Lecture 4

Object-Oriented Software Engineering:
Analysis Model

Dr Neil Maiden
Dr Stephen Morris
Dr Wolfgang Emmerich

School of Informatics
City University

OOSE Analysis Model 4.1

Last week, we have started to look at Ivar Jacobson's object-oriented
software engineering method. We have seen how use cases model the
different ways that actors interact with a system.

We have also seen examples of type/instance relationships. One use
case models different similar interactions between actors and the
system. We referred to as instances of use cases as scenarios.
Moreover we have separated actors and users. Again an actor identifies
the type for multiple similar users.

The purpose of this lecture is to discuss the Analysis Model. More
precisely we are going to discuss the question: What constitutes the
Analysis Model and how is the result of the Requirements Model
transformed into the Analysis model?

© City University, School of Informatics, Object-Oriented Analysis & Design

4-1

LECTURE OVERVIEW

« Aims of Analysis Model
 Building on outputs of Requirements Model

Basic UML notations

Introduction of new types of analysis objects
Reuse of use cases

 Inputs for Design Model

OOSE Analysis Model 4.2

The lecture begins by placing the analysis model in the theoretical
context of Jacobson’s overall view and then building on the outputs from
the requirements model stage as the inputs for the next steps in
production.

We will then introduce basic UML notations for classes and object etc. in
order to provide the means for representing classes and objects defined
in the requirements model in order to refine them in the analysis model.

It is then possible to introduce the roles of different types of classes
identified by Jacobson (interface, entity and control). The separation of
these roles supports and simplifies the successive modelling of classes
in the design phase and makes the analysis model more expressive.

The use cases are used, and refined, as a means to guide, and
evaluate the analysis work. This is done by tracking the descriptions of
each use case to the influence it had on specifications of classes and
objects.

The cumulative generation of outputs (i.e. the enriched use cases and
the class diagrams) provide the inputs for the design model, the first
part of the ‘construction phase’ which is subject of lectures 5 and 6.

Let us now use the overview picture of last week to review where we
are...

© City University, School of Informatics, Object-Oriented Analysis & Design

4-2

2 53
c [2] 28 [oR]
S s|—=2 L] s |x
= SO - B Qo c p=l T =
0o o =1 3
g w 8_%5 59 SE les ES
—— C— O (=] D= [}
) oo g8 |28 518 ©
So 255 Y| o5 [[°7] oS | €]
wo SE+ 3 58 | g
48 [oy B (e S RN
o |~-= N, 5E 8 % il . !
a4 08 5 S e I o
32w 88 o 3 1
= i Owo = - O + I ° -
= | c 9 ol o o I n=
) @ < = = 0n<g
| £ = n = o= @ | a4
o= L= 2159 <
| 38% 52 528 | J0
| 852 2 g glg™ ©g
850 9 9 B a|® | [a)
A %§ S = %I |
o = c ©
L/ » 4 / ! I
'_
%) : zZ / | |
© w / I I
g L2 A, L l
= e | X s |9 S ¢ el &
w Sg | D Sz | - g s s| ©
°5 — R S 5 2ol N3
[7p] 23 | Os 2o [J] o g © 3]
7] 0 bl o .8 - W s
o) SE|Wz3 SE|ZZ &5 n T 3
X e <E (Al
O
OOSE Analysis Model 4.3

As this picture suggests, there are notable differences between the
approach that Jacobson suggests and the approach we are using in this
module.

The most important difference is that we use an explicit class diagram to
define the objects that occur in Jacobson's analysis model. Hence the
problem domain object list produced as part of the requirements model
Is transformed into an initial draft of a class diagram.

Then it is checked that each behaviour identified in a use case is
represented as appropriate operations of classes (that might have to
rely on attributes of these classes). If this is not the case both the class
diagram and the use case model are adjusted accordingly.

The class diagram might get rather complex. Systems constructed by
the software industry tend to include 500+ classes. In order for class
diagrams to remain manageable they have to be structured properly.
The UML uses the concept of packages for that purpose. Hence
packages replace Jacobson's notion of subsystems.

The class diagram and the use case diagram then be serve as input to
the design phase. While the class diagram will be refined, the use case
diagram will be not be modified any further.

© City University, School of Informatics, Object-Oriented Analysis & Design

4-3

AIMS OF ANALYSIS MODEL

e To provide a ‘logical model’
of the system, in terms of :
- classes,
- relationships

“How to get the thing right,
now and in the future “

OOSE Analysis Model 4.4

The production of the analysis model is a vital step in the formalisation
of the system. While the use case model identified sequences of events
and interactions between actors and the system will the analysis model
specify the classes of objects that actually occur in the system. There
are no fixed rules for such a transformation. There is only guidance in
the form of more or less detailed conventions.

The essential first step is the definition of those classes that specify
properties of objects that need to be present in the system and the
relationship between them. This will show the ‘logic’ behind the system,
a model that is a reprsentation of structure that is reasoned correctly.

Having identified the characteristics of the ‘right thing’, defined
specifically in terms of the use case model (and any other specific
requirements documents relating to the environment etc.), we must
prepare a logical model which will remain fixed and will not be altered in
subsequent design and implementation stages.

From a practical point of view will build on outputs from the
requirements model using a further sequence of steps (Nos 10-15) that
are detailed on the next slide...

© City University, School of Informatics, Object-Oriented Analysis & Design

4-4

PRODUCING AN ANALYSIS MODEL

Inputs
10 Draft initial class diagram
11 Re-examine behaviour in use cases and objects
12 Refine class diagram
13 Execute check
14 Revise class diagram
15 Group classes into packages

Outputs

Notations

OOSE Analysis Model 4.5

The production of the analysis model begins with the elaboration of the
problem domain objects into the initial class diagram. In this step, we
will take commonalities between similar domain objects into account
and model them as classes. We will also try to identify commonalities
between different classes and identify these as generalisation and
specialisation relationships.

The first step develops a draft class diagram. It is followed by a re-
examination of use cases in order to prepare for modelling the
necessary behaviour of objects in a way that they reflect the use cases.

We then refine the class diagram so that it reflects the behaviour of the
use cases. In order to do this we map actions mentioned in the use
case into operations of some classes and model use case state
information as attributes of classes.

We then validate that every information provided in the use cases has
been considered in the class diagram.

If necessary we revise the class diagram in order to avoid loosing
information from the use case diagrams.

The grouping of classes into packages is not only an analysis modelling
activity, it is also an essential managerial step to keep the development
process manageable. The suggestion to perform the packaging step at
the end will only work for very small scale projects. Depending on the
scale of the project it might be necessary to develop the class diagram
in a packaged form and revisit the packaging whenever the class
diagram is to be revised.

Let us now consider the inputs and outputs of the analysis phase on the
next slide...

© City University, School of Informatics, Object-Oriented Analysis & Design

4-5

ANALYSIS MODEL INPUTS AND OUTPUTS

Inputs:
- uses cases and use case model
- problem domain object list
Outputs:
- class roles and responsibilities [text]
- use case description in terms of classes and operations [text x use case]
- completed analysis model [class and package diagrams]
Notations introduced:

class (rectangle containing name, attributes, operations)

object (rectangle plus obx:Cx)

association (by value/aggregation, cardinality/multiplicity)
generalisation (UML term replacing OOSE ‘inheritance’)
package

depends association

OOSE Analysis Model 4.6

The most important input of the analysis phase are the use cases and
the use case model produced in the requirements phase. Also we take
the list of problem domain objects produced at the end of the analysis
phase as a starting point for the definition of the class diagram.

The most relevant output of this phase is the class diagram that reflects
the attributes, operations and relationships between the classes that
represent the objects occurring in the use case. The class diagram will
be structured into different packages that contain classes with a high
internal coupling.

In addition, the check that the behaviour of textual use case descriptions
has been properly reflected in the class diagram will produce use case
diagrams in terms of classes and their relationships. On the other side it
will identify for each class the different roles that the class will play with
respect to the use cases. In that way bi-directional traceability is
provided that will simplify completeness and change impact analysis.

The first step of the transfer from the requirements model to a logical
analysis model is the production of an initial class diagram. This
requires the use of standard UML notation, the first being the class that
is detailed on the next slide...

© City University, School of Informatics, Object-Oriented Analysis & Design

4-6

CLASSES IN UML

className Polygon

. centre: Point
attribute name: type vertices: List of Point
borderColour: Colour
fillColour: Colour

display (on: Surface)
operation name (parameter: type): result type fotatE(()angler Integer)
erase

destroy ()

select (p: point): Boolean

className Polygon

OOSE Analysis Model 4.7

We have introduced the concept of classes in Lecture 2 (see 2.14,
2.15). In essence, a class defines the common properties of objects.
These are attributes, relationships and operations.

This slide now presents the UML notations for classes. Can be declared
in two different ways, depending on the level of detail that needs to be
defined/shown. The simplest form is just a solid-outline rectangular box
with a character string inside. The character string is the class name. It
usually has to be unique within a given scope to avoid ambiguities.

In the more complex form the rectangle is divided into three
compartments. The class name is given in the top compartment. The
second defines a list of attributes and the third defines a list of
operations.

An attribute name is provided for each attributes. Names should be
unique within the scope of the class. Attribute types and initial attribute
values can be defined as an option.

Operations are defined by operation name. Whether or not operation
names should be unique is a matter of taste and depends on the target
programming language. If the languages do not support overloading it is
advisable to refrain from defining operations that have the same name.
Again parameter lists and result types can be defined as an option.

Objects are instances of classes. Sometimes it is necessary to identify
individual objects, for instance if individual objects serve a particular
purpose. The next slide outlines the representation for objects...

© City University, School of Informatics, Object-Oriented Analysis & Design

4-7

OBJECTS IN UML

objectName: className trianglel: Polygon

. centre = (0,0)

attribute name: type = value vertices = (0,0), (4,0), (4,3)
borderColour: black
fillColour: white

. display (on: Surface)
(same operations rotate (angle: Integer)

for all instances erase ()

of a class) destroy ()
select (p: point): Boolean

objectName: className trianglel: Polygon

OOSE Analysis Model 4.8

Again the idea of object has been discussed in Lecture 2 (see 2.16)

The UML defines the notation for objects as follows: “An object is drawn
as a rectangle with an underlined name of the object name and its class
name (separated by a colon).”

“It may be divided into two compartments. The top compartment
contains a string in the format: objectName: classname."

Unlike classes, objects have a particular state that is characterised by
the value of the object's attributes. Note that in the presence of
inheritance the object inherits attributes from all its super classes. The
UML defines the notation for attribute values as follows: "The bottom
compartment contains a list of attribute values in the format:
attributeName: type = value. The type is usually omitted since it can be
determined from the class itself as well as the form of the value but it
may be included for claruty if needed. The attribute name must match
one from the class."

Note that it is unnecessary to determine the operations. These can be
inferred from the declaration of the class of which the object is an
instance. The object would be overspecified if we defined operations
redundantly.

Having identified a variety of classes, the analysis must go on to
consider their common characteristics, the issue of inheritance or
‘generalisation’ as it is called in UML. The notation for generalisation is
outlined on the next slide...

© City University, School of Informatics, Object-Oriented Analysis & Design

4-8

UML GENERALISATION

SUPERCLASS

| Staff Member |

SN

Librarian | | Lecturer
| Handler |

AN

KeyboardHandler | | MouseHandler | |

Researcher

SUBCLASS SUBCLASS SUBCLASS

JoystickHandler

OOSE Analysis Model 4.9

The concept of inheritance was introduced in Lecture 2 (see 2.18 and
2.19). We now present the UML language constructs for it.

In UML ‘generalisation’ is used as a replacement, or synonym, for
‘inheritance’ in OOSE, but UML documents still refer to ‘inheritance’
(“Inheritance is a taxonomic relationship between a superclass and its
subclasses. It is often called generalisation or specialisation depending
on whether one is going from subclass to super class or from superclass
to subclass. ... All attributes, operations and associations are inherited
by all subclasses.”)

Inheritance is defined in the class diagram as “a directed line with a
closed, unfilled triangular arrowhead at the superclass end” (UML V0.91

p7).
The UML accommodates multiple inheritance (see 2.20). The number of
arrows that may start at a class is, therefore, not limited to one.

Inheritance (‘generalisation’) is one of the two types of relationships
which are extensively used in any analysis model / initial class diagram;
the other relationship is that of association that we detail on the next
slide...

© City University, School of Informatics, Object-Oriented Analysis & Design

4-9

ASSOCIATIONS IN UML

bidirectional / binary

{ unidirectional

@ —— “by value” / aggregation

“by reference”

4 association name

[+ single directional arrow] Supplementary
role name role name characteristics
multiplicity multiplicity

OOSE Analysis Model 4.10

Associations represent structural relationships between objects of
different classes, representing information that must be preserved for
some duration.

Bidirectional associations are traversable in both directions. It is the
least explicit association and most common at early stages of analysis.
Bidirectional associations are usually refined during the course of the
analysis by giving it an aggregation or reference semantics, identifying
different multiplicities and by making the roles explicit that the connected
classes play in the association.

Unidirectional associations imply that the implementation should make it
straightforward to navigate from a source object to a target object
across the association. Unidirectional associations are regularly
implemented by pointer type instance variables.

Aggregation implies that instances of one class are embedded within
instances of another class. The instances therefore form composite
objects; ‘by reference’ relationships are used to refer to other objects.

An association may have a name with an optional small “direction
arrow” showing which way it is read, e.g. employer employs >
employee.

As an attribute of a role, multiplicity shows how many instances of the
attached class may be associated with a single instance of the object at
the other end of the association. ' is used for “none to many”.

Associations are an extremely powerful concept that can be elaborated
and used in many ways as the following examples suggest...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-10

ASSOCIATION EXAMPLES IN UML

authorised on >

User Workstation
* *
) 1 ClassDecl |
Authorisation AttributesOfClass
priorities
privileges OperationOfClass 1
start session

*
1| home directory

* *

Directory Attribute Operation

OOSE Analysis Model 4.11

In the relational data model relationships can have attributes in order to
characterise properties of relationships. For the same reason,
associations in the UML can have specific properties by attaching a
class to them. The object-oriented approach is even more powerful than
the relational approach because properties of associations may not only
be attributes, but also operations and other relationships. The
‘association class’ is represented by a class rectangle attached by a
dashed line to the main link, as shown in left-hand example.

In the example, the ‘'authorised_on' relationship has attributes that
identify the priorities and privileges that go with the authorisation and an
operation that is used to check the authorisation during the startup of a
session. The 'association class' also has an association that identifies
the home directory for each potential authorisation record. Assuming
that the user has the same home directory on every workstation the
multiplicity of this association is many to one.

The right hand diagram shows a very small segment of the UML ‘meta
model’. The purpose of the meta model is to the notation itself to identify
how the notation is structured. This example represents the class of
objects containing all class object declarations.

Now that we know all the ingredients we can start modelling a class
diagram ...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-11

CLASS DIAGRAM IN UML

Class diagrams :
- show logical, static structure of system
- provide core of ‘unified model’

Generation of initial class diagram
from problem domain object list
— classes of objects
— associations / attributes
— inheritance relationships

OOSE Analysis Model 4.12

The purpose of a class diagram is to provide a generic description of
possible system states. This is done in a class diagram by modelling
classes that describe the common static properties of similar domain
objects.

At this stage of modelling we are only concerned with identifying the
attributes of classes and to analyse similarities in order to identify
generalisation relationships.

Please note that class diagrams describe the system from a type level
perspective. They are, therefore, not concerned with particular objects
that are instances of classes.

Class diagram provides a single, albeit essential, view of a system. The
class diagram is the core of the UML and other views organised
according to the class diagram. The other views are provided by: use
case model (3.13) sequence diagram showing interaction between set
of objects (part of design model) and state diagram showing temporal
evolution of an object of a given class (also part of design model).

We are now in a position to attempt the first stage in the production of
the analysis model (10 on 4.5) using the output from the requirements
model as input...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-12

INITIAL CLASS DIAGRAM FOR 'RECYCLING MACHINE'

Deposit Item Receipt
Name) Total cans
De_posﬂ value Total bottles
Daily total Total crates
Can Bottle Crate
Customer panel
Width Neck Width
Height Length Height
Bottom Length

Operator panel

OOSE Analysis Model 4.13

This slide depicts the initial class diagram that we have derived from the
use case descriptions of the recycling machine example. This is how we
got there:

We have started from the list of domain objects produced as part of the
requirements model and have drawn a class representation for each of
the items.

After that, we have assigned different domain attributes in order to
model states of real world objects.

When we had identified the attributes of classes, we recognised that
cans, bottles and crates have several attributes in common. In order to
avoid this duplication we have done a generalisation and created the
class 'Deposit Item’, declared these attributes for Deposit Item and then
introduced the generalisation relationship.

Note that it need not be done this way around. We could also have
spotted an abstract class for deposit item, declared the attributes and
then introduced the generalisation relationship.

As a first plausibility check we can see whether every attribute defined
in a generalised class makes sense in every single subclass.

Note that the class diagram produced now is far from being complete.
Operation specifications are missing. Also the class diagram represents
one of any number of alternatives, e.g. to define a class of objects which
contain dimensional measurements for any recycleable item, or alter
‘Deposit Item’ to include these.

The question that arises now is how do we proceed to improve such a
draft diagram? The clue is that we have essential output from the
requirements model stage, the use cases...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-13

EXPLOITING USE CASES

Employ classes and use cases, one by one,

to describe roles and responsibilities
of each class
to distribute behaviour
specified in use cases
» to ensure that there is a class
for every behaviour

OOSE Analysis Model 4.14

In order to complete and refine the class diagram we employ the use
cases and the list of domain objects that have been generated as part of
the requirements model.

We take each single use case and describe for each class contained in
the initial class diagram the role and the responsibility of the class in a
textual description. This exercise will result in the first analysis model
output in form of textual description of each object's role and
responsibilities.

We then distribute the behaviour that we have identified in the use
cases by assigning operations to objects. We will have to make sure
that each behavioural description is covered by an operation.

At the later design stage it might become necessary to delegate
operations to other classes but we do not worry about this during the
analysis stage.

Also this exercise is likely to result in a proliferation of odd classes, e.g.
receipt printer, alarm device, bottle slot. Consequently we need some
means of differentiating the purpose of system elements that have been
identified.

Jacobson provides a categorisation of classes which is a useful aid to
analysis. He suggests three different categories according to the roles
that classes can play. The next slide details these roles of classes...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-14

ROLES OF CLASSES IN OOSE

Interface classes

for everything concerned with system interfaces
Entity classes

for persistent information and behaviour coupled to it
Control classes

for functionality not normally tied to other classes

Integrated into UML as stereotypes:

<< interface >> << entity >> << control >>
interface name entity name control name

OOSE Analysis Model 4.15

Actors use the system's interface to interact with a system. The actors
can be people using the system or other systems for the exchange of
information. People would need to interact through a user interface with
the system and likewise other systems need an interface. Jacobson
suggests to denote classes defining the operations that are available at
a user or a system interface as interface classes.

Other classes store information and object states in attributes. These
classes would be considered as entity classes according to Jacobson's
taxonomy.

Control objects are the most ‘fuzzy’ category. They are required to
contain operations coordinating the interaction with other objects, the
computation and result delivery e.g. to calculate value of recycled items.
Typically a control object contains functionality unique to one or a few
use cases.

Stereotypes provide meta classifications of elements in UML and an
iconised representation for them. Stereotypes add information about a
class that is exploited in the design stage. Interface classes, for
instance, need to be designed in a way that their instances can be
accessed from distributed objects (these are objects running on other
machines). A particular stereotype is named at the top of the box
between double arrows. In its simplest form (as used by Jacobson) the
icon and the class name are sufficient.

Note, that this is a ‘shorthand version’ for a complete definition of a
class, but not a permanent substitute.

Now we consider these roles of classes in greater detall...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-15

INTERFACE CLASSES

« Contains functionality directly dependant
on system environment
» Definition focuses on interaction

between actors and use cases
% Receipt Receiver

e e
Receipt O
Printer

Operator _l
%QI__O Panel O \

Customer Customer Alarm -|‘/o %

Panel Device peratOI’

OOSE Analysis Model 4.16

An important concern in the integration of complex system is to make
sure that the systems remain well separated. It is therefore undesirable
to have one system accessing the operations of another system directly.
This would violate the important principle of information hiding. The
systems should rather be interconnected through connectors which can
isolate the systems from each other. Interface classes do fufill this
purpose.

Interface classes provide also a chance to the system analyst to make
clear system boundary and declare all the interfaces provided across it.
As part of the interface specification, interactions that the system can
have with its actors are specified. Recall that actors can be human
users as well as other systems.

The interactions we are concerned with at the system interface level
include

* iSsuing a request to an actor,

» providing information for an actor,

* receiving a request from an actor, and
* obtaining information from an actor.

It is possible to represent each interface class as a ‘plain’ UML class
box. However, an explicit diagram like this where classes are
represented using there stereotypical representations emphasises the
essential dependency relationships across the system boundary, an
important information to have during a later design.

© City University, School of Informatics, Object-Oriented Analysis & Design 4-16

ASSOCIATIONS BETWEEN INTERFACE CLASSES

Definition of both dynamic pTE—
and static associations 6

Receipt button

<<interface >>

i O
Receipt <<interface >> Crate slot|
Printer 6

/ \ <<interface >>
O—' Customer Panel
HO ’ S
Operator

Can slot
Customer Panel
Panel O‘l << interface >>

O

Bottle slot

Alarm
Device

OOSE Analysis Model 4.17

In order to enable interface objects to send a message to another
interface object the interface objects need to be associated with each
other and we use UML associations for that purpose.

In OOSE the simplest form of binary association is static and given the
name ‘acquaintance’. This would be appropriate to describe, in most
general way, the relationships in the left hand diagram. However, we
can already be more explicit and identify these associations as being
both dynamic and unidirectional, so have used the arrowed line notation
introduced earlier (confer page 4-10).

The right-hand side displays an aggregation association between
interface classes. This again is a regular pattern as complex user
interfaces tend to be composed of simpler objects. In the example the
aggregation corresponds to the composition of the user interface of the
recycling machine.

We could have even add further information to all these associations eg
names on left and multiplicity on right.

Interface objects are not designed to contain information; this is the
principle role of the entity object as we will see on the next slide...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-17

ENTITY CLASSES & THEIR ATTRIBUTES

Purposes of entity classes :
- To store information persisting

<< entity >> after completion of a use case
Deposit Item - To define behaviour for
Name: String manipulating this information
Deposit value: ECU
Daily total: Integer
<< entity >> << entity >> << entity >>
Can Bottle Crate

OOSE Analysis Model 4.18

The classes modelling the domain objects that were part of the list
produced at the end of the requirements stage will be classified as entity
classes.

Entity classes typically have attributes that are capable of storing
information. As class diagrams are at type level, we are not concerned
about actual attribute values. Only objects that have been instantiated
from the class have different attribute values.

This diagram shows the next stage of elaboration of classes to include
attribute types. The typing of attributes restricts the domain that the
value of these attributes can have in objects instantiated from the class.

The domain might even further be restricted but this restriction is usually
implemented by operations.

A negative daily total value would not make sense for instantiations of
any deposit item. This, so called, integrity constraint is then
implemented by operations that would not allow the assignment of
negative values to the attribute.

Hence the next step to consider is the behavioural specification for
classes (the third compartment). This is dictated by operations and
messages that are sent between objects in order to invoke the
operations.

© City University, School of Informatics, Object-Oriented Analysis & Design 4-18

ENTITY COMMUNICATION

A primary task to identify associations
involving communication
- modelling of communication between objects
- shows the sending and receiving of messages as stimuli
- starts from object initiating communication
- directed to object where reply generated or
operation executed

O ()

Receipt Basis Deposit Item

OOSE Analysis Model 4.19

In order to be able to send a message to an object the requesting object
has to know the identity of the object. One way to obtain the identity is
to traverse along an association.

These assocaitions need to be defined in the class diagram.
Associations that are used purely for message passing purposes tend to
be directed because they need to be traversed from the sender in order
to identify the receiver.

The diagram shows such a <<communication >> association between a
class for recording a customer's returns and class recording daily totals.

The definition of associations provides the basis for completing the
definition of operations as discussed on the next slide...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-19

ENTITY OPERATIONS

Defining entity operations for:
- storing and fetching information
- creating and removing object
- behaviour that must change
if entity object is changed

<< entity >>
Deposit Item

Name: String
Deposit value: ECU
Daily total: Integer

Create ()
setValue (integer)
Increment ()

OOSE Analysis Model 4.20

Operations provided by entity classes are defined for the above
purposes.

Operations that store information typically check integrity constraints of
the object (e.g. to make sure that the daily total value does not become
negative and that positive values are added only). Operations defining
the fetching of information typically check access rights of the principal
requesting the information before providing it.

Special operations define the creation and removal of objects. An
operation that creates a new object by instantiating a class is referred to
as a constructor while the operation that removes an existing object is
referred to as a destructor. Constructors typically perform attribute
initialisations and destructors release storage space occupied by the
object.

Other operations may be provided in order to implement different state
transitions that objects of the specified class might be involved in.

In general operations are used in order to hide object states that should
not be exposed to other objects. This contributes to the principle of
information hiding (though on a finer level of granularity than interface
classes) (for a discussion of information hiding refer to slides 2-12 and
2-13)

Note that Jacobson's OOSE method does not consider it to be essential
to define specific operations at the analysis stage.

Now we discuss the third role that classes can play, which is the least
clear defined...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-20

CONTROL CLASSES

Control classes needed to provide for:
- behaviour not natural
in interface and entity classes
- 'glue’ between other classes
in use case
- typical control behaviours

- improved maintainability q o
eposit item

receiver é
report @
generator
extends
information é alarm @
administrator device

OOSE Analysis Model 4.21

Even in object-oriented decompositions of systems, there is sometimes
a need for accomodating functions in order to model behaviour that
does not directly relate to properties of objects. This behaviour is
modelled as operations of classes that are control classes.

Control classes provide the glue between interface classes and entity
classes. To construct stable systems in the real world, one should not
use too much glue but only use it to fill the gaps between components.
This is the same with object-oriented modelling. Control classes should
be deployed with care.

Control classes should be used to represent use cases involve some
form of coordination operation, such as

* transaction-related behaviour,
* specific control sequences, and
« functions separating interface and entity objects

The algorithms performed by these coordination operations are subject
to frequent change. That makes it necessary to isolate them in separate
objects to be maintained separately.

In a preliminary draft assign one control object to each use case. Where
the situation is more complex, aim for one per actor. The emphasis, as
before, is on usefulness of use cases.

With all these objects we can build up ‘use case views’ and packages as
shown on the next slide...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-21

USE CASE VIEW

* Model each use case
* Describe use case in terms of classes

HO<~—0O——>0OH

Customer Deposit Item Receipt
Panel Receiver printer
1 0.. a
Recelpt

Deposn Iltem

Basis
Bottle Crate

OOSE Analysis Model 4.22

The next step in the analysis is to take each use case and model it in
terms of a class diagram fragment. This is a significant step towards the
formalisation of use cases and a test whether all the classes are
provided that are needed for the use cases.

Note that the same class might occur in many different fragments in the
same way as the same actors and real world entities occur in different
use cases.

The diagram on this slide shows part model only of objects supporting
use case ‘Returning item’.

As a next check we will convince ourselves and any stakeholders that
what we have modelled in terms of classes really reflects the real world.
This is examplified on the next slide...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-22

AN ELABORATED USE CASE

When the customer returns a deposit item the Customer Panel’s
sensors measure its dimensions. These measurements are sent to the
control object Deposit Item Receiver which checks via Deposit
Item whether it is acceptable. If so, Receipt Basis increments the
customer total and the daily total is also incremented. If it is not
accepted, Deposit Item Receiver signals this back to Customer
Panel which signals NOT VALID.

When the Customer presses the receipt button, Customer Panel
detects this and sends this message to Deposit Item Receiver.
Deposit Item Receiver first prints the date via Receipt Printer
and then asks Receipt Basis to go through the customer’s returned
items and sum them. This information is sent back to Deposit Item
Receiver which asks Receipt Printer to print it out.

OOSE Analysis Model 4.23

This slide displays the rewriting of the use case we had on the slide
before in terms of classes. This is referred to as an elaborated use
case.

This elaborated use case serves three purposes:

* While performing the exercise of rewriting the use case we double
check that every information we had in the previous description is
covered in the class diagram.

* We establish direct links between the use case and the class
diagram. This allows tracking user requirements reflected by use
cases through the analysis into the design. This traceability is an
important basis for analysing the impact of changes to the
requirements.

 Stakeholders would not necessarily be able to understand class
diagrams, though they can understand this textual description.
Through validating these elaborated use cases they indirectly check
the class diagram.

The amalgamation of individual parts provided by ‘use case views’ into
one whole requires some kind of modularisation. In UML there are now
generic ‘packages’, which subsume OOSE subsystems. We introduce
packages on the next slide...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-23

PACKAGES

Packages are necessary:

- because of large numbers of classes
- to provide optional functionality

- to minimise effect of change

Packages should have a:

- tight functional coupling inside

-weak coupling outside indicated by 'dependency associations'
between packages

Packages may:

- ‘contain’ nested packages with ‘service packages’ as atomic parts
- have individual classes outside

- be result of organisational or managerial pressures

OOSE Analysis Model 4.24

In real-life projects a sheer amount of classes needs to be handled.
Even small scale projects easily have 100 classes and (remember the 7
+/- 2 rule) these cannot be overlooked by humans any more and
therefore have to be structured.

Packages are the language concept offered by the UML for grouping
classes. Packages are displayed as a tabbed folder.

A package may contain classes and/or nested packages. Classes
should be arranged into packages so that there is a tight coupling within
the package but a weak coupling in between different packages. Note
that the generalisation relationship provides a very very strong coupling
and it is therefore useful to arrange for classes that inherit from each
other to be in the same package.

As classes from within one package may need to be associated with
classes contained in other packages, the need arises to interface
between packages. We therefore use a dependency association
between packages. If package A is declared to depend on package B it
will be allowed to to draw classes contained in B within A. We then note
the package from where the class has been referenced together with
the class name in the form <package name>::<class name>.

Subsystems are useful even in small scale projects, as the recycling
machine example shows...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-24

RECYCLING MACHINE PACKAGES
Main

Alarm

Receipt printer

Deposit /
P Admi nistr‘ahrq

OOSE Analysis Model 4.25

This slide displays main recycling machine package. As we see, it contains four
nested packages: Alarm, Receipt printer, Deposit and Administration.

The dashed arrows represent dependency associations between packages. The
dashed arrows starting from Deposit and leading to Alarm and Receipt printer
indicate that Deposit depends on Alarm and Receipt printer. It is therefore valid
in Deposit to have references to classes contained in Receipt printer and Alarm.

The next slide represents the refinement of the ‘Deposit’ package...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-25

Deposit

‘DEPOSIT’ PACKAGE IN UML

< interface >>

Receipt button

< interface >> _I

Crate slot

<< control >:
Deposit Item
Receiver

<< interface>>
Receipt printer::Printer

PN

< interface >>

Customer Panel

< interface >>

<< entity >>

Receipt basi§=————3»

<< entity >>
Deposit Item

Name: String
Deposit value: ECU
Daily total: Integer

Can slot I

< interface >>

2B

Create ()
setvalue (integer)
Increment ()

<< control >>
Alarm::Alarmist

<< entity >>
Can

<< entity >>

<< entity >>

Bottle

Crate

OOSE Analysis Model

Note that this diagram details how the Deposit package depends on the other
two packages. It includes two so called 'referenced classes'. One is referenced
from Receipt printer and another one is referenced from Alarm. Note how the
package name is used as a prefix for the class name to indicate that they have
been referenced. It then shows the associations between classes of the Deposit

package.

This means that referencing packages can add associations to other classes. In
the example above we add an association to the Receipt printer class, for
instance. However, packages that reference classes cannot change attributes
and operations of the class they reference.

© City University, School of Informatics, Object-Oriented Analysis & Design

4-26

ANALYSIS MODEL

OUTPUTS:
- class roles [text]

- use case description in terms of classes and operations
[text x use case]

-completed analysis model classes [diagram]
- sub-system diagrams [package diagram]

Notations introduced:
class, object, associations
(binary, unidirectional, aggregation, generalisation)
stereotypes
(classes, associations)
package (+ dependancy association)

OOSE Analysis Model 4.27

Let us now summarise what we have done during the analysis stage.
The analysis model identifies the roles of classes that model the
different domain objects that were specified in the requirements model.
The analysis model identifies three basic roles that classes can play.
These roles guide analysis and make the analysis models more robust
to change.

The second output is the description of use cases in terms of classes
and operations. This will be comprised of the text elaborating the use
case and the diagrammatic representation of the use case in terms of
classes.

Finally we will have generated a class diagram that is hierarchically
organised into packages. The class diagram displays the attributes,
operations of each class and the associations the class has with other
classes. At higher levels of abstractions, dependency relationships will
be specified between packages.

© City University, School of Informatics, Object-Oriented Analysis & Design 4-27

ANALYSIS IN OOSE - SUMMARY

USER PERSECTIVE

- Actors and Use Cases

- Strong emphasis on requirements modelling
- Resistence to effects of change

ADVANTAGES OVER OTHER ANALYSIS METHODS

- Ways to identify and define classes and objects

- Effective and useful identification of roles of classes
- Recognition of user role (and interface)

- Refined with practical use

OOSE Analysis Model 4.28

We have discussed the analysis stage of Jacobson's object-oriented
software engineering. It provides techniques such as use cases to
enable a methodical basis for identifying objects, unlike other methods.
The consequence of employing use cases is the development of user
perspectives of the system (improving communication between users
and system developers).

The interface classes integrate the generation of user interfaces into the
mainstream method, rather than making it an add-on (as in other
approaches).

The marriage we have presented between OOSE and the UML notation
provides a standardised form for outputs, and more specific information
(particularly about operations).

For your background reading we would suggest the following reference:
[JCJO92] Analysis. Chapter 7. pp. 153-200.

© City University, School of Informatics, Object-Oriented Analysis & Design 4-28

ANALYSIS MODEL
Stages of production

Inputs:
- uses cases and use case model
- problem domain object list

10) Elaborate problem domain object list by drafting initial class diagram containing:
- class objects
- static associations
- inheritance relationships
Notations introduced:
class (rectangle containing name, attributes, operations),
object (rectangle plus obx:Cx),
association (by value/aggregation, cardinality/multiplicity),
generalisation (UML term replacing OOSE ‘inheritance’)

11) Employ classes and use cases, one by one, in order to:

- write descriptions for each class of its roles and responsibilities;
- distribute behaviour specified in use cases;

- apply guidelines (to be specified) for allocation of responsibilities;
- ensure that there is a class responsible for every behaviour.

12) Refine classes in class diagram by:
- classifying as 'entity object’, 'interface object' or
‘control object’
- reviewing attributes and adding types and multiplicity
- reviewing static associations
- specifying operations required for dynamic associations
Notations introduced:
stereotype object types (class box, <s-type>, name, icon),
association (<communication>)

continued ...

© City University, School of Informatics, Object-Oriented Analysis & Design 4-29

o ANALYSIS MODEL
Stages of production (continued)

13) Execute check by:
- rewriting textual descriptions of use case in terms of classes and atomic operations.

14) Revise class diagram

15) Group objects into:
- atomic <service packages>
- larger <sub-systems> and their dependent packages
Notations introduced:
package
dependancy association

Outputs:

- object roles and responsibilities [text],

- use case description in terms of objects and operations [text x use case],
- completed analysis model class diagram,

- sub-system diagrams [package diagram]

Stereotype icons for use after, rather than before, class definition.

© City University, School of Informatics, Object-Oriented Analysis & Design 4-30

