
1

Software Engineering for Real-
Time Systems.

w Presented by Andrew Dyer-Smith and
Jamie McClelland

Overview

wWhat are Real-Time Systems.
w Requirements of Real-Time Systems
w Current Technology
w Construction

2

What are Real-Time Systems

w Systems that have to respond within a given
time.
w Two types of Real Time System

n Soft Real-Time Systems
n Hard Real-Time Systems

Soft Real-Time Systems

w Systems where failure to respond within a
given time does not cause a critical failure
w Example: Watching a DVD

n If a frame doesn’t arrive in time the playback
will stutter, but you can still watch the movie.

3

Hard Real-Time Systems

w System where a failure to respond within a
given time causes a critical failure.
w Example: Nuclear Power Plant

n If the system doesn’t notice a problem with the
nuclear reactor quick enough it will MELT-
DOWN.

Safety Critical Systems

w In safety critical systems failure to respond in time
is not an option.
w In the past some form of backup was provided to

take over when the software system failed.
w But now systems are wholly software controlled

Real-Time systems.
w Therefore we will concentrate on the design of

Hard Real-Time systems.

4

Current Technology

w Current technology is making the design and
implementation of Hard Real-Time Systems
a lot more feasible.
wWe will give four examples.

System on a Chip(SOC)

w Nowadays it is possible to build an entire
system on one chip including:
n 32 bit CPU
n A megabyte of memory
n I/O and network circuitry

w They can be mass produced and thus have
low production cost, although development
costs tend to be quite high.

5

Example: Webserver on a Chip

Smart Devices and MEMS
Sensors

§ Smart devices are the combination of a
sensor or actuator and a local
microcontroller.
§ MicroElectronic Mechanical Systems

(MEMS) are sensor elements that can be
integrated onto the same silicon die as the
microcontroller.

6

Advantages of Smart Devices

w Reduced interference from noise
w Easier diagnostics
w Plug and Play

n Black Box
n Easier inter connection

w Cost Reduction

COTS Components

w Commercial Off The Shelf (COTS) hardware
and software.
w Traditionally customers designed special

components, but this is not cost effective.
w There are three main types of COTS

components…

7

Types of COTS Components

w Hardware components – e.g. clocks
w Software Components – NB no certain

temporal properties.
w Hardware/Software components – e.g. Smart

sensor.

Fault Tolerant Systems

w Systems that will continue to function, even
when parts of the system fail.
w Achieved by replicating critical functionality

and providing diagnostics about the state of
the system
w Example: Airbus A340 Flight Control

Software

8

Construction of Hard Real
Time Systems

w From the current technology trends it seems
as if the future lies in distributed Real-Time
Systems.
w They will consist of a network of nodes,

these nodes will either be:
n Powerful system nodes (SOC’s)
n Smart sensor nodes

Top Down or Bottom Up

w Real-Time Systems can be designed top-
down or bottom-up
n Top down focuses on the architecture,
n Bottom up on the individual components

9

Composability

w As the system is a distributed system it will
consist of different components.
w The communication network interfaces

(CNI’s) between these components need to
be well defined in both the value and
temporal domains.

An Ideal Component

w What is an ideal component?
n A unit of service provision
n A unit of validation
n A unit of error containment
n A unit for re-use
n A unit for design and maintenance

w Considering these factors a hardware/software
component seems the best choice for a real-time
system.

10

Principles of Composability

w For a component to be integrated into a real-
time system it must fulfil the principles of
composability.
w 1) Independent development
w 2) Stability of prior services
w 3) Constructive Integration

Validation

w Product Validation - Must be able to validate
components independently of the system context.
w Worst Case Execution Time – Establishing upper

bound on worst performance.
w Simulation – Generates events which stress the

system.
w Formal Verification – verifies underlying

algorithm.

11

Real-Time UML

w An extension to UML to provide support for
developing Real-Time Systems.
w Provides techniques and notation for

modelling and analysing Real-Time Systems.
w Not currently rigorous enough to allow

temporal interface specification.

Sequence Diagram

12

Summary

§ Real-Time Software Systems are becoming
more viable due to technology advances.
§ They require different design and verification

techniques to non Real-Time Systems.
§ The techniques that currently exist aren’t

good enough. When they are there is a very
bright future for Real-Time Software
Systems.

References

w “Software Engineering for Real-Time: A
Roadmap” by Hermann Kopetz
w Micro-Web server - www.zuhlke.co.uk
w “UML Profile for Schedulability,

Performance, and Time” by Bran Selic –
www.omg.org

