
© City University, School of Informatics, Object-Oriented Analysis & Design 2- 1

Last week, we have set the scene for this module by identifying the
need for abstraction, hierarchy and decomposition during the analysis
and design phases of a software project.
The purpose of this week's lecture is to give an overview of the
principles lying behind object-oriented analysis. The theme of this week
can therefore be considered as: What are the concepts that are unique
to object-orientation and do not exist in structured approaches?
Hence, we will be focussing on object-oriented concepts rather than
their specific use in object-oriented notations, methods or programming
languages.
On the next slide, we are going to review issues about object orientation
we had touched on in the last week and review what object-orientation
is all about...

OOAD Introduction 2. 1

Lecture 2

Object-Oriented Analysis : Principles

Dr Neil Maiden
Dr Stephen Morris

Dr Wolfgang Emmerich

School of Informatics
City University

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 2

Object-orientation provides concepts, notations and methods for
producing a model of a system.
The Oxford English Dictionary defines the term model as: “A simplified
representation or description of a system or complex entity, esp. one
designed to facilitate calculations and prediction”.
As we saw last week there are at least two main types of model
suggested by Booch, ‘logical’ and ‘physical’, each themselves
comprising ‘static’ and ‘dynamic’ versions. Jacobson requires five
(domain object, analysis, design, implementation, testing). We are able
to use object-orientated principles and notations in any of these models,
which simplifies the incremental development of those models.
Notations and methods are at the core of all software engineering
practice. It is important that object-orientation can provide a sound
semantic basis for both (and for models).
Object-orientation simplifies the development of the models as object-
oriented notations are fairly expressive and therefore can express
models that are 'closer' to what has to be modelled from the real world.
The expressiveness of object-orientation also facilitates a dense
notation of models, which again makes it easier for consumers of
models to understand and digest them.
Probably the most important advantage of object-orientation is that it
supports the important principle of information hiding. Therefore, design
decisions athat are local to a certain part of the model can be kept local
and be hidden from the outside. As they are hidden, they can be freely
changed without interfering with other parts of the model.

OOAD Introduction 2. 2

What’s object-orientation all about ?

Principles and techniques for system modelling which:
- aim to produce a model of a system
- provide notations and methods

Advantages for software development:
- reduces the ‘semantic gap’ between reality and models
- makes system understanding easier
- allows local modification to models

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 3

This slide presents an overview of the concepts that are fundamental to object-
orientation and that we are, therefore, going to discuss this week.
We are going to define what objects are in terms of the concepts that define
the object.
We are then going to review classes as a mechanism to define the properties
that similar objects have in common. Classes will also provide a mechanism to
create objects in the first place.
We are then going to look at encapsulation, i.e. how information hiding is
supported and how properties that are local to an object can be hidden from
the outside in order to improve the changeability of the analysis, design and
implementation decisions made for that object.
The first three characteristics relate to the object itself. It is somehow single, a
recognisable entity; it is self contained and it is like other objects. The fourth
and fifth characteristics concern its associations with other objects, the ability
to communicate with different varieties of object and inherit qualities which
make it the same as other objects.
Inheritance can be considered as a notation for defining the similarity of
several classes of objects. It provides the basic mechanism for abstraction,
which allows properties common to multiple classes of objects to be defined
only once in an abstract class. Then more specific classes inherit all properties
from the abstract class; the do not need to be redundantly defined.
Finally polymorphism refers to the fact that object of different classes can be
treated by operations and be stored to variables.
To start looking at these concepts in detail, we examine what objects exactly
are?

OOAD Introduction 2. 3

LECTURE OVERVIEW

Basic principles of object-orientation:

- objects
- classes of object
- encapsulation

- inheritance
- polymorphism

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 4

This slide displays two definitions of what an object is. The definitions
were given by Coad & Yourdon and Jacobson.
Depending on which phase of the system life cycle a method is used in,
the definitions given for objects refer to something more or less abstract
or practical., In other words, they may be more or less close to
something in the real world (the problem domain) or to the way in which
that something might be represented in a software system.
For the course of this lecture we would consider the following
characteristics of an object to be essential:

•Objects have an internal state that is recorded in a set of attributes.
•Objects have a behaviour that is expressed in terms of operations.

The execution of an operations changes the state of the object
and/or stimulates the execution of operations in other objects.

•Objects (at least in the analysis phase) have an origin in a real
world entity.

This relationship to real world entities is an issue of abstraction as we
shall see on the next slide..

OOAD Introduction 2. 4

AN OBJECT

An object is:

"An abstraction of something in a problem domain,
reflecting the capabilities of a system to keep information
about it, interact with it, or both”
(Coad & Yourdon 1991)

"An entity able to save a state (information) and which
offers a number of operations (behaviour) to either examine
or affect this state"
(Jacobson 1992)

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 5

It is obviously essential to be able to differentiate one object from
another; there must be a clear boundary. However different people with
different perspectives or roles in a problem domain may view and define
the characteristics of a single object quite differently.
The (sometimes very difficult) task of a system analyst is then to capture
these different views and model them in a coherent way in appropriate
objects.
In software engineering and object database research there have been
several approaches proposed as to how the life of a system analyst can
be made easier through the explicit capturing of views that coherently
define a single perspective on a set of (related objects). We are,
however, not detailing these approaches during the course of this
lecture as they have not (yet) been introduced into the mainstream
object-oriented approaches.

OOAD Introduction 2. 5

OBJECTS & ABSTRACTION

"An abstraction denotes the essential characteristics of
an object that distinguish it from all other kinds of objects
and thus provide crisply defied conceptual boundaries,
relative to the
perspective of
the viewer "

(Booch 1994)

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 6

This slide displays a number of examples for objects. Objects can be
very different, they can be passive or active things, they can represent
humans, organisational structures or even processes such as a holiday.
Objects in isolation are of limited value; they need to be considered
within a certain context and in order to express dynamics and to show a
certain behaviour, they need to be stimulated through other objects and
stimulate other objects.
In this example, Richard Green is using a fax machine and has David
Brown as his manager. Hence, it is necessary to set the object
representing Richard Green in proper context and associate it to the
object representing David Brown and the object representing the Fax
machine.
On the next slide we are going to see the structural characteristics of an
object...

OOAD Introduction 2. 6

SAMPLE OBJECTS FROM ‘A FOOD MANUFACTURING COMPANY’

- passive objects :
one individual sack of lentils
one packet of herbal tea
invoice 63501 sent to A Farm, Lincolnshire

- active objects :
lorry "M235 BCM"
van "N683 CNM"
fax machine in Richard Green's office

- human agents :
Richard Green
David Brown (Executive)
Hill, D (Truck driver)

- structure objects :
Marketing Department

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 7

An object has both attributes and associations.
Attributes determine the characteristic features or properties that belong
to the object itself. An attribute is a name value pair. The name of the
attribute should be carefully chosen so that it suggests the proper
semantics of the attribute. The name is then used to access the value of
that object. The value of an object's attribute frequently change over
time, though the name of the object's attribute never change. Names
may be changed if the object model evolves but then the object
becomes a different object.
Associations are used to identify certain kinds of relationships that an
object has with one or more other objects. Hence associations are used
to set an object into context with other objects. Associations also have
names and they sometimes also have attributes of their own.
Modelling of objects often allows a choice between using an attribute or
an association to represent a particular feature. Choice will depend on
particular purpose of model; as a rule characteristics that are internal
only should be attributes, even though the value of the attribute may be
another object. If that other object, however, should be aware that it is
an 'attribute' of some object it should rather be modelled as an
association.
We will now see that there is a great variety of associations...

OOAD Introduction 2. 7

ATTRIBUTES AND ASSOCIATIONS

Any object has both attributes and associations

Attributes
• characteristic features or properties
• name / value pairs

Association
• any kind of link or connection
• between one object and one or a set of other objects

Characteristics private to an object

best represented as attributes

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 8

Association will be used as the most general term, covering all types of
relationships. It is now also incorporated into a ‘catch-all’ term in the
UML.
Different kinds of relationships can be distinguished. Aggregation
relationships are used to form composite objects. A composite object is
an object that has component objects. These component objects are
related to the composite object through an aggregation relationship. The
composite object has a certain behaviour that applies to all components,
e.g. deletion. If the composite object is deleted then all component
objects are deleted as well.
Reference relationships, however, only related two objects. Then one of
these object can easily identify the other one in order to, for instance,
stimulate a the execution of a certain behaviour.
Static relationships are relationships that are stored in order to keep
them over a longer period of time. This is appropriate if the relationship
exists for long, i.e. the objects participating in the relationship do not
change frequently.
Dynamic relationships are computed by operations and are not stored.
In that way updates are not required when the relationship has to be
changed, This is used if membership in relationships frequently change.
Aggregation relationships tend to be static, whereas reference
relationships can be both static and dynamic.

OOAD Introduction 2. 8

ASSOCIATIONS are RELATIONSHIPS
Two essential oppositions :

aggregation vs reference relationships

- aggregation relationships
where connection creates composite objects from simple objects
- reference relationships
where connection only refers to another object

static vs dynamic relationships

- static relationships,
where coupling of objects is stored over a long period of time,
- dynamic relationships,
which are established by operations

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 9

The distinction between types of association is dependent in part on the
view of the object and the purpose of the observation.
If considered from the component objects the term aggregation is
correct but if we consider the composite object's perspective then the
object is partititioned into component objects.
A potential author may see his or her work as partitioned, but the
publisher’s printer will see it as an aggregation. In an hierarchical
representation arrows indicating association will be in different
directions.
This is why sometimes relationships are given two names for the links
they have in different dirctions.
Other forms of associations depend on the meanings attached to
objects and their purposes e.g. all associations defining social or
organisational structures.
Please note, that objects may have more than one association e.g.
‘sibling’ between members of a ‘family’ ‘consisting of’ ‘adults’ and
‘children’.
Having described generally an exterior view of an object, we are going
to look now what can be said about its specific characteristics, that
might be defined within it?

OOAD Introduction 2. 9

VIEWPOINT OF ASSOCIATION

View and purpose affect definition of association

Partition or division
Association indicating new objects created by splitting other objects
apart ,

e.g. A book ‘consists of’ or ‘can be divided into’ :
title page, introduction, chapters, conclusion, index

Aggregation or amalgamation
Association indicating new objects created by adding other objects
together

e.g Covers, binding, end papers, printed pages
are ‘joined in’ a book

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 10

An important aspect of o-o analysis is the transformation of the type of
view on the left to that on the right, by the abstraction of characteristics,
for which there is no standard algorithm. This process can uncover a
multiplicity of different associations of different kinds and between same
objects, e.g. Gordon has both static and dynamic relations with his
terminal.
An object has :

•fixed, private attributes,
•relationships with other objects that are static,

In addition an object behaves in particular ways via :
•operations computing dynamic relationships with other objects, and,
•operations relevant to itself.

Hence the Junior librarian gordon is seen as an object that has
attributes that identify his name, position, age and salary. These are
modelled as attributes because they inherently belong to the object that
represents Gordon. Likewise Gordon has static relationships to other
objects modelling entities, such as his supervisor, a timetable and
certain equipment that he can use. These are modelled as relationships
because these other objects also have to know about the object
modelling Gordon. Gordon has a certain behaviour.
Please note that it is not unlikely that associations that are modelled as
relationships at some stage will become attributes (when it is recognised
that they are private to the object) or become operations (when it is
recognised that they should be dynamically computed).

OOAD Introduction 2. 10

STRUCTURE AND BEHAVIOUR OF OBJECT

Gordon, Junior Librarian, as object

Attributes
Name: Gordon
Position: Junior
 Librarian
Age: 25
Salary: 12,000
......

Relations

Supervisor

Operations
Loan out books

Rename position
Amend salary

Timetable
Equipment

M
T
W
T
F

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 11

This slides includes examples of passive, active, human and structure
objects and details the examples of objects that we had on an earlier
slide.
The slide shows relationships by indicating the identity of objects as
names which is a rough approximation. In reality relationships will be
established between two or more objects that are properly identified.
We are, therefore, going to see now how objects are identified (e.g. for
the participation in a relationship).

OOAD Introduction 2. 11

BEHAVIOUR AND STRUCTURE IN ‘A FOOD MANUFACTURING COMPANY’

Attributes
Price: 2.95
Weight:
1kg
..........
Relations
Order: 57891
Delivery: 57891A
Supplier: A Farm

Operations
Is Stored
Is Sold
Is Delivered

One packet of herbal tea

Attributes
Age: 45
Sex:
Male

Managing Director

Operations
Decide policies
Attend meetings
Manage Board
 meetings

Richard Green

Attributes
Staff: 50 people
Location: High St

Marketing Director
Marketing Team

Market All Products
Choose New Products
Determine Market
Niches

Marketing Department

Attributes
Reg: M235 BCN
Weight: 7.5 tons
Fuel level: 40 litres

Driver Hill, D
Trailor
SSFG12

Operations
Deliveries Goods
 Repeat Until End
 Go To
Destination
 Unload Goods
 EndRepeat
 Refuel....

Lorry M235 BCN

Relations

Relations

Relations

Operations

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 12

In the relational data model, different tuples cannot be separated if all
their attribute values are the same. Hence it is important in relational
data modelling to identify primary key attributes. These are then used to
identify tuples.
The object-oriented approach to identification is different. Any object has
its own identity. Object identity is implemented by the run-time
environment of object-oriented programming languages. Hence it does
not need to be modelled. The object-oriented approach also separates
equality from identity. Two objects are usually considered equal if their
attribute values and the relationships they participate in are the same,
they may still be not identical though. Two objects are identical if they
have the same identity.
The example given on this slide displays two objects that are equal, but
not identical. They represent two different persons (e.g twins) that
happen to have the same names, age, salary and are working in the
same position. Still in the object-oriented approach we can tell that they
are different people without having to introduce artificial primary key
attributes.
In object-oriented programming languages object identity is made
available to the programmer. Object identity has different names, such
as 'object references', 'unique object identifiers' or 'object pointers'. In
essence these are all the same in that they uniquely identify objects.
As we will see on the next slide object identity is also needed for
stimulating the dynamics of objects...

OOAD Introduction 2. 12

Object Identity

Separate objects each have a unique object identity

Attributes
Name: Gordon
Position: Junior
 Librarian
Age: 25
Salary: 12,000
......

Relations

Operations
Loan out books

Rename position
Amend salary

Ti
m

eta
bl

e

Equipm
ent

Attributes
Name: Gordon
Position: Junior
 Librarian
Age: 25
Salary: 12,000

......

Relations

Su
pe

rv
iso

r

Operations
Loan out books

Rename position
Amend salary

Tim
etable

Equipment

Supe
rvi

sor

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 13

In order to be come active objects have to be activated or stimulated.
This is usually achieved by passing messages between objects.
Note that the object identity is used to identify the target object to which
a message is to be sent.
The receipt of a messages activates the object and the object will
execute an operation that is identified by the message. Operations are,
therefore named and this name is usually used in the message. The
message may also include parameters that the operation will need for
execution. Once the operation is finished the result is sent back to the
sender of the first message.
The example in the lower right corner displays a set of messages that
would be sent between an object representing librarian Gordon, an
object for student Natalie and a library management system.

1 Message for "Loan-out books" operation by Gordon is request to
loan books from Nathalie, a student

2 Gordon registers loan
3 System flags excess borrowing message
4 Gordon tells Natalie she’s over limit

In this exchange the internal operations of each ‘object’ are hidden
unless, for example, Gordon describes outloud every step he takes
(which he might do in a requirements gathering exercise).
In object-orientation, the principle of encapsulation embodies this idea of
self-contained objects which only expose their exterior, their ‘interfaces’
to other objects.

OOAD Introduction 2. 13

DYNAMICS OF OBJECTS

Dynamics are generated through
stimuli or messages
passing between objects

- Receipt of a stimulus cause operation
by (or in) the receiving object

- Receipt of a stimulus can trigger

sending of another stimulus to
other objects

1

2

3

4

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 14

The two quotes shown on the top of this slide indicate that
encapsulation can be seen as both :
a) an essential quality of object-orientation and
b) one of the activities involved in analysis (the emphasis of Booch)
The idea behind encapsulation is information hiding. Encapsulation
means, literally, turning something into a capsule, i.e. into a small,
sealed container whose contents are normally invisible from the outside,
with consequences for ‘visibility’ of both operations and data.
The motivation for both information hiding and encapsulation is that
changes of only those concepts can affect other concepts if the other
concepts use them. If a concept is hidden other concepts cannot rely;
hence they are not affected if the hidden concept is changed. Hence
encapsulation is a way to improve the changeability and maintainability
of a system composed of objects.
This is rather abstract in more practical terms the application of this
principle in an object-oriented setting means that attributes are hidden
because the name and types of attributes frequently change. Also the
implementation of operations are hidden as other objects should not
need to know anything how the operation is achieved.
To achieve encapsulation in analysis and design phases we are usually
only interested in the externally visible part of objects that is sometimes
referred to as the object's interface.
Object-oriented programming languages that are used in coding phases
usually have concepts to separate the externally visible interface of an
object from the code that implements the object.

OOAD Introduction 2. 14

ENCAPSULATION

“Behaviour and information are encapsulated in objects”
 (Jacobson 1992)

“Encapsulation is the process of compartmentalising the
elements of an abstraction that constitute its structure
and behaviour” (Booch 1995)

- Only the 'interface' of an object is 'visible' to other objects
- Need, and can, only know operations on an object,

not how they work nor about other characteristics

- Necessary prerequisite for information hiding

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 15

Let us get back to Gordon and see what encapsulation means in his
case. Gordon will have particular personal characteristics and
responsibilities in relation to the users of the library. These factors are
being encapsulated in attributes and relations, e.g. salary, age, loan out
books. The only way to access them is to use the operations provided
as the operation are exported as it is suggested by the little circles that
break through the capsule.
Note that encapsulation and abstraction are complementary concepts.
The encapsulation has to be defined for classes at every level of
abstraction.
The universe has, so far, become populated with a potentially vaste
number of objects. The concept of class that we are going to introduce
on the next slide begins to simplify this profusion.

OOAD Introduction 2. 15

Encapsulation and abstraction are complementary concepts

- Abstraction focuses on the
observable characteristics
and behaviour of the object

- Encapsulation focuses on
the representation derived
from these characteristics

- Encapsulation requires :
explicit division between abstractions
clear separation of their concerns

ENCAPSULATION continued

Attributes
Name
Position
Salary
Age

Operations
Loan out books

Rename position
Amend salary

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 16

In any information system, there are many objects that share the same
behaviour and information structure. In a library, for instance, there are
thousands of book copies and a library information system will have as
many objects. Each of them has the same set of attributes (names, not
values) and relationships modelling the relevant concepts of a book
copy and the same behaviour. As it is unfeasible to define these
concepts for thousand of book copy objects individually we have to find
a mechanism to define the concept once for all objects that have the
same information structure and behaviour. The concept that we use for
that purpose are classes.
A class is a type that defines the common properties of a number of
objects that are similar in structural and behavioural properties. For a
class we define the attributes it has, the relationship instances of the
class can participate in and the operations that instances of the class
can execute.
We also define for a class which of these properties are externally
visible, i.e. that are exported, and which are private and hidden from the
outside.
Classes are the essential common feature of both analysis and
subsequent design.
Let us know look at examples of classes...

OOAD Introduction 2. 16

CLASSES OF OBJECTS

- Classes represent groups of objects
which have the same behaviour and
information structures.

- Class is a kind of type,
an ADT (but with data),
or an 'entity' (but with methods)

- Classes are the same in both analysis and design

“A class represents a template for several objects ...
Objects of the same class have the same definition both for their
operations and for their information structure” (Jacobson 1992)

Common
features

"abstracted from"

Classes

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 17

Principle concern of object-oriented analysis is the class, not the
instance.
Examples here show classes at the earliest analysis stage, identifying
all common characteristics of each class, including the (static) relations
with other classes and the behaviours that will come to be defined as
specific internal and external operations.
Please note that the term ‘object’ is often used very loosely, eg a class
of objects can itself be refered to as an object.
Having defined classes, each object becomes a particular instance of
the class to which it belongs and we look at the class/instance
relationship now.

OOAD Introduction 2. 17

SAMPLE CLASSES FROM ‘A FOOD MANUFACTURING COMPANY’

Attributes
Price
Weight
.......

Relations
Order
Delivery
Supplier

Is Created
Is Sold
Is Delivered

Product

Attributes
Registration No.
Weight
Fuel

Driver
Trailor

Operations
Deliveries Goods
 Repeat Until End
 Go To Destination
 Unload Goods
 EndRepeat
 Refuel....

Truck

Attributes
Age
Weight
Sex

Role

Joins Company
Leaves Company
Reviewed
Promoted
Demoted

Employee

Attributes
Personnel Number
Location
........

Director
Marketing Team
..........

Hire new staff
Dismiss new staff

 Department

Relations

Relations

Relations

Operations Operations

Operations

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 18

An object is an instance of a class. That class defines the operations
that the object supports and the data structures that are used for storing
information in that object.
A class therefore defines structure and operations for all of its instances.
Hence every object that is an instance of that class supports the same
operations and has the same structure as every other instance of that
class.
Different objects of the same class can only differ in two respects. They
have a different identity and they may be in different states if their
attribute values are different.
Note that classes can be considered as objects themselves on a meta
level. Operations that would be provided on that meta level would be
creating a new class, compiling it, adding a new attibute and so on.
Attributes of these objects would be the attributes an object has and the
operations that the object provides. This approach is supported by some
object-oriented programming languages, most notably SmallTalk, in
object database management system for schema management
purposes and in the CORBA framework as an interface repository.
Note also, that attributes of objects may be instance variables or class
variables in some languages. An instance variable implements an
attribute of an object while a class variable implements an attribute of a
class, that is shared by all instances. A typical application of the latter
would be counting the extent of a class, i.e. the number of objects that
exist.
The class of which an object is an instance is determined at object
creation time and we now look at how objects are actually created...

OOAD Introduction 2. 18

OBJECTS - INSTANCES OF CLASSES

Every object is an instance of a single class

- A class defines the possible behaviours and

the information structure of
all its object instances.

- Different instances may
have their operations activated
in different ways and in different sequences ;
hence they may be in different states.

Attributes
Reg: M235 BCN
Weight: 7.5 tons
Fuel level: 40 litres

Driver: Hill, D
Trailor: SSFG12

Operations
Deliveries Goods
 Repeat Until End
 Go To
Destination
 Unload Goods
 EndRepeat
 Refuel....

Truck M235 BCN

Relations

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 19

As we mentioned earlier classes are templates for objects. Objects
come into existance by instantiating a class. Hence classes not only
define properties of objects, but also how new objects are to be created.
During the instantiation process a unique identity for an object is
determined and typically all attribute values are initialised. As a run-time
environment can only support default initialisations, application specific
initialisations have to be determined as special operations of the class
the object is instantiated from (rather than an object). These operations
are sometimes also referred to as constructors.
Instantiation has particular importance in object orientation because it is
the essential activity linking class and object. It is crucial in
implementation and it has no complement in any vernacular definition of
a class.
On the next slide, we consider an essential characteristic of the
relationships between classes as opposed to objects...

OOAD Introduction 2. 19

INSTANTIATION OF OBJECTS

Instantiation of a class
generates an object ,

an instance of its class

Instantiation demands

a specific create operation
in every class

Attributes
Registration No.
Weight
Fuel

Driver
Trailor

Operations

Deliveries Goods
 Refuel

Truck

Relations

Create (Truck)

Delete (Truck)

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 20

The common properties between different objects that have the same
data structures and operations are specified in a class. Hence classes
specify attributes, relationships and operations. At another level of
abstraction, different classes might again share attributes, relationships
and operations. Again it is highly undesirable to specify these properties
more than once. In fact the important principle of abstraction that we
had introduced last week suggested that these should be factored out
and only specified once.
Inheritance is the vehicle to do so. We can identify more abstract
classes that specify a number of attributes, relationships and
operations. Then we can specify other classes to inherit these more
abstract classes. The more abstract class is called super-class and the
more concrete class is called sub-class. A sub-class inherits all
properties from its super-class.
The inheritance relationship is transitive. A class C inheriting from
another class B inherits also properties from A if B is a subclass of A.
In the example given above, ManagingDirectory is a subclass of
Employee. Hence class ManagingDirector inherits all properties of class
Employee. Likewise TruckDriver inherits all properties of Employee.
Subclasses may define attributes, relationships and operations
themselves that are then specific to the subclass. Hence in the above
example ManagingDirectory may have certain properties that a
TruckDriver has not.
Two important analytic activities, ‘generalisation’ and ‘specialisation’,
are associated with the principle of inheritance and creation of new
classes and these will be discussed on the next slide.

OOAD Introduction 2. 20

INHERITANCE

Inheritence is a relationship between different classes
which share common characteristics.

“If class B inherits class A, then both the operations and
information structure in class A will become part of class B”
(Jacobsen 1992)

Major benefits are simpler, clearer
classes, at higher levels of abstraction

Employee

Managing
Director

Truck
Driver

"is an"
"inherits from"

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 21

Generalisation means extracting common properties from a collection of
classes and placing them higher in the inheritance hierarchy, in a
‘superclass’.
Much care has to be taken when generalising (as in the real world) that
the property makes sense for every single subclass of the superclass. If
this is not the case the property must not be generalised.
Specialisation involves the definition of a new class which inherits all the
characteristics of a higher class and adds some new ones, in a
‘subclass’.
Whether the creation of a particular class involves first, or second
activity depends on stage and state of analysis, whether initial classes
suggested are very general, or very particular.
To put it in other words, specialisation is a top-down activity that refines
the abstract class into more concrete classes and generalisation is a
bottom-up activity that abstracts certain principles from existing classes
in order to find more abstract classes.
Both generalisation and specialisation can lead to complex inheritance
patterns, particularly via ‘multiple inheritance’ that we are going to
investigate on the next slide...

OOAD Introduction 2. 21

GENERALISATION & SPECIALISATION

Generalisation
 Creation of an 'ancestor'

 Creation of a 'descendant'
Specialisation

Employee

Managing
Director

Truck
Driver

"is an"
"inherits from"

Clerical
Worker

Warehouse
Admin

Office
Admin

"is a"
"inherits from"

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 22

Multiple inheritance refers to the fact that a class may inherit more than
one existing classes. In the example above other staff inherits from both
counter staff and repair staff.
The advantage of multiple inheritance is that it facilitates re-use existing
classes much better than with single inheritance. If properties of two
existing classes had to be re-used and only single inheritance were
available then one of the two classes would have to be changed to
become a subclass of the other class. This may not always be sensible
if the artificial subclass inherits properties that it ought not have just for
the sake of enabling them to be reused in the third class.
However, multiple inheritance should be used rather carefully as the
inheritance relationships that will be created through it can become
rather complex and are fairly difficult to understand themselves.
It is also a controversial aspect of object-orientation and therefore not
implemented in some object-oriented languages, eg Smalltalk, because
multiple inheritance can lead to ambigous situations itself. We
investigate an examples of these situations on the next slide...

OOAD Introduction 2. 22

MULTIPLE INHERITANCE

1 class inherits from 2 or more existing classes

 Allows more complex
class structures, but
less easily understood

librarian

long-term
staff

short-term
staff

counter
staff

repair
staff

circulation
staff

other
staff

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 23

Ambigouities can arise through multiple inheritance as in the examples
above.
The simplest form of these ambiguities are name clashes as displayed
on the left hand side of the slide. A name clash arises when the
subclass inherits two properties (irregardless whether attribute,
relationship or operation) with the same name from two independent
branches. If instances of that class receive a message identifying that
property it is then ambigous whether they should react according to the
definition in the left or the right superclass.
A more subtle form of ambiguity that may arise through multiple
inheritance is an incorrect repeated inheritance as displayed on the right
hand side. Here an ambiguity arises because a property that has been
repeatedly inherited via two branches from a common superclass is
redefined, i.e. given a new semantics, in one branch. Then it becomes
ambigous whether the original declaration of the property is valid in the
subclass or the property that has been redefined in one branch.
The problem with these name clashes is that they very often cannot be
rectified at their origin as the classes to be re-used often cannot be
changed. Then renaming concepts are used to rectify them.
If these ancestors themselves have no common ancestor, names have
to be changed or one definition chosen. If these ancestors themselves
have a common ancestor, then it is also necessary to ensure than no
redefintions have taken place higher in the hierarchy, thus effectively
demanding a choice of definition. Detection of such circumstances is a
major issue.
The final concept to be explained is polymorphism...

OOAD Introduction 2. 23

AMBIGUITIES THROUGH MULTIPLE INHERITANCE

Name clashes :

?

A

(..A..)

Incorrect repeated inheritance :

?

(..A..) (..A..)

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 24

Polymorphism is a concept in type theory in which a single name (such
as a variable type) may denote objects of many different classes that
are related by some common superclass; any object denoted by this
name is therefore able to respond to some common set of operations.
(Also the term 'limited polymorphism', meaning a restriction of the
classes receiving messages)
Polymorphism reduces the complexity of implementing such dynamic
behaviour, by allowing the association of different objects and
interpretation of the same message in different ways based on the class
they are an instance of.
Example: ‘Draw’ message received by an instance of class ‘line’ will
cause a different behaviour from that of an instance of ‘filled irregular
polygon’ receiving same message.

OOAD Introduction 2. 24

POLYMORPHISM

• System behaviour is defined by the
dynamic behaviour of instances of classes

“Polymorphism means that the sender of a stimulus
does not need to know the receiving instance's class.
The receiving instance can belong to an arbitary class”
(Jacobsen 1992)

• Polymorphism enables different instances of different classes to be
associated

• A receiving instance interprets stimuli
according to its own class

© City University, School of Informatics, Object-Oriented Analysis & Design 2- 25

These concepts provide the foundations for all object-oriented methods,
each with a different flavour
It is difficult, in practice, to separate out the application of these
principles within the process of analysis and thus give useful guidance.
In general the ideas of an object as an abstraction and as an instance of
a class help object identification; the ideas of inheritance and
encapsulation aid object modelling and abstraction; behaviour modelling
requires all these ideas plus polymorphism.
For your background reading, we would suggest the following
references. Bertrand Meyer gives a very comprehensive introduction
and motivation for the concepts that we have discussed here. Luca
Cardelli's a seminal paper provides a formal semantics for many of the
concepts we have presented:

[Mey88] B. Meyer: Object-Oriented Software Construction. Prentice-
Hall. 1988.

[Car85] L. Cardelli: The Semantics of Multiple Inheritance.
Information and Computation 76:138-164. Academic Press.

The next lecture begins the detailed description of Jacobson’s OOSE
method. For the notations of objects and classes we are going to use
the Unified Modelling Language that is being officially revealed as these
notes are printed.

OOAD Introduction 2. 25

CONCLUSIONS

• Basic concepts :
object : entity combining essential characteristics abstracted from a

system domain
class : expression of common characteristics of objects

encapsulation : combination of attributes and operations in a single
self-contained object

inheritance : relationship between superclass and subclass defining
levels of commonality

polymorphism : facility allowing stimuli to ignore class of receiving
object

• Application of concepts enables:
object identification
object modelling
behaviour modelling

