
© City University, School of Informatics, Object-Oriented Analysis & Design 1- 1

The aim of this first lecture is to set the scene for this module. We
shall try to theme each lecture by a question. During this session we
are going to answer the question: What is object-orientation all about,
what is its evolution and how can it be positioned with respect to other
(structured) methods?

OOAD  Introduction 1. 1

Lecture 1

Setting the Scene

Dr Neil Maiden
Dr Stephen Morris

Dr Wolfgang Emmerich

School of Informatics
City University



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 2

In attempting to answer this question, we will have to look at the
problem that object-orientation is trying to address. This is very much
the steadily increasing complexity of software. Whe are going to look
at this problem from different perspectives: We are going to discuss
the reasons for software complexity, provide examples for complex
software systems, and discuss common properties that any complex
system has.
In attempting to find a solution to software complexity, we will have to
take limitations of the human mind into account, because after all the
early phases of software construction are labour intensive and still
very much rely on the capabilities of the agents performing them. The
solution we propose reveals a number of principles that aid the human
agents performing a software process. These are the principles of
abstraction, hierarchy and decomposition.
These principles are very nicely supported by the object-oriented
approach to software development. We are then going to take a
historical perspective and present the roots of objec-orientation in
simulation languages, the boost the approach got from object-oriented
programming languages, the ripening in object-oriented design and
analysis methods. We will also briefly discuss more recent trends in
object-oriented databases and open systems.
We are going to conclude this week's session with an assessment of
object-orientation and identify its strengths and weaknesses.

OOAD  Introduction 1. 2

LECTURE OVERVIEW

• Problem of software system complexity

• Approaching a solution
Human limitations
Underlying principles

• Development of the object-oriented approach

• Assessment of object-orientation



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 3

The first lines on this slide include the definition of complexity from the
Oxford English Dictionary.
In the world of software systems, we would therefore be looking at
complex examples, such as retail banking systems, mobile phone
switches, airline reservation systems, component warehouse systems
and process control systems of, say a nuclear power plant.
The complexity in software systems arises from a number of
properties software systems have in common with any system of size.
These systems are developed by a team of developers, often in a
lengthy process. The size of the system is such that individuals can no
longer fully comprehend the system. They are difficult to document
and test. They may be inconsistent and incomplete and they radically
change in order to meet changing requirements.
Please note that the complexity that we are interested in here is macro
complexity, i.e. the reflection of complex processes and information of
the real world in a software system, as opposed to micro complexity of
algorithms that complexity theory, a  research field of theoretical
computer science is interested in.
The physical sciences have, in many cases, provided fundamental
natural laws to explain complexity and its phenomena, eg gravitation
or thermodynamics.  Software engineering, by reason of its ‘social’
content, is in some ways closer to the social sciences and cannot yet
provide any such laws.
On the next slide we are going to provide a more theoretical view of
complexity from one of the founders of object-oriented methods...

OOAD  Introduction 1. 3

SOFTWARE SYSTEM COMPLEXITY

“Consisting of or comprehending various parts united
or connected together;  formed by a combination of
different elements”

Examples: retail banking,  scheduled airline services,
component warehousing,  process control

Any sizeable system :
- developed by a team in a lengthy process,
- impossible for an individual to comprehend fully,
- difficult to document and test,
- potentially inconsistent or incomplete,
- subject to change.

But :
Software engineering cannot yet provide fundamental laws to explain
phenomena and approaches.



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 4

In [Booc94], Grady Booch identifies four major reasons for complexity
of any system that has an intensive software component.
The first reason is related to the application domains for which the
software system is being constructed. The people who have the
knowledge and skills to develop software usually do not have detailed
domain knowledge and they need to acquire the requirements for the
software system from that particular domain. Also these requirements
are usually not stable but evolve. They evolve during the construction
of the system as well as after its delivery requiring continous
evolutions of the system. Complexity is often increased in trying to
preserve the investments that were made in legacy applications. Then
components addressing new requirements have to be integrated with
existing legacy applications and interoperability problems caused by
the heterogeneity of different system components introduces new
complexity.
The second reason is the complexity of the software development
process. Complex software intensive systems cannot be developed by
single developers but rather require teams of developers to work on it.
This adds additional overhead as the developers have to
communicate about the development effort and about intermediate
artefacts they produce in order to make them as consistent and
complete as possible. This complexity often gets even more difficult to
handle if the teams do not work in one location but are geographically
dispersed. Then the management of these processes becomes an
important subtask on its on and they need to be kept as simple as
possible.
On the next slide, we are going to review the third and fourth
reasons...

OOAD  Introduction 1. 4

REASONS FOR COMPLEXITY

Grady Booch’s 4 reasons  for complexity of
software-intensive systems:

1 Nature of the problem domain
- requirements,
- decay of systems

2 Complexity of process
- management problems,
- need for simplicity



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 5

Booch's third reason is the danger of flexibility. Software offers a very
high flexibility for changes. Hence, developers can express almost
every kind of abstraction. This also often leads to situations where
developers develop software components themselves rather than
purchasing them from somewhere else. Unlike other industry the
production depth in software is very huge. The building or automobile
industry largely rely on highly specialised suppliers delivering parts
and the companies just produce the design, the part specifications
and assembly the parts that are delivered just in time. With software
this is different and many software companies develop ever single
component from scratch.
The flexibility also triggers more demanding requirements which make
the products even more complicated as it is suggested by the quote
on this slide, which is taken from the ESA report on the Ariane 5
failure
[http:/www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html].
The final reason for complexity Booch gives is related to the difficulty
in characterising the behaviour, i.e. the dynamics of a software
system. While the human imagination suffices to describe static
properties of systems, given they are properly decomposed, humans
have problems to describe the behaviour of a complex system. This is
because to describe behaviour, it is not sufficient to describe the
properties of a system but the sequence of values these properties
take over time needs to be specified.
The quote from [Booc94] at the bottom of the slide provide a nice
conclusion of the impact complexity has for software development.

OOAD  Introduction 1. 5

REASONS FOR COMPLEXITY (continued)

3 Dangerous potential for flexibility in software systems

“Software is flexible and expressive and thus
encourages highly demanding requirements, which
in turn lead to complex implementations which are
difficult to assess”

4 Characterising behaviour of discrete systems

“The task of the software development team is to
engineer the illusion of simplicity”



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 6

Software systems are systems itself and let us now focus on the
definition of a system. The quote on the top of this slide gives the
definition of a system from the Oxford English Dictionary.
Checkland and Scholes define systems in [CS90] to have a clear
boundary an embedding into its operating environment, a
homogeneous character and an emergent property as a whole.
These considerations apply to software systems as well. They have to
be properly bounded in the sense that it has to be defined which
operations are being performed within the system and which parts are
being performed without the system. They have to be properly
embedded into their environment. The should have a unique
character, which is often expressed in terms of the non-functional
requirements the system should meet and they have an emergent
property in the sense that only the whole software system renders its
components useful.
Complex systems are constructed by interconnecting subsystems,
which are increasingly often systems on their own rights.
Interconnecting subsystems: personal computer (I/O, processor,
memory), weather system (atmosphere, oceans, land masses), local
ecology (soil, buildings, micro-climate, users)
If these subsystems are constructed independently, there is a certain
potential for inconsistencies and incongruities that usually are
undesirable. According to Checkland and Scholes, the results of
‘inconsistencies’ are disasters, such as smog or pests. With software
systems these inconsistencies and incongruities materialise in
requirements that are not met, system malfunctions and  crashes.

OOAD  Introduction 1. 6

SYSTEMS AND INTERCONNECTING SUB-SYSTEMS

“An organised or connected group of objects;
a whole composed of parts in orderly arrangement
according to some scheme or plan”

System:
- boundary
- environment
- character
- emergent property

Complex system :
- interconnected subsystems

Potential for inconsistency and incongruity



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 7

Booch has identified five properties that architectures of complex
software systems have in common.
Firstly, every complex system is decomposed into a hierarchy of
subsystems. This decomposition is essential in order to keep the
complexity of the overall system manageable. These subsystems,
however, are not isolated from each other, but interact with each
other.
Very often subsystems are decomposed again into subsubsystems,
which are decomposed and so on. The way how this decomposition is
done and when it is stopped, i.e. which components are considered
primitive, is rather arbitrary and subject to the architects decision.
The decomposition should be chosen, such that most of the coupling
is between components that lie in the same subsystem and only a
loose coupling exists between components of different subsystem.
This is partly motivated by the fact that often different individuals are in
charge with the creation and maintenance of subsystems and every
additional link to other subsystems does imply an higher
communication and coordination overhead.
Certain design patterns re-appear in every single subsystem.
Examples are patterns for iterating over collections of elements, or
patterns for the creation of object instances and the like. A collection
of extremely useful patterns can be found in [GHJV94]
The development of the complete system should be done in slices so
that there is an increasing number of subsystems that work together.
This facilitates the provision of feedback about the overall architecture.

OOAD  Introduction 1. 7

ATTRIBUTES OF COMPLEX SOFTWARE SYSTEMS

Booch’s  5  attributes of a complex system:

1 Hierarchical and interacting subsystems

2 Arbitrary determination of primitive components

3 Stronger intra-component than inter-component links

4 Combine and arrange examples of a few kinds of subsystems

5 Evolution from simple to complex working systems



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 8

We are now going to look at whether we can regonise any discernable
common forms in systems that can be used to simplify them in order
to make them more manageable.
One mechanism to simplify concerns in order to make them more
manageable is to identify and understand abstractions common to
similar objects or activities.
We can use a car as an example (which are considerable complex
systems). Understanding common abstractions in this particular
example would, for instance, involve the insight that clutch,
accelerator and brakes facilitate the use of a wide range of devices,
namely transport vehicles depending on transmission of power from
engine to wheels)
Another principle to understand complex systems is the separation of
concerns leading to multiple hierarchies that are orthogonal to each
other.
In the car example, this could be, for instance, the distinction between
physical structure of the car (chassis, body, engine), functions the car
performs (forward, back, turn) and control systems the car has
(manual, mechanical, electrical).
In object-orientation, the class structure and the object structure
relationship is the simplest form of related hierarchy. It forms a
canonical representation for o-o analysis. The next slide attempts a
visualisation of the relationship between these two hierarchies and is
taken from Booch's book.

OOAD  Introduction 1. 8

SIMPLIFYING COMPLEX SYSTEMS

- Usefulness of abstractions common to similar activities
e.g. driving different kinds of motor vehicle

- Multiple orthogonal hierarchies
 e.g. structure and control system

- Prominent hierarchies in object-orientation
“ class structure ”
“ object structure ”
e. g. engine types,  engine in a specific car



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 9

As an example for these different hierarchies and their relationships,
this slide represents the relationship between two different hierarchies:
a hierarchy of objects and a hierarchy of classes. It is of no concern at
the moment what the precise difference between a class and an
object is; they will be distinguished from each other in the next week's
lecture.
The class structure defines the 'is-a' hierarchy, identifying the
commonalities between different classes at different levels of
abstractions. Hence class C4 is also a class C1 and therefore has
every single property that C1 has. C4, however, may have more
specific properties that C1 does not have; hence the distinction
between C1 and C4.
The object structure defines the 'part-of' representation. This identifies
the composition of an object from component objects, like a car is
composed from wheels, a steering wheel, a chassis and an engine.
The two hierarchies are not entirely orthogonal as objects are
instances of certain classes. The relationship between these two
hierarchies are shown by identifying the instance-of relationship as
well. The objects in component D8 are instances of C6 and C7
As suggested by the diagram, there are many more objects then there
are classes. The point in identifying classes is therefore to have a
vehicle to describe only once all properties that all instances of the
class have.
We are going to consider next, how do we approach the problem of
analysing some object or situation, as yet undefined?

OOAD  Introduction 1. 9

Classes

Objects

C1

C2

C3

C4

C5

C6

C7

D1

D2 D3

D4

D5 D6

D7

D8

CLASS STRUCTURE
(‘is a’)

OBJECT STRUCTURE
( ‘part of’)



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 10

When we devise a methodology for the analysis and design of
complex systems, we need to bear in mind the limitations of human
beings, who will be the main acting agents, especially during early
phases.
Unlike computers, human beings are rather limited in dealing with
complex problems and any method need to bear that in mind and give
as much support as possible. Human beings are able to understand
and remember fairly complex diagrams, though linear notations
expressing the same concepts are not dealt with so easily. This is why
many methods rely on diagramming techniques as a basis.
The human mind is also rather limited. Miller revealed in 1956 that
humans can only remember 7 plus or minus one item at once.
Methods should therefore encourage its users to bear these limitations
in mind and not deploy overly complex diagrams.
The analysis process is a communication intensive process where the
analyst has to have intensive communications with the stakeholders
who hold the domain knowledge. Also the design process is a
communication intensive process, since the different agents involved
in the design need to agree on decompositions of the system into
different hierarchies that are consistent with each other.
Bearing in mind these limitations, these are the principles proposed for
object-oriented development: abstraction, hierarchy and
decomposition
We will now look at these principles in more detail...

OOAD  Introduction 1. 10

APPROACHING A SOLUTION

Hampered by human limitations:
- dealing with complexities
- memory
- communications

Principles that will provide basis for development:
 Abstraction
 Hierarchy
 Decomposition



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 11

In general abstraction assists people's understanding by grouping,
generalising and chunking information.
Object-orientation attempts to deploy abstraction. The common
properties of similar objects are defined in an abstract way in terms of
a class. Properties that different classes have in common are
identified in more abstract classes and then an is-a relationship
defines the inheritance between these classes.
Different hierarchies support the recognition of higher and lower
orders. A class high in the is-a hierarchy is a rather abstract concept
and a class that is a leaf represents a fairly concrete concept. The is-a
hierarchy also identifies concepts, such as attributes or operations,
that are common to a number of classes and instances thereof.
Similarly, an object that is up in the part-of hierarchy represents a
rather coarse-grained and complex objects, assembled from a number
of objects, while objects that are leafs are rather fine grained.
But note that there are many other forms of patterns which are non-
hierarchical: interactions, ‘relationships’.
Both concepts, abstraction and hierarchy are associated, in practice,
with decomposition as it is shown on the next slide...

OOAD  Introduction 1. 11

ABSTRACTION & HIERARCHY

Two theoretical concepts of fundamental importance

Abstraction
Assists people’s understanding via :

grouping,
generalising,
‘chunking’

of information or ideas.

Hierarchy
Recognition of higher and lower orders,
Accumulation of attributes at higher level,
Association of fewer attributes with

lower level and greater number.



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 12

Decomposition is an important technique for coping with complexity
based on the idea of divide and conquer. In dividing a problem into a
subproblem the problem becomes less complex and easier to
overlook and to deal with. Repeatedly dividing a problem will
eventually lead to subproblems that are small enough so that they can
be conquered. After all the subproblems have been conquered and
solutions to them have been found, the solutions need to be
composed in order to obtain the solution of the whole problem.
The history of computing has seen two forms of decomposition,
process-oriented and object-oriented decomposition. Process-oriented
decompositions divide a complex process, function or task into simpler
subprocesses until they are simple enough to be dealt with. The
solutions of these subfunctions then need to be executed in certain
sequential or parallel orders in order to obtain a solution to the
complex process. Object-oriented decomposition aims at identifying
individual autonomous objects that encapsulate both a state and a
certain behaviour. Then communication among these objects leads to
the desired solutions.
Although both solutions help dealing with complexity we have reasons
to believe that an object-oriented decomposition is favourable
because, the object-oriented approach provides for a semantically
richer framework that leads to decompositions that are more closely
related to entities from the real world. Moreover, the identification of
abstractions supports (more abstract) solutions to be reused and the
object-oriented approach supports the evolution of systems better as
those concepts that are more likely to change can be hidden within the
objects.

OOAD  Introduction 1. 12

DECOMPOSITION

Handling complexity on the principle of ‘divide and conquer’

Two forms of decomposition:
- process-oriented

according to steps or functions
- object-oriented

according to behaviour of autonomous objects

Both valid, but current claims for superiority of O-O
- stronger framework
- reuse of common abstractions
- resilient under change



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 13

To illustrate the three concepts of abstraction, hierarchy and
decomposition and validate the claim that object-orientation is
favourable, consider an example used by Jacobson (pp 135-141).
As this example is discussed in depth in the course text, we refrain
from providing detailed notes for the next four slides, including this
one.

OOAD  Introduction 1. 13

A FUNCTION / DATA DECOMPOSITION

Transaction

Get
transaction

Open Withdraw

Passbook
Open

Checking
Open

Bonus
Open

Passbook
Withdraw

Checking
Withdraw

Bonus
Withdraw

Passbook
Deposit

Checking
Deposit

Bonus
Deposit

Deposit



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 14

OOAD  Introduction 1. 14

A OBJECT-ORIENTED DECOMPOSITION

Other object(s)

Open 
Deposit 

Withdraw

Account

ihs ihsihs

Passbook 
Account

Checking 
Account

Bonus 
Account



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 15

OOAD  Introduction 1. 15

Overlay for
FUNCTION / DATA DECOMPOSITION

Market 
Deposit

Market 
Withdraw

Market  
Open

Open Withdraw

Deposit



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 16

OOAD  Introduction 1. 16

Overlay for
OBJECT-ORIENTED DECOMPOSITION

Market
Account

ihs



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 17

Booch presents a model of object-oriented development that identifies
several relevant perspectives.
The classes and objects that form the system are identified in a logical
model. For this logical model, again two different perspectives have to
be considered. A static perspective identifies the structure of classes
and objects, their properties and the relationships classes and objects
participate in. A dynamic model identifies the dynamic behaviour of
classes and objects, the different valid states they can be in and the
transitions between these states.
Besides the logical model, also a physical model needs to be
identified. This is usually done later in the system's lifecycle. The
module architecture identifies how classes are kept in seperately
compileable modules and the process architecture identifies how
objects are distributed at run-time over different operating system
processes and identifies the relationships between those. Again for
this physical model a static perspective is defined that considers the
structure of module and process architecture and a dynamic
perspective identifies process and object activation strategies and
inter-process communication.
Object-orientation has not, however, emerged fully formed. In fact it
has developed over a long period, and continues to change. We will
briefly sketch the history of object-orientation on the next slide.

OOAD  Introduction 1. 17

MODEL OF OBJECT-ORIENTED DEVELOPMENT

Class structure 
 
Object structure

Module architecture 
 
Process architecture

 Dynamic model 
 
Static model 

Logical model 
 
 
 

Physical model 



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 18

Object-orientation emerged from concepts developed in the late 60s in simulation
and functional programming languages. Simula-67 was the first programming
language that include the concepts of classes and inheritance relationship.
In the 70s the ideas of information hiding [Parn72] and abstract data types [LZ74]
evolved from work done by David Parnas and Barbara Liskov. Liskov´s seminal
paper on abstract data types created algebraic specifications, still an area of active
research in theoretical computer science.
The term 'object-orientation' was first used together with Simula-80, developed by
Adele Goldberg [Gold85] at Xerox Parc for the efficient and effective implementation
of graphical user interfaces. Smalltalk is a pure object-oriented programming
language where "everything is an object". It influenced the introduction of object-
oriented concepts into imperative languages, such as Modula-2 (leading to Oberon)
and C (leading to C++) and Pascal (leading to Object Pascal and Delphi).
In the late 80s work started to bring object-oriented principles from programming to
earlier phases, namely requirements analysis and design. These so called object-
oriented methods benefit from the lack of an impedance mismatch between
structural design techniques and programming languages.
Concurrently, the success of OO programming languages influenced the design of
new types of databases that do not store data in tables but rather store it in objects.
These so-called object databases have now become widely available.
Recent trends are set by the Object Management Group (OMG), a consortium of
more than 700 leading vendors that standardises object technology, most notably
the common object request broker architecture.
From this perspective object-orientation can be seen as a set of concepts that
continues to develop. In the latest stage the emphasis has shifted away from
clarification of basic ideas and towards standardisation of their representation and
use. Hence the central element of of this course, OOSE with UML.
Object-orientation is also not the only formalised and structured approach to system
development as can be seen on the next slide...

OOAD  Introduction 1. 18

HISTORICAL PERSPECTIVE

RipeningConfusionInvention

Term 'object-oriented' 
first applied to Smalltack 
 
- Class and inheritance  
from simulation languages 
- Structural feature and  
functional abstractions  
from LISP

Object-oriented  
user interfaces  
 
- WIMP 
- O-O  required to  
manage complexities

Object- oriented  
analysis / design 
 
- greater benefits 
- higher level reuse

1970 1980 1990

Artificial  
intelligence 
 
-Frames and  
actors

Based on Graham (1993)

Extensions into : 
 
- Open systems 
-Databases 
-Standard



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 19

This and the next two slides compare object-oriented and structured
methods. This comparison has already been touched on from a more
general perspective when we compared functional and object-oriented
decompositon but now we shall try to get it down to the point.
The problem with structure-oriented methods, such as SSADM,
Structured Analysis or SADT, is that they treat functions (i.e. the
behaviour) of the system differently from the data (i.e. the information
held somewhere within the system).
This complicates maintenance and the evolution of a system as both
data and functions need to be changed. Moreover it is more difficult to
isolate changes. If a certain aspect has to be changed, this almost
certainly involves both the change of data structures and of
algorithms. Finally the change of algorithms and data structures in
structural methods often involves a number of subsequent changes to
places where these data structures are used as well.
Object-oriented decomposition, on the other hand has evolved from
the idea of information hiding which significantly contributes to the
changeability of the system as motivated on the next slide...

OOAD  Introduction 1. 19

STRUCTURED METHODS

Existing structure methods treat separately :

functions (behaviour) and

data (information held)
e.g. SSADM (Cutts 1987), SA (de Marco 1978), SADT (Ross 1977).

Problems:

- Difficulties with maintenance
(because need knowledge of data storage)

- Division of knowledge
(whereby “what” is transformed into “how”)

- Instability of functions



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 20

Object-oriented decompositions of systems tend to be better able to
cope with change. This is because they manage to encapsulate those
items that are likely to change (such as functionality, sequence of
behaviour and attributes) within an object and hide them from the
outside world. This provides the advantage that the outside cannot
see them and therefore cannot be dependent on them and does not
need to be changed if these items change.
Also object-oriented decompositons are closer to the problem domain,
as they directly represent the real-world entities in their structure and
behaviour.
The abstraction primitives built into reuse have a huge potential of
reuse as commonalities between similar objects can be factored out
and then the solutions can be reused.
Finally, object-orientation has the advantage of continuity througout
analysis, design implementation and persistent representation.

OOAD  Introduction 1. 20

OBJECT 0RIENTED METHODS

• Better able to cope with change

ITEM PROBABILITY OF CHANGE
Object from application Low
Long-lived information structures Low
Passive object’s attribute Medium
Sequence of behavior Medium
Interface with outside world High
Functionality High

• Focus analysis on problem domain

• Promote reuse

• Continuity of representation



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 21

Unfortunately, there is no single object-oriented analysis and design
method that we could readily teach you and this slide lists some of the
proposed methods.
For this course we have selected Ivar Jacobson´s object-oriented
software engineering approach because it supports use case
scenarios.
We largely agree with industry that these scenarios are particularly
useful during the elicitation of complete user reqirements. OOSE has
domain focus built into it and is integrated in the process.
We should, however, note that we are going to use the unified
modelling language notation. UML is currently being developed at
Rational, a major consulting company in the US and also the vendor
of the market leading OOAD environment. Grady Booch, Ivar
Jacobson and James Rumbaugh are jointly working on the modelling
language. While we are giving this lecture, UML is being evaluated by
the Object Management Group to become the de-facto industry wide
notation for object-oriented modelling.
It is very likely that the methods presented so far in the various books
identified at the beginning will be revisited by their authors and be
expressed in terms of the Unified Modelling Language.
Although UML is an important consolidation step forward in the
maturation process of object-orientation, it will not be a silver bullet. As
the next slide suggests, there are also problems inherent to UML.

OOAD  Introduction 1. 21

Proposed O-O METHODS

Proposed o-o methods:
Coad & Yourdon (91) for OOA
Booch (94) also for OOA
Jackson (83) for system design
Jacobson (92) OOSE

Approach of this course based on Jacobson
because employs ‘use cases’  throughout

 - essential user role
- focus on domain
- integration in process

All likely to be superseded by ‘retreads’
employing the Unified Modeling Language (UML)



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 22

Although object-orientation is very favourable to reusing requirements,
parts of the design and implementation, large-scale reuse has not yet
been achieved. We believe that this is not necessarily only a problem
of object-orientation, but also of the mindset of many software
professionals that do not believe in anything they have not developed
themselves.
As there is little demand for reuseable components a market for
components has not yet been established. Vendors are scattered and
their products are rarely standardised and therefore are not
exchangeable. A notable exception is the standard template library
that has been standardised last year by the ANSI.
With the possibility of deploying previously developed components
from reuse library, whether bought off the shelve or built inhouse, the
problem of configuration management arises which has not yet been
fully understood.
Also a considerable amount of retraining of staff is required before
object-oriented projects start to fly and industry is still in the process of
building up an experience base.
As a member of a development team (whether student, academic or
commercial) you may have your mind made up for you, but essential
to recognise true status of ideas and techniques.

OOAD  Introduction 1. 22

DRAWBACKS OF O-O

- Large scale reuse not yet achieved

- Few available reusable libraries

- Managing reusable libraries is a problem

- Extensive retraining before pervasive



© City University, School of Informatics, Object-Oriented Analysis & Design 1- 23

OOAD  Introduction 1. 23

Summary

Complex
Software
System

Complex
Real-
world

System

Functional
decomposition

OBJECT
ORIENTATION

Abstraction   Hierarchy   Decomposition

This picture summarises the principles that we have outlined in this
week's session. As software engineers, we are interested in finding
principles for the mapping of complex real-world systems into
supportive complex software systems.The principles we have
suggested this week are abstraction, hierarchy and decomposition.
They are deployed in both functional and object-oriented methods, but
the latter seem to be favourable due to their support for change.
The next lecture will return to principles of object-orientation und
discuss them at a sufficient level of detail.
Your first tutorial addresses the principles of abstraction, hierarchy
and decomposition.
The following literature has been referenced throughout the notes for
this week, which we would recommend as additional background
reading.
[CS90] P. Checkland and J. Scholes: Soft systems methodology
in action. Wiley, 1990.
[Gold85] A.Goldberg: The Language and its Implementation.

Addison-Wesley, 1985.
[GHJV94] E. Gamma and R. Helm and R. Johnson and J. Vlissides.

Design Patterns - Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[LZ74] B.Liskov and S.Zilles: Programming with Abstract Data
Types, SIGPLAN Notices 9(4):50-55, 1974.

[Parn72] D.C.Parnas: A Technique for the Software Module
Specification with Examples. CACM 15(5):330-336, 1972.


