurrent states achieve that...

OOAD Design 2 6. 17

COMPOSITE STATES

• Depiction of substates can be omitted

• Default starting state begins at a circle
• Termination appears as a bullseye
• An event can be generated in another class using

send event notation ^target.sendEvent (arguments)

Dialling Connecteddialednumber(num)Dial digit(n)Dial tone

^dialednumber(number)

Dialling

PartialDial

Dial digit(n)

© City University, School of Informatics, Object-Oriented Analysis & Design 6-18

- The UML documentation suggests the following model of concurrency :
An atomic object can be thought of as a finite state machine with a

queue for incoming events. New events go on the queue until the object is free
to deal with them. Composite concurrent objects contain several atomic objects
as parts, each of which maintains its own queue and thread of control.

> A detailed view of a telephone diagram illustrates some other features of the
UML notation

OOAD Design 2 6. 18

CONCURRENT SUBSTATES

When a state has multiple threads of control,
each concurrent substate appears as a separate region

Taking OOAD course

Attending
lectures

COMPLETE

IN PROGRESS

Course
Work

Doing
tutorials

on time

done

finished

© City University, School of Informatics, Object-Oriented Analysis & Design 6-19

- A guard condition is a Boolean expression. If the event occurs and the
expression is true, then the transition occurs, otherwise not. As in this example,
two transitions can have the same name if different conditions are attached.

> The last of Harel’s expansions of the original concept involved concurrency.

OOAD Design 2 6. 19

CONDITIONS ON TRANSITIONS

An optional guard [condition]
may be attached to transitions
after the event name

dial digit(n)
[incomplete]

dial digit(n)
[valid]
/connect

Dialling

Connecting

Active

DialTone

RingingTalking

Idle

lift receiver/
get dial tone

caller hangs up
/disconnect

Busy

dial
digit(n)

© City University, School of Informatics, Object-Oriented Analysis & Design 6-20

- ‘do/play dial tone’ denotes an ‘activity’.
- ‘15 secs’ is an ‘elapsed time event’.

OOAD Design 2 6. 20

STATE DIAGRAM FOR TELEPHONE

Dialling

Connecting

Timeout
do/playmessage

Active
phone #

DialTone
do/play dial tone

Invalid
do/play message

Busy
do/play busy

tone

Ringing
do/play ringing

tone

Pinned

Talking

Idle

15 secs

15 secs

dial digit(n)
[incomplete]

dial digit(n)

dial digit(n)
[invalid]

dial digit(n)
[valid]
/connect

connectedbusy

lift receiver/
get dial tone

caller
hangs up

/disconnect
caller
answer

s
caller
hangs up

© City University, School of Informatics, Object-Oriented Analysis & Design 6-21

OOAD Design 2 6. 21

STATE DIAGRAM FOR RECYCLING MACHINE

• One state diagram for each class contained in class diagram
• Example for Deposit Item Receiver

Accepting Items

Receipt printed

putItem ^rcpt.insertItem

^rcpt.printOn

delete

DepositItemReceiverActive

Ostream
Computing

printReceipt

Logo
Printing

ReceiptPrinting

Preparing

Ostream
Printing

^prn.print

^prn.print

© City University, School of Informatics, Object-Oriented Analysis & Design 6-22

- An activity is an ongoing operation within a state that takes time to complete. It
can be interrupted by an event that causes a state transition. An event causing
exit forces its termination. An activity is indicated by a pseudo-event named ‘do’.
- In the case of the elapsed time event the sender is the “environment” rather
than any individual object.
- The ‘history state’ (indicated by an ‘H’ within a circle) provides the means for a
state to “remember” its substate when exited and to be able to resume the same
substate on reentry into the state.

OOAD Design 2 6. 22

ADVANCED CONCEPTS

Activity: an ongoing operation within a state

Elapsed time event: an event occuring
a given time after entry into state

History state: a state resumed upon reentry

do/activity C

C

A2

A1A

H

X secs

Y se
cs

© City University, School of Informatics, Object-Oriented Analysis & Design 6-23

- During the block design stage of OOSE Jacobson recommends the
examination of the states and state transitions of classes as a means of
increasing understanding without going down to the actual code level.
- Changes of state are important in those objects whose response to stimuli
depend not only on the stimuli but also upon their state on receipt. Such objects
are called ‘state controlled’ and are more likely to have been modelled as the
‘control objects’. On the other hand the ‘stimulus-controlled objects’ will perform
the same operation independent of state when a particular stimulus is received,
e.g. the entity object ‘Deposit Item’.
- Jacobson does not consider the actual technique used as critical, so long as it
meets the objective of helping the abstraction of code.
- This implementation objective affects the characteristics to be described, the
stimuli received and the reactions that occur on receipt, which in the notation
used in OOSE employ a variety of graphic symbols far richer than those in the
UML equivalent.

OOAD Design 2 6. 23

Role of state transitions in OOSE

• To increase understanding of
design blocks (classes)

• To model the ‘state-controlled’ objects,
rather than the ‘stimulus-controlled’

• To help in the abstraction of the actual code

• To describe stimuli received and
what happens consequently

© City University, School of Informatics, Object-Oriented Analysis & Design 6-24

- These symbols are connected to describe the ‘computation state’ of an object,
which describes how far we have come in the execution, as well as the potential
future execution. Under lying these ‘computational states’ are ‘internal states’
that contain the information we use to move between the computational states.
Under lying this distinction is a definition of a state as the union of all values
describing the present situation, from which it is possible to fully recreate this
situation. This complements rather that contradicts the position taken up in the
UML where a state represents a period of time waiting for an event to occur, with
associated state variables.

OOAD Design 2 6. 24

STG notation in OOSE

Start symbol

State

Send message

Receive message

Return from message

Send signal

Receive signal

Perform a task

Decision

Destroy object

Label

Symbols connected to show the
computational state of an object

© City University, School of Informatics, Object-Oriented Analysis & Design 6-25

- For comparative purposes here is a part of state transition graph for a stack, a
linear structure on which to store elements, sometimes called a LIFO (last-in-
first-out) list. It is based on Jacobson’s Figure 8.24
- Note that the state ‘loaded’ appears twice, making it less easy to identify all the
possible transitions from this state, and that the state marked ‘- -’ is the previous
state, which is not specified.

OOAD Design 2 6. 25

States of a stack
represented as an OOSE
state transition graph
(partial view)

stack

push (e)

error

return(e)

e:=top
delete top

pop

loaded

loaded

- -

full

© City University, School of Informatics, Object-Oriented Analysis & Design 6-26

- In the UML the presentation is graphically more succinct, but it is debatable
whether it provides a better step towards detailed code.
- As it stands this diagram (like the previous representation of this example)
might represent either a superstate with substates, or a composite state; it
requires the addition of a termination transition (or transitions).

OOAD Design 2 6. 26

Stack as State Diagram in UML

pop
^error

Loadedempty

create stack

push
/store

push
[¬full]
/store

pop
[empty]
^return
/delete

pop
[¬empty]
^return
/delete

push
 [full]

 /store

full

push
^error

pop
^return

 /delete

© City University, School of Informatics, Object-Oriented Analysis & Design 6-27

- At the design stage in all o-o methods it is essential to understand the
behaviour of class objects, particularly if they are ‘state controlled’. This
understanding, and the design that it facilitates, depends on definition of all the
potential states of an object belonging to a particular class and of the transitions
that may take between these states. Representations of states can vary
because, ultimately, there is not a fixed definition of what constitutes a state. The
notations used bring the design closer to the detailed code by fixing all the
events to which a class must respond.

OOAD Design 2 6. 27

CONCLUSIONS

Modelling of class behaviour :

• is an essential part of design

• requires an understanding of states
and state transitions

• can be accomplished with different
notations

• can be the final step before
detailed coding

© City University, School of Informatics, Object-Oriented Analysis & Design 6-28

- Additional material for this lecture has come from
Davis, A.M. Software requirements analysis and specification, London: Prentice
Hall International Inc. 1990, which contains a useful review of many techniques.

- This lecture concludes examination of the specifics of design. At the beginning
of the next there will be a review of the process so far, prior to considering the
link to code.

OOAD Design 2 6. 28

SUMMARY

• Representations of complex behaviour
as diagrams, matrices and tables

• FSMs as formal definitions of states
and state transitions

• Harel-style state diagrams in UML

• Specific purpose in OOSE
and alternative notation

