
© City University, School of Informatics, Object-Oriented Analysis & Design 5-1

Last week, we have discussed the derivation of an hierarchical class diagram
from use cases and a list of domain objects that were produced during
requirements modelling. The class diagram produced during analysis gives a
logical perspective on objects in the problem domain. The classes were directly
derived from problem domain objects and use cases. Moreover, we identified
different roles for the classes. Interface classes were identified that take input
from actors, be they humans or other programs. Entity classes model how state
information is represented for the various domain objects and control classes
were included as glue between interface and entity classes.
The class diagram produced during the analysis stage, however, neglects
important properties, for instance of the programming language that is used for
implementing the classes. Constraints introduced on classes by the
programming language and other influencing factors, therefore, need to be taken
into consideration in order to compose an executable system.
Moreover, the analysis class diagram is still rather abstract on operations. It
identifies associations between clases, but does not indicate which operations
use these associations in order to stimulate execution of other classes'
operations. It also does not give indications on the use of other operations in the
algorithms that define how operations are implemented. Without formulating
these algorithms, we cannot be certain that the class diagram is complete, i.e.
includes all necessary operations.
Hence the question that we are going to answer in this lecture is: How is the
result of the analysis class diagram transformed into an implementable class
diagram and how do we specify dependencies between operations.

OOAD Design 1 5. 1

Lecture 5

Object-Oriented Software
Engineering:

Design Model - 1

Dr Neil Maiden
Dr Stephen Morris

Dr Wolfgang Emmerich

School of Informatics
City University

© City University, School of Informatics, Object-Oriented Analysis & Design 5-2

In this lecture, we are again following the model-based approach of Jacobson,
though we aim at giving a more specific step-by-step approach, therefore we will
be showing again the ‘road map’ relating the two views.
The primary purpose of design stage is to translate and complete the ‘logical’
model provided by the analysis stage into a more concrete level of abstraction,
which reflects the implementation environment and can be implemented directly
in code.
During the design stage we use two important new representations, first the
‘sequence diagram’ showing the interaction of a set of objects in temporal order.
In OOSE this set of objects belongs, most importantly, to a particular use case.
The principal design element is the class, synonymous with a block in OOSE,
and the operations incorporated into it complete the picture of its export interface
(its outside view). In addition to the operations that were identified in the analysis
stage, operations to be included into the design class diagram are derived,
principally, from sequence diagrams.
The second new representation, the ‘state diagram’, describes the temporal
evoluation of an object of a given class in response to other objects inside or
outside the system. This representation will be the principal subject of the
second lecture on design that we will give next week.

OOAD Design 1 5. 2

LECTURE OVERVIEW

• Relationship between analysis and design

• Stages of design

• Impact of implementation environment

• Definition of sequence diagrams

• Sequence diagrams for use cases

• Creation of class interfaces

• Introduction to Design 2

© City University, School of Informatics, Object-Oriented Analysis & Design 5-3

This slide shows our ‘road map’ again in order to highlight the aspects we
discuss in this lecture and indicate how they fit into the overall object-oriented
development process.
Last week, we have shown how a class diagram is derived that is hierarchically
organised into nested packages. We have also indicated how the use case
description that was produced in the requirements stage is elaborated and
formulated in terms of domain objects and their operations. The design stage
starts from these two representations.
The broken line between analysis and design marks the essential boundary
between the conclusion of the analysis phase and the beginning of a detailed
design that takes into account the implementation environment, as defined in the
initial requirements documents (not shown).
This week we are going to introduce sequence diagrams that show for each use
case the order in which objects send messages to other objects in order to
stimulate operation executions. This exercise will reveal missing operations in
the class diagram that will be added to the design class diagram.
Let us now look at the first steps that are necessary during the design

OOAD Design 1 5. 3

O
O

S
E

 M
od

el
s

U
M

L
R

ep
re

se
nt

at
io

ns

S
eq

ue
nc

e
D

ia
gr

am

S
ta

te

D
ia

gr
am

C
la

ss
di

ag
ra

m

+
pa

ck
ag

es

C
la

ss
di

ag
ra

m

fir
st

 d
ra

ftU
S

E
 C

A
S

E

M
O

D
E

L

A
N

A
LY

S
IS

S
eq

ue
nc

e
di

ag
ra

m

S
ta

te

di
ag

ra
m

D
E

S
IG

N

U
se

 c
as

e
m

od
el

R
E

Q
U

IR
E

M
E

N
TS

pr
ob

le
m

do

m
ai

n
ob

je
ct

 li
st

U
se

 c
as

e
m

od
el

+

de
sc

ri
pt

io
ns

ob
je

ct
 r

ol
es

 a
nd

re
sp

on
si

bi
lit

ie
s

C
LA

S
S

D

IA
G

R
A

M

op
e

ra
tio

ns
se

q
ue

nc
e

op
er

at
io

n
st

at
es in

te
rf

ac
e

de
fin

iti
on

 1

in
te

rf
ac

e
de

fin
iti

on
 2

cl
as

se
s

at
tr

ib
ut

es
as

so
ci

at
io

ns

cl
as

 s
es

us
e

ca
se

s

'a
na

ly
si

s

ob
je

ct
s'

U
se

 c
as

e
m

od
el

m
od

el

m
od

el

m
od

el

© City University, School of Informatics, Object-Oriented Analysis & Design 5-4

The first step in the design stage is the identification of the implementation
environment. The influencing components of the environment are, for instance,
the target programming language, the user interface management system, class
libraries that are available for reuse, distribution infrastructures and databases
for persistent storage of entity objects.
The second design step is the translation of the analysis class diagram into a
design model class diagram. This requires revisions to make the class diagram
implementable and cohesive at architectural level. Unfortunately, we cannot
discuss this step in sufficient detail here because a full appreciation requires in-
depth understanding of object-oriented programming languages, distributed
object infrastructures, user interface construction and object databases.
Designing the flow of control involves the determtion of messages that are
passed between objects. This is done using ‘sequence diagrams’ for each use
case.
With the help of sequence diagrams we can then detect missing operations and
complete the operations defined for classes. Also the sequence diagrams enable
us to check which parameters are passed along with messages and we can
check the available operations against that. Hence, sequence diagrams enable
us to complete the outside view, the ‘export interface’ of each class.
In next lecture we will consider in detail ‘state machines’ and ‘state diagrams’,
powerful concepts in their own right, used for the behavioural design of the class.
The final product is the design class diagram (in ‘packaged’ form) which will be
the basis for direct implementation in code.
[Complete version appears as notes to final slide]

OOAD Design 1 5. 4

PRODUCING A DESIGN MODEL

Inputs

16 Identify implementation environment
17 Model initial design class diagram
18 Design control flow
19 Define class interfaces
20 Model classes state diagram
21 Finalise design class diagram

Outputs
Notations

© City University, School of Informatics, Object-Oriented Analysis & Design 5-5

The design takes its inputs not only from the immediately preceding analysis
stage, but also from the initial set of requirements specifications. These initial
documents will include basic information about the implementation environment.
The design stage heavily uses class diagrams that were introduced already. The
notation used for the class diagram in the analysis phase does not differ from the
one used for the dsign phase. The contents of the design class diagram,
however, might be considerably different from the one produced in the analysis
stage.
The design stage uses two new types of diagrams, sequence diagrams and
state diagrams. The former is introduced in this lecture and the latter will be
introduced next week. The UML provides notations for both the new types of
diagram. The sequence diagram in UML is very close to the ‘interaction digram’
in Jacobson's OOSE. The origin of the state diagram is in Rumbaugh's OMT
method and Rumbaugh himself borrowed many concepts from David Harel's
state charts [Hare87].
The most important output of the design stage will be a class diagram that is
directly implementable in an object-oriented programming language. Moreover
developers create a sequence diagram for each use case and a state diagram
for each class.
Let us now take a closer look at the relevant parts of the environment that
influence the remodelling of the class diagram...

OOAD Design 1 5. 5

DESIGN MODEL CONTENTS

Inputs:
- Requirements specifications relating to implementation environment
- Analysis model class diagram
- Use case descriptions

Notations introduced:
sequence diagram
state diagram

Outputs:
- sequence diagrams [diagram x use case]
- state charts [diagram x class]
- complete design model class diagram

© City University, School of Informatics, Object-Oriented Analysis & Design 5-6

The target operating system has an influence on the design. Some operating systems (such as
the Solaris 2.5 OS installed on CSD machines) support multi-threading, for instance, which
means that systems can use concurrent threads and nead not necessarily perform every
operation synchronously.Other OS (such as Microsoft's DOS) do not have this capability.
The programming language used for implementing the design has probably the highest influence
on the way the design is used. If the programming language does not support multiple inheritance
(e.g. Smalltalk) multiple inheritance that was used in the analysis diagram must be resolved into
single inheritance in the design class diagram. Similarly, some programming languages support
the redefinition of operation signatures (e.g. Eiffel) while others do not (e.g. C++). In general we
must make sure that the design only uses those concepts that are directly mappable to the
programming language. Even within different implementations of a programming language there
might be differences and the design should only rely on widely available and standardised
concepts of the programming language.
Some of the interface classes are used by humans and a user interface must be constructed.
This is typically done by relying on a user interface management system (e.g. X-Windows,
OSF/Motif, OpenLook, OpenStep) and the design class diagram must be adapted to the
particular UIMS that is in use.
Other interface classes represent interfaces to existing (legacy) programs and an intergration
mechanism, such as OMG/CORBA must be deployed for achieving an integration, this requires
the adaption of interface classes to the particular integration mechanism at hand.
Some objects will have attributes whose values must survive the termination of the system and
therefore be stored on persistent storage. Typically database management systems (DBMSs) are
used for that purpose. Which particular type of DBMS is used (e.g. an object database or a
relational database) has a serious impact on the way the system is designed.
It might also be the case that existing class libraries (e.g. the Standard Template Library) can be
reused and this will simplify the implementation. However, the design then has to identify classes
in these libraries and the way in which they are to be deployed.
Non functional requirements for performance, or restrictions upon it such as memory availability,
must be addressed by the design.
Finally managerial factors can affect the design process, e.g. division of labour between sites,
different competences of teams, standard procedures or the decision of a staged deployment.

OOAD Design 1 5. 6

IMPLEMENTATION ENVIRONMENT

FACTORS:

• Target operating system
• Programming language
• Deployed UIMS
• Available system integration mechanisms
• Underlying DBMS
• Available reuse libraries
• Non-functional requirements
• Development process

IMPLEMENTATION ENVIRONMENT

ANALYSIS

DESIGN

© City University, School of Informatics, Object-Oriented Analysis & Design 5-7

The accomodation of environment specific factors will lead to the addition and/or
deletion of classes as well as to classes whose generalisation relationship is
changed, that have additional operations and so on.
Although the class hierarchy might be transformed considerably, the semantics
of classes identified during the analysis stage should not be affected. Classes
ought just to be notated in a way that is more convenient to implement.
Therefore, functional changes, because they imply changes to the analysis
model, are suspect. Functional deletions are equally suspect, as are changes
that result in splitting or joining blocks for non-environmental reasons.
Besided accomodating the practicalities of the environment, the change from
analysis to design models also involves an important change of perspective as
we discuss on the next slide...

OOAD Design 1 5. 7

CHANGES FOR ENVIRONMENT

• Add, delete, or change classes
(OOSE blocks)

• Change associations , e.g.

extensions to stimuli
inheritance to call through

IMPLEMENTATION ENVIRONMENT

ANALYSIS

DESIGN

© City University, School of Informatics, Object-Oriented Analysis & Design 5-8

- Semantic differences between models are:
Analysis model
•logical model
•conceptual picture of system
•frozen at end of analysis process
Design model
•abstraction of how system will be built
•reflecting implementation environment

Initially there can be a direct translation creating a model which is very similar,
particularly having defined ‘entity’ ‘control’ and ‘interface’ classes. However, an
important shift has been made to a practical abstraction whilst retaining notation.

OOAD Design 1 5. 8

ANALYSIS AND DESIGN MODELS IN UML

ANALYSIS MODEL

logical,
conceptual,

frozen

DESIGN MODEL

a practical
abstraction

© City University, School of Informatics, Object-Oriented Analysis & Design 5-9

The transfer of the class diagram to a practical abstraction involves activities of
‘encasulation’, as defined earlier but at an architectural level. The aim of
achieving encapsulation at an architectural level is to isolate dependencies on
external components, such as a UIMS or a DBMS which are likely to change (for
instance if the same system has to be deployed for another customer).
Often packages are used to achieve encapsulation at an architectural level. In
the user interface management system example, we would aim at encapsulating
the user interface management system in a user interface package that
implements all the interface classes for a human/computer interface. If we make
sure that not a single definition of the UIMS becomes visible to the outside of
that package we only have to adapt the user interface package if we have to port
the system to another UIMS.
Also we aim at designing the classes in a way that its coupling with other
classes. The motivation for low coupling derives from the fact that with every
additional dependency a class becomes more reliable on its environment and
firstly cannot be reused without the other classes it depends on and secondly
incremental development becomes more and more difficult because the minimal
increment of the system is determined by the transitive closure of the
dependency association.
With normalisation we mean, for instance, that certain naming schemes for
attributes and operations are obeyed throughout all classes or that the interfaces
of the class are as minimal as possible.

OOAD Design 1 5. 9

OBJECTIVES CLASS DIAGRAM DESIGN

Encapusulation at architectural level
to provide cohesive packages

Normalisation of class structure
to provide implementable interfaces with low coupling

© City University, School of Informatics, Object-Oriented Analysis & Design 5-10

Having translated the analysis class model and adapted it to the environment
and begun the necessary revisions, there follows a new form of design activity.
We have convinced ourselves at the analysis stage that the set of classes we
have identified are sufficient for all the use cases. In the design stage we
undertake a similar activity, though at a more concrete level of abstraction. We
will design the control flow between different objects and convince ourselves that

•we have all the operations that are needed for the implementation of the use
cases we have identified

•that the objects can identify each other based on the associations we have
identified.

To achieve that we are going to model 'sequence diagrams' for each use case.
Such a diagram identifies objects that occur within the use case and indicates
the temporal order in which messages are exchanged between objects in order
to stimulate operation executions.

OOAD Design 1 5. 10

INITIAL STAGES OF DESIGN

? ?

?

?

Translate from
analysis model

Adapt to environment
and revise

Design
of control flow

© City University, School of Informatics, Object-Oriented Analysis & Design 5-11

The class diagram so far only indicates associations between classes, their
names, direction and multiplicity. We have an initial set of operations derived for
entity classes but we are not yet certain whether these operations are sufficient
(they almost certainly are not!)
Moreover, it is still undefined which operation traverses along which association
and it is equally undefined which operation uses other operations in order to
implement the behaviour associated with it. This is why there are a lot of
question marks attached to associations.
The construction of sequence diagrams provides the essential first step in
clarifying the messages passed between all the objects involved. At this point the
use cases again take on a central role, by providing views of exactly how parts of
the system should interact. These views are modelled in sequence diagrams.
The next slide outlines the notation provided in UML for these diagrams.

OOAD Design 1 5. 11

‘DEPOSIT’ PACKAGE IN DESIGN MODEL

<< interface >>

Customer Panel

<< interface >>

Crate slot

<< interface >>

Bottle slot

<< interface >>

Can slot

<< interface >>

Receipt button

<< entity >>
Receipt basis

<< control >>
Deposit Item

Receiver

<< entity >>
Crate

<< entity >>
Can

<< entity >>
Bottle

<< entity >>
Deposit Item

Name: String
Deposit value: ECU
Daily total: Integer

Create ()
setValue (integer)
Increment ()

Deposit

<< interface>>
Receipt printer::Printer

<< control >>
Alarm::Alarmist

?

?

?

?

??
?

© City University, School of Informatics, Object-Oriented Analysis & Design 5-12

A sequence diagram shows a set of objects and the temporal order in which
stimuli are sent between them. Stimuli can be sent within (a message that leads
to an operation execution) and between processes (a request for a remote
operation invocation) and they are not distinguished at this stage.
Sequence diagrams are a means for showing a ‘scenario’, a particular set of
interactions among objects in a single execution of the system. It is essential
because the isolated behaviours of individual objects will not give a complete
view of a complex system.
Objects appear as vertical lines. A very thin box (or a broader line) is shown
when an object has the thread of control, otherwise the single line represents
‘created but in a waiting state’.
Events are one-way transmissions of information. They correspond to the OOSE
concept of stimuli. Events are marked by a labelled horizontal arrow. Arrows may
also slope down (from left to right) when sending and receiving times are distinct
(e.g. during a remote CORBA operation request).
Normally only ‘calls’ to other objects are shown. The returns are implicit (usually
when the object ceases to be in the thread of control), but these can be shown
explicitly as leftward arrows (for instance if asynchronous communication is
assumed). It is also possible to distinguish between ‘in scope’ and ‘in control’ by
blocking in sections of the thin boxes.
Large cross ‘X’ at end of line can show destruction (usually by external
command, but in this example we have implicit self-destruction).
We now return to OOSE to see how sequence diagrams are used...

OOAD Design 1 5. 12

SEQUENCE DIAGRAM IN UML

• Shows interactions
among a set of objects
in temporal order

• Objects appear as
vertical lines

• Events marked by
labelled horizontal (or
slopped) lines

A B C

tim
e

f()

create

g()

h()

destroy

© City University, School of Informatics, Object-Oriented Analysis & Design 5-13

Sequence diagrams are specifications at the instance level. Hence we will have
to take archetypical instantiations of use cases, i.e. scenarios, and formalise
these as sequence diagrams. This will reveal very useful information that we
exploit for completing the design class diagram. Most notably it will identify
operations that have not yet been included and that therefore have to be added
to the class diagram.
We do so by first identifying the objects (i.e instances of classes identified in the
analysis class diagram) that are involved in the scenario and draw them at the
top edge of the diagram. The system border identifies stimuli that come from
outside the system (e.g. a user or another system). We will omit that border later.
This slide displays merely the ‘skeleton’ of a scenario derived from the returning
item use case that we have used as a running example. The sequence diagram
will be continued on the next slide...

OOAD Design 1 5. 13

Returning Item SEQUENCE DIAGRAM (Skeleton)

Time

System
border

class instances

ob:Deposit
item receiver

ob:Deposit
item

ob:Receipt
basis

ob:Customer
panel

© City University, School of Informatics, Object-Oriented Analysis & Design 5-14

The next stage is the identification of an algorithm that describes how the
scenario is performed. The vertical boxes are used to distribute the tasks
identified in the algorithmic specification over objects. Length and vertical
position of boxes may not be exact at this point.
The text on the left is a ‘pseudo code’ version of the operations involved in the
use case. The generation of this text is part of what Jacobson terms ‘use case
design’, i.e. the formalisation of the use case as a step towards implementable
code. This text is not part of the diagram defined in UML, but provides a useful
and non-contradictary supplement.
Next we need to identify how the different objects communicate. This is based
on stimuli...

OOAD Design 1 5. 14

Returning Item (Skeleton + Operations)

Customer presses start button
Sensors activated

DO
 New deposit item is inserted
 Measure/check if this kind of
 item is acceptable

 NoReceived:=NoReceived+1
 IF not found THEN create a
 new daily Amount:=

daily Amount+1

WHILE items are deposited

rcv:Deposit
item receiver

di:Deposit
item

rcpt:Receipt
basis

cp:Customer
panel

© City University, School of Informatics, Object-Oriented Analysis & Design 5-15

This slide displays a more complete version of a 'Returning Item' scenario that
also shows the timing of events.
We can see that the scenario is activated by a 'start()' event that is released by
the customer pressing the start button. It leads to the execution of the 'start()'
operation in the customer panel object 'cp'. That operation creates a deposit item
receiver object 'rcv' and activates the external sensors. It then waits for items to
be inserted.
A 'newitem()' event occurs from the outside whenever a customer inserts a new
deposit item into the recycling machine. This event leads to the execution of
operation 'newitem()' in 'cp'. The panel 'cp' then delegates the execution to the
deposit item receiver object 'rcv'. It checks whether the item inserted is a proper
recycling item by invoking operation exists from the deposit item object 'di'.
@@Where do rcpt and di come from??@@. If the item is known as a recyclable
object, the item is inserted into the receipt basis object 'rcpt' to make sure that a
description of the object is included if the customer wishes to obtain a receipt.
The length of the list of received items internally managed by 'rcpt' will represent
the 'noReceived'. Finally the daily amount of items returned for a particular class
of deposit items is incremented.
Next, we need to consider a number of issues in defining stimuli...

OOAD Design 1 5. 15

Returning Item (Skeleton + Operations + Stimuli)

“When the customer returns a deposit item, it is measured by the system. The
measurements are used to determine what kind of can, bottle or crate has been
deposited. If accepted, the customer total is incremented, as is the daily total
for that specific item type. If the item is not accepted, 'NOT VALID' is highlighted
on the panel.”

Customer presses start button
Sensors activated
DO
 New deposit item is inserted
 Measure/check if this kind of
 item is acceptable
 IF not found THEN create a
 new daily Amount:= daily
 Amount+1
 noReceived:=noReceived+1
WHILE items are deposited

start()
activate() create()

new
item() item()

exists ()

insertItem
(Item)

incr()

rcv:Deposit
item receiver

di:Deposit
item

rcpt:Receipt
basis

cp:Customer
panel

© City University, School of Informatics, Object-Oriented Analysis & Design 5-16

The naming of events (aka oprations) should be done with great care. The ease
of understanding of these sequence diagrams and the later maintenance of the
system very much depend on the fact that names give the reader a clear idea as
to what events/operations mean. One should try to establish and obey naming
conventions and, for instance, use the same name for similar behaviour in
different classes.
Also parameter lists should be kept as small as possible. Lengthy parameter lists
are an indication that the operation is not really atomic but rather performs many
different tasks. Then the operation should be split up into more simple
operations. Simpler operations are easier to use and the probability that they can
be reused increases.
All naming issues are associated with the needs for understanding and
reusability. Similar considerations apply to the requirement to minimise the
number of parameters asociated with particular messages.
Creation of objects is the result of specific events. The creation of an object in an
object-oriented programming language is done by sending a message to a class
(rather than an object). The class will execute a special creation operation (called
constructor), perform the initialisations specified in the constructor and return the
identification of the newly created object as a result.
Modelling of sequence diagrams should start with a scenario that reflects the
basic course of events in the use case. When that has fully been understood will
the designer be in a position to model more special and exceptional scenarios.
Another ‘Returning Item’ scenario shows some of these points...

OOAD Design 1 5. 16

DEFINING STIMULI

Issues to consider :

• name plus minimum number of parameters
• same name for similar behaviour
• creation also by stimuli

• basic case designed first
• two types :

messages inside one process

signals between processes

© City University, School of Informatics, Object-Oriented Analysis & Design 5-17

This sequence diagram originates in a returning item scenario where the
customer prints a receipt button on the customer panel. Hence 'cp' will receive a
'receipt' event. The panel will delegate the printing of the receipt to 'rcv' by
sending a 'printReceipt' event. The 'printReceipt' operation in 'rcv' will then
stimulate the printing of the logo and the date on the receipt printer object 'prn'. It
then stimulates execution of the 'printOn' operation of the receipt basis object
'rcpt'. The 'rcpt' object investigates the different types of deposit items that have
been inserted and obtains the name and the value for each of the type from the
deposit item object. Note that we have polymorphism here and that the concrete
name and value is determined by subtypes of deposit item. The receipt basis
object 'rcpt' will write a formatted receipt string onto the parameter 'ostream' that
was provided by the item receiver. The receiver will then delegate the printing to
the receipt printer object and pass the 'ostream' as an argument. After the
receipt has been printed the temporal information managed for the particular
customer can be deleted and that is why the 'rcv' and 'rcpt' objects are deleted.
As you can see from this example, this stage of the design is crucial because it
provides the first opportunity to examine whether the design can be
implemented, and hence is likely to raise many questions e.g. about specific
messages creating and deleting objects.
The transformation of use case description to pseudo code description (shown in
Jacobson’s left hand column) is an important step but this will be a
straightforward exercise for every programmer.
This example also illustrates one of two common structures that appear in this
form of sequence diagram. These will be discussed on the next slide ...

OOAD Design 1 5. 17

Returning Item (Skeleton + Operations + Stimuli)

“When customer presses the receipt button, the printer prints the date. The
customer total is calculated and the following information printed on the receipt
for each item type: name, number returned, deposit value, total for this type.
Finally the sum that the customer should receive is printed on the receipt.”

Customer presses receipt button
Print logotype and date
Print Info on stream
FOR all bases DO
 Find name on this type
 Find deposit value on this type
 Calculate total value
 Print STREAM information
 sum:= sum+totalValue
ENDFOR
 Print sum on STREAM
 Delete Receipt
 Delete deposit item receiver
 Next customer

receipt print
Receipt print (Logo,Date)

printOn
(ostream) getName

getValue

print (ostream)

delete

delete

rcv:Deposit
item receiver

di:Deposit
item

rcpt:Receipt
basis

cp:Customer
panel

prn:Receipt
printer

© City University, School of Informatics, Object-Oriented Analysis & Design 5-18

The sequence diagram on the left-hand side follows a decentralised control
pattern. It is decentralised, because the depth of the call stack is considerable
(five in this example). This implies that many operations are involved in the
thread of control.
The right-hand side sequence diagram follows a centralised control pattern as
the object displayed on the left of that diagram keeps full control and the objects
that it stimulates return control immediately rather than stimulating other objects.
Decentralised contol is appropriate if operations have a strong connection with
hierarchical or fixed temporal relationships (as in ‘Returning item’). Centralised
pattern is more suitable if operations can change order; new operations can be
inserted.
Next, we review how control flow directives can be included in sequence
diagrams...

OOAD Design 1 5. 18

SEQUENCE DIAGRAM STRUCTURES

"Stair" decentralised

for well-structured sequence
of operations

"Fork " centralised

for variable sequence
of operations

© City University, School of Informatics, Object-Oriented Analysis & Design 5-19

A scenario is an instantiation of a use case and as such it only has a single flow
of events. Conditions and loops have been checked beforehand and are
therefore not reflected in the diagram. Although this keeps the diagram simple, it
is not as expressive as it could be and many sequence diagrams are needed to
provide a full cover of the possible sequence of events in a use case.
In order to increase the expressiveness (and at the same time reduce the
number of sequence diagrams needed), UML includes facilities for expressing
control structures, such as conditions and loops.
The slide above displays the UML notation for a condition. The guard condition
appears in square brackets. The expression must be unambiguous (In the
example X=0 not included and therefore no branch in this case)
As you have seen now, sequence diagrams provide an essential means for
elaborating which operations are needed and how they cooperate towards the
implementation of the system (as required in different use cases).

OOAD Design 1 5. 19

SEQUENCE DIAGRAM + CONDITIONS

• Shows general
interaction pattern

• Conditional shown
by splitting message
arrow (and return)

• Pre-existing objects
as broken lines

[x>0]foo(x)

0p()
ob1:C1

ob3:C3 ob2:C2

[x>0]bar(x)

© City University, School of Informatics, Object-Oriented Analysis & Design 5-20

Next we can exploit the sequence diagrams in order to complete the class
diagrams. In particular we use the information about events and their parameters
in order to devise operations and their signatures in the class diagram.
We can also use it to define the public and the private parts of each class. Every
operation that needs to be executed in response to an event sent by another
object has to be public. We can freely add private operations in order to use
them in the implementation of the public operations. We then have completed
the first interface design.
Jacobson suggests to start the implementation of classes identified in the design
class diagram only when the class interfaces (i.e. the public operations) begin to
stabilise. This means in particular, that it is not necessary to fully design the
whole class diagram before the first classes are coded.
But it might still be necessary to perform further work on the design class
diagram, in particular on the characteristics of individual classes, rather than use
cases.

OOAD Design 1 5. 20

DETAILING THE DESIGN

Receipt Basis

Interface definition augmented by operations from sequence diagrams

insertItem(item)
printOn(oStream)
delete

ReceiptBasis

create;
insertItem(DepositItem);
printOn(oStream);
delete;

itemList: list (ReturnedItem)
sum: ECU

© City University, School of Informatics, Object-Oriented Analysis & Design 5-21

The set of sequence diagrams provides the means to elaborate the class
diagram, particularly in terms of operations that are needed in class interfaces.
In considering the next steps, we need to consider both the ‘system in use’ (as
represented in use case and already defined in sequence diagrams) and the
‘objects in the system’ and how each will evolve in response to extermal stimuli.
While the class diagram and the sequence diagrams provided an external
perspective, we now need to focus on the internal aspects of a class and we
need to specify the effect of stimuli on attribute values of the class.
State diagrams (the subject of the next lecture) provide the essential means of
describing the dynamic behaviour of a class, via the temporal evolution of an
object in response to interactions with other objects inside or outside the system.
For your background reading we would suggest:
[JCJÖ92]
[Hare87] D. Harel. Statecharts: A Visual Formalism for Complex Systems.

Science of Computer Programming 8(3):231-274 1987.

OOAD Design 1 5. 21

SUMMARY

Design outputs so far :

• set of sequence diagrams [diagram x use case]

• elaborated class diagram

Next steps :

• Need for further understanding
of each class

• Development of state diagrams
to define class behaviour

© City University, School of Informatics, Object-Oriented Analysis & Design 5-22

DESIGN MODEL

Inputs:
- requirements specifications relating to implementation environment
- analysis model class diagram
- use case descriptions

16) Identify characteristics of implementation environment including :
- programming language primitives (requiring notation)

17) Duplicate analysis model class diagram to create initial design model class
diagram and revise by:
- ‘normalisation’ of class structure to provide implementable interfaces and
coupling
- ‘encapsulation’ at architectural level to provide functionally cohesive packages

18) Formal design of the flow of control by description of all stimuli sent between
objects in:
- a sequence diagram for each use case

19) Definition of interface of each class by extracting all operations for a class
from each sequence diagram

20) Definition of state diagrams for each class

21) Complete design model class diagram

Notations introduced:
sequence diagram
state diagram

Outputs:
- sequence diagrams [diagram x use case]
- state transition diagram [diagram x class]
- complete design model class diagram

OOAD Design 1 5. 22

DESIGN MODEL STAGES

