
© City University, School of Informatics, Object-Oriented Analysis & Design 3-1

Last week we have identified and discussed five important object-
oriented principles. These were objects, classes, encapsulation,
inheritance and polymorphism. These concepts are generally
applicable to all types of object-oriented systems, be they user
interfaces, databases, programming languages or analysis and design
methods.
This week we are going to focus our attention to object-oriented
methods for analysis and design. A method comprises a notation and a
number of development strategies and heuristics that identify how the
notation should be used.
In the early ninties as about 10 completely different object-oriented
methods were defined. Luckily for both you and us, the field is a bit
more consolidated now. While we give this lecture, the merger of the
notations used by the three most prominent methods (those put
forward by Booch, Rumbaugh and Jacobson) has been revealed. This
notation is referred to as the Unified Modelling Language. It will be
used in the re-definition of the three methods, which then will only differ
in the development procedures and heuristics that suggest how to use
the notation. In this module, we anticipate the redefinition for
Jacobson's approach of object-oriented software engineering (OOSE)
Hence, this week's question will be: What steps does OOSE suggest
and how does its first step look like?

OOSE Req. Model 3. 1

Lecture 3

Object-Oriented Software Engineering:
Requirements Model

Dr Neil Maiden
Dr Stephen Morris

Dr Wolfgang Emmerich

School of Informatics
City University

© City University, School of Informatics, Object-Oriented Analysis & Design 3-2

We have selected Ivar Jacobsons OOSE method for this course
because we do not think that it is feasible to teach all relevant
methods.
The selection of object-oriented software engineering derives partially
from the fact that it supports use case modelling, which we believe is
important for the elicitation of requirements from stakeholders. It is also
due to the fact that we believe OOSE gives more detailed process
guidance than the other two methods.
The sub-title of the book ‘a use case driven approach’ summarises the
originality of the approach, its value and much of its structure. A ‘use
case model’, in essence a representation of how the system is used,
and will be used, has a formative relationship with all the models used
in OOSE.
The focus of this lecture will be on a subset of this method that
identifies the notations and the development procedures and heuristics
in order to derive a requirements model.
The lecture will also introduce the first elements of the UML as the
form of notation. This is a new notation language, only just launched in
a complete form by the previously competing authors of object-oriented
methods: Grady Booch, James Rumbaugh and Ivar Jacobson.
The next slide gives a little bit of background information of where
OOSE originated from...

OOSE Req. Model 3. 2

LECTURE OVERVIEW

- Object-Oriented Software Engineering (OOSE) from Jacobson et al.

- The basics of ‘a use case driven approach’

- The development of its Requirements Model :
actors
use cases
interface descriptions
problem domain objects

- Relevant notations from the UML (Unified Modeling Language)

© City University, School of Informatics, Object-Oriented Analysis & Design 3-3

The OOSE emphasis on the user and use cases is not surprising given
Scandinavian concern with participative design.
The method originates from work in the electronics firm Ericsson, and
the book contains a lengthy and very detailed telecommunication
example. Telecommunication is a domain where the application of
object-orientated methods is particularly successful. This is partly due
to the fact that telecommunication software is so complex and changes
so drastically that structure-oriented method have failed. The ESS5
switching system produced by AT&T, for instance, comprises 5 million
lines of C++ code and has been delivered in different configurations to
at least 20 different telecom networks in different countries.
Besides having, or perhaps because of having practical origin, the
object-oriented software engineering method is successful both
commercially and as a teaching method.
The method is also complete, in the sense of covering all stages of
system development, procedures (and notations), and supported by a
case tool called Objectory, which is available here at City University.
Indications from the documentation for the UML suggest that it
includes definitions of all the essential concepts that are required for
OOSE.
In order to start the introduction of OOSE and UML, we are going to
look at what the constituents of a method are...

OOSE Req. Model 3. 3

OOSE BACKGROUND

- Originated in Sweden

" Object-Oriented Software Engineering
 A Use Case Driven Approach "

Ivar Jacobson, Magnus Christerson, Patrik Jonsson
& Gunnar Overgaard, Addison-Wesley , 1992

- Pragmatic method based on experience

- Popular and successful

- Complete method

© City University, School of Informatics, Object-Oriented Analysis & Design 3-4

A method that is to be used during in a certain stage of a software engineering
project has to be defined in terms of the notation that is used for producing the
products expected during that stage and the development heuristics and
procedures used for producing the products.
The notation is defined in terms of syntax and semantics. The syntactic part of
the notation can be determined in terms of a grammar, be it for a textual or a
graphical language. Hence the syntax determines the grammatical correctness
of the grammar. Rules such as dataflows must start from or lead to a process
of a Dataflow diagram would be defined as part of the grammar for a graphical
definition. For the grammar of C++ we would include rules that each statement
must be finished with a semicolon.
The semantics of a language can be distinguished in static and dynamic
respects. The static part typically identifies scoping and typing rules, such as
that declaring occurrences of identifiers must be unique within a certain scope
and that applied occurrences must match with particular declarations. The
dynamic semantics defines the meaning for different concepts of the notation
(that usually have to be correct with respect to syntax and static semantics).
The pragmatics of a method identifies suggestions and heuristics of how a
notation should be used. It identifies which concept of the notation should be
used to express different concerns (such as operations should express
behaviour and attributes should express states) and may suggests orders for
the development (such as identify the different classes, then establish the state
they capture in terms of attributes and finally determine the operations).
We now look at the coarse-grained pragmatics of OOSE and reveal what
different development steps Jacobson suggests...

OOSE Req. Model 3. 4

What comprises a Method?

Method described via

• syntax
(how it looks)

• semantics
(what it means)

• pragmatics
(heuristics, rules of thumb for use)

© City University, School of Informatics, Object-Oriented Analysis & Design 3-5

Jacobson views system development as a process consisting of
stages that produce model descriptions. Each partial model is an
abstraction of the system enabling the developer to make decisions
necessary to move closer to the final (complete) model, the tested
executeable code of the system. Each modelling step adds more
structure; each model is more formal. In the diagram a sequence of
specific objectives is shown under the model titles.
One of the advantages of object-orientation is that it favours
incremental development. Incremental development denotes a
software development process, where it is not necessary to complete
all the requirements before the design can start. In these processes it
is, therefore, not uncommon to define the requirements, design
implementation and test components even though the requirements of
other components have not yet been fully defined. Incremental
processes are supported by object-orientation because the same
concepts, i.e. objects, classes, inheritance, attributes and operations
are used througout the different models. Hence, analysis objects
integrate seamlessly with design objects; from these again there is a
seamless integration with implementation objects. The reverse
direction is equally well supported.
This lecture is concerned only with the first OOSE model,
requirements; the next is about analysis and the following two about
design.
The next thing to do is to show the relationship between processes and
models in OOSE i.e. between the processes and the methods and
techniques for modelling ...

OOSE Req. Model 3. 5

SYSTEM DEVELOPMENT AS ‘BUILDING MODELS’

3 stages and 5 models

Requirements Model:
captures functional
requirements from

user perspective

Seamless, incremental transition between stages and models, iterations possible

Analysis Model:
maintainable with
logical structure;
implementation-

independent

ANALYSIS CONSTRUCTION TESTING

Design Model:
impose implementation
constraints on analysis

model

Implementation Model:
system code written

from the design model

Test Model:
documentation
and test results

© City University, School of Informatics, Object-Oriented Analysis & Design 3-6

The stages that we are concerned with in this lecture are requirements,
analysis and design.
The importance of requirements cannot be overemphasised. It costs in the area
of £1,000-10,000 to rectify an error in the implementation code. Design errors
are about 10 times as expensive to fix than implementation faults. To rectify a
requirements errors again will cost in the order of 10 times as much as a design
fault. Hence requirement fixes might cost as much as £1,000,000, which is
often too expensive and leads to the situation that the constructed system
scrapped completely and never deployed.

OOSE Req. Model 3. 6

O
O

S
E

 M
od

el
s

U
M

L
R

ep
re

se
nt

at
io

ns

A
N

A
LY

S
IS

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
TS

© City University, School of Informatics, Object-Oriented Analysis & Design 3-7

This slide displays the different models that Jacobson suggests to
develop during the different stages. A use case model is developed
during the requirements stage. The use case model is refined during
the analysis analysis stage and sequence diagram and state diagram
models will be developed during the design stage.

OOSE Req. Model 3. 7

S
eq

ue
nc

e
di

ag
ra

m

S
ta

te

di
ag

ra
m

U
se

 c
as

e
m

od
el

U
se

 c
as

e
m

od
el

m
od

el

m
od

el

m
od

el

© City University, School of Informatics, Object-Oriented Analysis & Design 3-8

This slide identifies the different UML diagram types that we will use
during the different stages in order to develop different models.
The most important difference between the approach that we suggest
and Jacobson's approach is the use of class diagrams in the analysis
phase. Class diagrams will specify the static properties of classes
including attributes, relationships and operations.

OOSE Req. Model 3. 8

S
eq

ue
nc

e
D

ia
gr

am

S
ta

te

D
ia

gr
am

C
la

ss
di

ag
ra

m

+
pa

ck
ag

es

C
la

ss
di

ag
ra

m

fir
st

 d
ra

ftU
S

E
 C

A
S

E

M
O

D
E

L

U
se

 c
as

e
m

od
el

+

de
sc

ri
pt

io
ns

C
LA

S
S

D

IA
G

R
A

M

op
e

ra
tio

ns
se

q
ue

nc
e

op
er

at
io

n
st

at
es in

te
rf

ac
e

de
fin

iti
on

 1

in
te

rf
ac

e
de

fin
iti

on
 2

cl
as

se
s

at
tr

ib
ut

es
as

so
ci

at
io

ns

cl
as

 s
es

us
e

ca
se

s

© City University, School of Informatics, Object-Oriented Analysis & Design 3-9

This slide attempts the identification of relationships between Jacobson's
approach and the approach we suggest.

OOSE Req. Model 3. 9

S
eq

ue
nc

e
D

ia
gr

am

S
ta

te

D
ia

gr
am

C
la

ss
di

ag
ra

m

+
pa

ck
ag

es

C
la

ss
di

ag
ra

m

fir
st

 d
ra

ftU
S

E
 C

A
S

E

M
O

D
E

L

pr
ob

le
m

do

m
ai

n
ob

je
ct

 li
st

U
se

 c
as

e
m

od
el

+

de
sc

ri
pt

io
ns

ob
je

ct
 r

ol
es

 a
nd

re
sp

on
si

bi
lit

ie
s

'a
na

ly
si

s

ob
je

ct
s'

© City University, School of Informatics, Object-Oriented Analysis & Design 3-10

This diagram provides the complete overview of the relationship between the
OOSE models and the UML representation we suggest to use. It does not
show any of the incremental cyles which are an unavoidable part of a real
development process. All the elements will be introduce in detail later.
The most important element, by far, in the UML representation is the ‘class
diagram’; its progressive elaboration, in parallel with the use case model, will
dominate the form of the process.
This may sound simple, but unfortunately it is not so. The problem that stands
in the way is that stakeholders often do not have a precise understanding what
they want. Barry Boehm characterised this precisely by "Users tell you: 'I do not
know what I want, but I will tell you when I see it'" [Boeh88].
Hence the requirements modelling stage is concerned with eliciting and
defining the user requirements at a sufficient level of detail so that these
definitions can serve as the definitive input for any later stages.
Now we look at the analysis phase in detail, beginning with requirements. The
purpose of the requirements phase is to define in sufficient detail all the
functional requirements that users expect the system to have...

OOSE Req. Model 3. 10

O
O

S
E

 M
od

el
s

U
M

L
R

ep
re

se
nt

at
io

ns

S
eq

ue
nc

e
D

ia
gr

am

S
ta

te

D
ia

gr
am

C
la

ss
di

ag
ra

m

+
pa

ck
ag

es

C
la

ss
di

ag
ra

m

fir
st

 d
ra

ftU
S

E
 C

A
S

E

M
O

D
E

L

A
N

A
LY

S
IS

S
eq

ue
nc

e
di

ag
ra

m

S
ta

te

di
ag

ra
m

D
E

S
IG

N

U
se

 c
as

e
m

od
el

R
E

Q
U

IR
E

M
E

N
TS

pr
ob

le
m

do

m
ai

n
ob

je
ct

 li
st

U
se

 c
as

e
m

od
el

+

de
sc

ri
pt

io
ns

ob
je

ct
 r

ol
es

 a
nd

re
sp

on
si

bi
lit

ie
s

C
LA

S
S

D

IA
G

R
A

M

op
e

ra
tio

ns
se

q
ue

nc
e

op
er

at
io

n
st

at
es in

te
rf

ac
e

de
fin

iti
on

 1

in
te

rf
ac

e
de

fin
iti

on
 2

cl
as

se
s

at
tr

ib
ut

es
as

so
ci

at
io

ns

cl
as

 s
es

us
e

ca
se

s

'a
na

ly
si

s

ob
je

ct
s'

U
se

 c
as

e
m

od
el

m
od

el

m
od

el

m
od

el

© City University, School of Informatics, Object-Oriented Analysis & Design 3-11

The requirements stage is concerned with what users expect a system
to achieve, it is not concerned with how the system is going to achieve
its objectives. It is sometimes difficult for a software engineer to keep
these two different perspectives apart; hence care should be taken in
order to not confuse them.
In order to identify the objects that are involved in performing certain
functions for a system, it is not sufficient to focus on the system in
isolation. The requirements stage, therefore, takes a more wholistic
view and identifies the embedding of the future system into its
environment. In requirements definitions, it is therefore not uncommon
to have objects, such as the librarian of a library support system, that
will have no representation in the system itself. Also existing systems
that need to be integrated with a new system are often regarded as
objects.
The analysis stage produces two modules to address different
concerns. The requirements model defines how to get the right thing
and the analysis model defines how to get the thing right.
The requirements model has three elements, two models and a set of
more generally defined interface descriptions.
The analysis model, the second component of this phase, is a
description in terms of interface, entity and control objects, considered
in detail in the next lecture.
From the practical point of view taken in this course, it is necessary to
balance the theoretical view with a detailed, sequential account of the
process that we look at on the next slide ...

OOSE Req. Model 3. 11

ANALYSIS STAGE

Primary objectives
- to determine what the system must do
- to embed the software system in its environment

Two concerns
- to get the right thing
- to get the thing right (now and for future)

Products
- Requirements Model
- Analysis Model

customer

requirements

domain object model
use case model

interfaces

Requirements Model

© City University, School of Informatics, Object-Oriented Analysis & Design 3-12

This slide presents an overview of the procedures that have to be
followed when developing the requirements model. The requirements
model consists of use cases. These are used to identify different
scenarios, for instance for different user roles, as to how the system
will be used.
The first step is very much a brainstorming activity where different
scenarios are captured in as many use cases as possible. The second
step tries to identify, order the different scenarios and get rid of
duplicates. The third step refines each of the use cases with a text
describing each use case in more detail. The fourth step identifies
extension so and usage relationships between the so far isolated use
cases. The fifth step refines and completes the use case model. Then
the user interface of the system is defined and tested as the sixth step.
These first prototypes of the system often generates requirements that
were unidentified previously. After that the seventh step defines the
system interfaces to systems that previously existed and need to be
integrated. The eighth step is, in fact, already a preparation of the
analysis phase and it identifies the domain objects. The final and
optional step validates that the informal requirements definitions that
served as an input have been captured in the use cases, user interface
and system interface definitions.
The lectures will concentrate on the concepts and models used,
leaving detailed procedures to tutorial work. For your convenience the
last two pages of these notes include a complete breakdown of the
above steps.
A definition of the inputs and outputs for the steps follows on the next
slide...

OOSE Req. Model 3. 12

PRODUCING A REQUIREMENTS MODEL

Inputs

1 Derive possible use cases
2 Discriminate between possible use cases
3 Generate use case desciptions
4 Identify associations between use cases
5 Refine and complete use cases and use case model
6 Describe and test user interfaces
7 Describe system interfaces
8 Identification of problem domain objects
9 Check incorporation of requirements

Outputs
Notations

© City University, School of Informatics, Object-Oriented Analysis & Design 3-13

The inputs to requirements modelling are the diverse sources from
which system requirements may be derived, and the variety of media
in which they may be carried. Usually there are textual descriptions
that stake holders produce in order to outline the goals that the system
should meet. Also (especially bigger organisations) have business
process descriptions outlining the workflow that a system might have to
support. Finally, meetings with future stake holders where
requirements are explicitly elicitated are often recorded on audio or
video tapes and these tapes might be transcribed in order obtain the
relevant textual description from which requirements can be extracted.
The output will formalise these inputs both in terms of their content, as
use cases and the use case model, and in term of their representation
via UML diagrams and texts.
The notations introduced include all those included in the UML for use
case model, plus the first associations, the generic term used for
relationships in UML.
Let us now begin to consider requirements with an example taken from
Jacobson's book...

OOSE Req. Model 3. 13

REQUIREMENTS MODEL INPUTS & OUTPUTS

Inputs :
- System requirements specifications [multiple media]
- Documentation of existing systems, practices etc.
 that are to be followed [text, graphic]
- Exchanges between developers and users and specifiers [m m]
 Outputs :
- use case model [graphic]
- concise descriptions of use cases [text]
- user interface descriptions [text ... prototypes]
- system interfaces [protocols]
- problem domain object list (names, attributes) [text]
Notations introduced :
• use case diagram (system box, ellipses, names, actor icons,

actor/case links, <uses> and <extends> associations)
• association (<extends>, <uses>)

© City University, School of Informatics, Object-Oriented Analysis & Design 3-14

For the details of this example, consider pages 155-156 of [JCJÖ92].

OOSE Req. Model 3. 14

REQUIREMENTS EXAMPLE

Multi-purpose recycling machine

Machine must:
- receive & check items for customers,
- print out receipt for items received,
- print total received items for operator,
- change system information,
- signal alarm when problems arise.

Recycle Machine

Cans

Bottles

Crates

Receipt

© City University, School of Informatics, Object-Oriented Analysis & Design 3-15

Analysis begins with the identification of actors external to the system;
they are a generic way of describing the potential users of the system.
In identifying actors we will need to consider scenes or situations
typical to the system and its use. Please note that the users might not
necessarily be humans but they might also be other systems that use
the system through its system interfaces.
The important distinction here is between the actor and the user.
Actors are a type perspective while users denote particular instances
of these types. A particular system user, e.g. Jane a warehouse
manager, may at different times take on the roles of many different
actors, e.g. supervisor, driver or operator. Actors only relate to the
system in specified ways in particular use cases.
A distinction between primary and secondary actors is made in OOSE
but not UML. Examples:

•recycling machine:
• customer (primary)
• operator (secondary)

•warehouse:
• supervisor, worker, truck driver, forklift operator (all primary)

•air traffic control:
• controller, supervisor, pilot (primary),
• maintenance team (secondary).

The interaction between the system and the actor is a sequence
known as a ‘use case’ which we will detail on the next slide...

OOSE Req. Model 3. 15

ACTORS

An actor is:
- anything external to the system, human or otherwise

- a user type or category

A user doing something is an occurrence of such a type

A single user can instantiate several different actor types

Actors come in two kinds:
- primary actors, using system in daily activities

- secondary actors, enabling primary actors to use system

© City University, School of Informatics, Object-Oriented Analysis & Design 3-16

A use case is a generic description of an entire transaction of events
involving the system and objects external to it. A use case can
therefore be seen as a description of different states and the events
that make the system transit from one state to another.
Together the uses cases represent all the defined ways of using the
system and the behaviour it exhibits whilst doing so.
Again we separate types and instances for use cases. Each use case
is a specific type of using the system. A scenario (in UML) denotes an
instance of a use case. When a user (an actor instance) inputs a
stimulus, the use case instance (a UML scenario) executes and starts
a transaction belonging to the use case, consisting of actions to
perform.
In OOSE the sytem model, as a whole, is use case driven. So if you
want to change the system’s behaviour, you should remodel the
appropriate actor(s) and use case(s).
On the next slide, we revisit the recycling machine example and look at
examples of its use cases...

OOSE Req. Model 3. 16

USE CASES

A use case
- constitutes complete course of events initiated by actor

- defines interaction between actor and system
- is a member of the set of all use cases which
 together define all existing ways of using the system

instantiated as instantiated as

actor use caseinitiates

user scenarioinitiates

© City University, School of Informatics, Object-Oriented Analysis & Design 3-17

The top of this slide includes a description of an example use case for
the recycling machine, plus one scenario that instantiates the use case
for a particular user.
Another example of a use case for a familiar London Underground
machine is given below:
Destination_Ticket (alternative to Zone_Ticket) begins when a potential
Traveller approaches the ticket machine. The machine displays an
introductory message inviting choice of destination. Traveller picks
destination. Machine dispays message inviting choice of ticket.
Traveller picks a ticket type and the machine responds with the price.
After the traveller has inserted enough money, the machine dispenses
the ticket and any change. Machine then prepares for its next
customer.
The set of all use cases is represented in the ‘use case model’, for
which there is a special diagram in OOSE, adapted almost exactly in
the UML. We look at these diagrammatic notation on the next slide...

OOSE Req. Model 3. 17

EXAMPLES OF USE CASES

 Returning items is started by Customer when she wants to return cans,
bottles or crates. With each item that the Customer places in the
recycling machine, the system will increase the received number of
items from Customer as well as the daily total of this particular type.
When Customer has deposited all her items, she will press a receipt
button to get a receipt on which returned items have been printed, as
well as the total return sum.

 NB Particular instances of use would be different
 “ The morning after the party Sarah goes to the
 recycling centre with three crates containing ”

© City University, School of Informatics, Object-Oriented Analysis & Design 3-18

A ‘use case model’ combines all the use cases of a system and at the
top level helps to visualise the context of the system and its boundary.
The diagram notation used for expressing the use case model is
defined in the UML. Actors are classes, notated in their simplest form
as stick figures with an instance name (or class box). Ellipses
represent the different use cases and have an identifier naming them.
Also the whole name is given a name. Lines identify the associations
between actors and use cases.
In this model an actor, for example a ‘clerk’ in a model of a bank
system, can be associated with an number of different cases, e.g.
‘counter transaction’, ‘cheque clearing’, ‘audit’ and more than one actor
with one use case e.g. ‘customer’ and ‘operator’ in a ‘stuck_item’ use
case in the recycling machine example.
The identification of each use case requires a detailed consideration of
the system’s requirements. A systematic approach representing the
different use cases will be presented on the next slide.

OOSE Req. Model 3. 18

USE CASE MODEL

Generate
report

Operator

Customer

Recycling Machine

A use case model
- presents a collection of use cases
- characterise behaviour of whole system,
 plus external actors

Returning
item

Change item
information

© City University, School of Informatics, Object-Oriented Analysis & Design 3-19

In order to kick off the use case modelling different scenes and situations should be
identified from the problem domain that is to be addressed by the system to be
developed.
The next step should aim at identifying the different actors that are involved in each
scene. Remember that not only the human actors should be identified but also actors
that are other system should be considered.
Keeping this information in mind the specifications, transcripts of recorded information
that form the input to the requirements modelling stage should be revisited for each
actor in order to identify the main tasks that the actor would need to perform with the
system.
Then the information objects that each actor would need to access (read), create
(write) or change would need to be identified.
Actors would usually use the system in response to outside events/changes. A clerk in
a bank, for instance would use the system in order to input a transaction that is
required to bank a customer`s cheque. Hence, the fact that a customer has handed in
a cheque would be considered as an outside event.
Next, the events/changes that actors need to be informed about should be identified.
Then the gathered information should be used to draft use cases, essentially detailed
text descriptions of the interactions between actors and the system.
Then the system boundary should be drawn, clearly separating what parts of the
processes/procedures are going to be embedded into the system and which are not.
Finally, the initial use case model should be drafted using the graphic UML notation.
Note that at any of these steps it might become necessary to interact with
stakeholders in order to resolve incompleteness and inconsistencies.

OOSE Req. Model 3. 19

IDENTIFYING USE CASES

• Consider situation,

• Identify actors,
• Read specification,

• Identify main tasks,

• Identify system information,
• Identify outside changes,

• Check information for actors,

• Draft initial use cases, [text]

• Identify system boundary,
• Draft initial use case model [graphic]

© City University, School of Informatics, Object-Oriented Analysis & Design 3-20

Discrimination between cases is difficult because there may be so
many levels of difference. OOSE provides only weak rules for
discriminating between separate use cases.
The simplest discrimination are frequency, variation and alternation.
A fairly useful suggestion of Jacobson is to distinguish between basic
and alternative courses of events. A basic sequence of events would
identify the normal situations in which a system would be used. A
sequence of events would be denominated as alternative if the events
represent exceptional conditions that would not be considered as
normal.
This distinction, for instance, allows developers later to tune the
system to perform efficiently for those cases that are rather usual and
trade in performance of those cases that occur less frequently.
On the next slide we will revisit the recycling machine example and
elaborate the ‘Returning item’ use case...

OOSE Req. Model 3. 20

WHEN IS A USE CASE ?

Discrimination between possible use cases

- Estimate frequency of use,

- Examine degree of difference
 between cases
- Distinguish betweeen 'basic' and

 'alternative' courses of events
- Create new use cases where necessary

© City University, School of Informatics, Object-Oriented Analysis & Design 3-21

In this returning item use case we now distinguish basic, i.e. different
normal sequences of events from alternative flows, i.e when error
conditions appear.
We would have to elaborate the use case we had earlier for the
London Underground ticket machine to include at least one altenative
for a Traveller who makes choices in the ‘wrong’ order.
In considering such problems you can often find that a use case, while
being independent, may have a clear association within another use
case because it somehow represents a special case that extends an
existing use case.
We will now look at different associations between use cases...

OOSE Req. Model 3. 21

Elaborated example

BASIC - When the Customer returns a deposit item, it is measured by
the system. The measurements are used to determine what kind of
can, bottle or crate has be deposited. If accepted, the Customer total is
incremented, as is the daily total for that specific item type.

ALTERNATIVE - If the item is not accepted, 'NOT VALID' is highlighted
on the panel.

BASIC - When Customer presses the receipt button, the printer prints
the date. The customer total is calculated and the following information
printed on the receipt for each item type: name, number returned,
deposit value, total for this type. Finally the sum that the Customer
should receive is printed on the receipt.

© City University, School of Informatics, Object-Oriented Analysis & Design 3-22

In order to complete a ‘use case model’ it is often necessary to indicate
a number of variations, generically called extensions :-

•parts that may be optional;
•complex and alternative cases that are rare;
•separate sub-cases executed in some cases or circumstances;
•situations where different use cases can be inserted into or

interrupt another use case
For an example let us reconsider the recycling machine again: When
an item gets stuck the alarm is activate to call the Operator. When the
Operator has removed the stuck item she resets the alarm and the
Customer can continue to return items. The customer's total so far is
still valid. The Customer does not get credit for the stuck item.
UML provides a specific type of stereotypical association called
<<extends>> (using double arrowed notation for a <<stereotype>> of
some kind) and dashed arrowed line.
Further refinements are possible, including the <<uses>> association
discussed on the next slide...

OOSE Req. Model 3. 22

USE CASE EXTENSIONS

Extensions provide opportunities for :

- optional parts

- alternative complex cases
- separate sub-cases

- insertion of use cases

returning item

item stuck

UML <<extends>> association

© City University, School of Informatics, Object-Oriented Analysis & Design 3-23

One way of coping with the complexity of modern systems is to reuse
solutions that were developed for previous systems. Typically reuse is
associated with the implementation stage where developers aim at
reusing previously developed source code fragments.
Reuse is probably even more effective in the earlier stages of system
development, such as requirements. To achieve such reuse
knowledge for a domain has to be elaborated in a way that it can then
be (re-)used in a particular system development effort of that domain.
The UML use case constructs, therefore, include language concepts
that enable developers to abstract use cases so that they are valid in a
broader domain and then can be instantiated for a particular system.
These uses cases are related by the <<uses>> association as
suggested in the example above. The example identifies an abstract
use case (print receipt) that is then specialised in the returning item
and daily report use case.
Similarly we can identify more abstract actors that are specialised in
more concrete actors in a way that the concrete actors inherit all the
properties from the abstract actor.
This approach then also provides useful information that can be used
for the identification of abstraction in later stages, such as the analysis
and design stage.
Once use cases are refined, or even before, it is possible to work on
the other elements of the requirements model: interface descriptions
and problem domain objects. This will be elaborated on the next slide...

OOSE Req. Model 3. 23

REFINEMENTS

Abstract use case

Concrete use case

Abstract actors

Concrete actors

Receipt Receiver

Customer Operator

inherits inherits

Print

Returning Item Daily Report

<<uses>> <<uses>>

© City University, School of Informatics, Object-Oriented Analysis & Design 3-24

Use cases are used to formalise requirements from informal
requirements specifications, transcripts of recorded requirements
elicitation meetings and other discussions with stakeholders.
An orthogonal (and constructive) way of obtaining further requirements
is to use the information that was accumulated during the use case
modelling for the description or even the prototyping of user interfaces
for the later system. A user interface is human machine interface
through which human actors interact with the system.
There are mechanisms by means of which just the graphical user
interface with its windows, menus and forms can be effectively
generated. After exposing users to these prototypes they will be able to
tell what they like and what they do not like and even more importantly
what is missing.
However, it is important to note that these user interface prototypes
are included solely as a means of requirements capture and building
use cases, not for the purposes of detailed design. They are regularly
discarded after they have served to identify the requirements.
The user interfaces in the recycling machine example include:

•customer panel (holes, buttons etc.),
•receipt panel,
•operator interface.

System interfaces for non-human actors are defined in terms of the
protocols necessary for the communication between the different
systems involved.

OOSE Req. Model 3. 24

USER INTERFACE DESCRIPTIONS

• Describe user interfaces

• Test on potential users,
 if necessary using
 simulations or prototypes

• Describe system interfaces
for non-human actors

Operator’s interface

Change bottle data
Type:
Size:
Value:

© City University, School of Informatics, Object-Oriented Analysis & Design 3-25

In the longer term the identification of problem domain objects is an
essential prerequisite for preparing a class diagram. At the
requirements model stage its importance lies in the necessity for:-

•definition of objects in use cases, and,
•communication between the developers and those who have

commissioned or use will use the system.
In OOSE objects are refined progressively in stages. The later stages
of refinement are not really possible within context of the requirements
model because they must cope with dynamic characteristics. In the
view of Jacobson, other methods (presumably like OMT), rely
completely on object models, which can result in a fixed and inflexible
structure.
The next slide revisits the recycling machine example to illustrate how
to find basic domain objects...

OOSE Req. Model 3. 25

PROBLEM DOMAIN OBJECTS

• Object in specification
• Direct counterpart in the
 application environment
• System knowledge obligatory

Refinement in stages :
Object noun ->

Logical attributes ->
Static associations

Inheritance ->
Dynamic associations ->

Operations

© City University, School of Informatics, Object-Oriented Analysis & Design 3-26

The left hand side identifies the various objects. They were found by
searching the use case descriptions for relevant nouns. Candidate
attributes for these objects are identified by looking at properties of
these nouns in the use case descriptions.
At this stage ‘attributes’ are particular characteristics associated with
each object in the problem domain. At next stage we introduce the
notation in which every object contains name, attributes (containing
information derived from ‘static’ associations of object) and operations
(defined via its dynamic asociations)
On completion of such a list we have the essential outputs from the
requirements stage. The next slide displays where we are...

OOSE Req. Model 3. 26

OBJECT EXAMPLES

OBJECT ATTRIBUTES
name characteristic / information : type

Deposit item name: string, total: integer, value: ECU
Can width: cm, height: cm
Bottle width: cm, height: cm, bottom: cm
Crate width: cm, height: cm, lenght: cm
Receipt total cans: int, total bottles: int, ...
Customer panel receipt button: button
Operator panel bottle data: cm, ...

© City University, School of Informatics, Object-Oriented Analysis & Design 3-27

The diagram summarises the stage reached so far, having produced
the listed outputs.
Having completed work on requirements, we can move on to the initial
stage of developing the analysis model, which involves drafting an
initial class diagram to elaborate the list of objects from the problem
domain. This will be done in the session next week.

OOSE Req. Model 3. 27

REQUIREMENTS MODEL

Outputs :
- use case model [graphic]

- concise descriptions of use cases [text]
- user interface descriptions [text ... prototypes]

- system interfaces [protocols]

- problem domain object list (name, attribute: type) [text]

Class
diagram
first draft

USE CASE
MODELUse case

model

Requirements model
problem
domain
object list

Requirements specifications

use
cases

© City University, School of Informatics, Object-Oriented Analysis & Design 3-28

In OOSE almost everything is a model of some kind and building
systems means building such models. The first one, for requirements,
is the means for ensuring that, from the point of view of the users and
those commissioning the system, it will be clearly related to
documented expectations of use. The use case model provides the
first stage of formalising the requirements in a way that they can be
used throughout the subsequent stages of development. Specific user
interface descriptions, a subject in itself not covered here, provide an
additional dimension. Finally the problem domain objects comprise the
first stage in the primary sequence of formalisation, the development of
a class diagram in UML.
For your background reading, we would suggest the following
references:

[JCJÖ92] The Requirements Model. Section 7.2. pp. 153-174. 1992.
[Boeh88] B.W. Boehm: A Spiral Model of Software Development

and Enhancement. IEEE Computer. pp 61-72. May 1988.

OOSE Req. Model 3. 28

SUMMARY

• System development as model building

• Requirements model “to get the right thing”

• System use in context via the use case model

• User interface descriptions

• Problem domain objects as prelude to class diagram

© City University, School of Informatics, Object-Oriented Analysis & Design 3-29

REQUIREMENTS MODEL
Stages of production

Inputs:
- System requirements specifications [multiple media]
- Documentation of existing systems, practices etc. that are
 to be followed [text, graphic]
- Exchanges between developers and users and specifiers [m m]

1) Derive possible use cases from requirements specification
- consider possible scenes or situations
- identify actors
- read spec from each possible actor's perspective,
- identify main tasks associated with each individual actor,
- identify system information read, written or changed by actor,
- identify outside changes which actor informs system about,
- check if actor needs to be informed of unexpected changes,
- draft initial use cases (? using templates) [text]
- identify system boundary and draft initial use case model
 [graphic]

2) Discriminate between possible use cases
- estimate frequency of use,
- examine degree of difference between cases
- distinguish betweeen 'basic' and 'alternative' courses of events
- create new use cases where necessary

3) Generate for each use case a desciption in natural language text and create a full use
case model [text, graphic]

4) Identify <extends> associations between use cases by modelling:
- optional parts
- complex and alternative cases that are rare
- separate sub-cases executed in some cases or circumstances
- situations where different use cases can be inserted into or interrupt a use case

5) Refine and complete use cases and use case model
- identification of ‘abstract’ and ‘concrete’ use cases (<uses>)
- identification of ‘abstract’ and ‘concrete’ actors

OOSE Req. Model 3. 29

development procedure stages 1 - 5

© City University, School of Informatics, Object-Oriented Analysis & Design 3-30

REQUIREMENTS MODEL (continued)
Stages of production

6) Describe user interfaces and test on potential users, if necessary using
simulations or prototypes

7) Describe system interfaces for non-human actors
in terms of communication protocols etc.

8) Initial identification of problem domain objects, beginning with a 'noun list' derived
from the use cases and specification

9) Check whether, and how, all requirements
specified by inputs have been incorporated

Outputs:
- use case model [graphic]
- concise descriptions of use cases [text]
- user interface descriptions [text ... prototypes]
- system interfaces [protocols]
- problem domain object list (names, attributes) [text]

Notations introduced:
use case diagram
(system box, ellipses, names, actor icons, actor/case links,
<uses> and <extends> associations)
association
(<extends>, <uses>)

Transition from Requirements model to Analysis model unlikely to take place without
iterations.

Model outputs and intermediate products should be retained as part of final
documentation, useful for checks, traceability and rationale.

OOSE Req. Model 3. 30

development procedure stages 6 - 9

