
1

1© Wolfgang Emmerich, 1998/99

Wolfgang Emmerich

3C03 Concurrency:
Distributed Transactions

2© Wolfgang Emmerich, 1998/99

Outline

� Roles in Distributed Transaction
Processing

� Two Phase Commit Protocol (2PC)
� Impact of 2PC on Concurrency Control
� CORBA Object Transactions
� Summary



2

3© Wolfgang Emmerich, 1998/99

Roles of Components

� Distributed system components involved
in transactions can take role of:

� Transactional Client
� Transactional Server
� Coordinator

4© Wolfgang Emmerich, 1998/99

Coordinator

� Coordinator plays key role in managing
transaction.

� Coordinator is the component that
handles begin / commit / abort transaction
calls.

� Coordinator allocates system-wide unique
transaction identifier.

� Different transactions may have different
coordinators.



3

5© Wolfgang Emmerich, 1998/99

Transactional Server

� Every component with a resource
accessed or modified under transaction
control.

� Transactional server has to know
coordinator.

� Transactional server registers its
participation in a transaction with the
coordinator.

� Transactional server has to implement a
transaction protocol (two-phase commit).

6© Wolfgang Emmerich, 1998/99

Transactional Client

� Only sees transactions through the
transaction coordinator.

� Invokes services from the coordinator to
begin, commit and abort transactions.

� Implementation of transactions are
transparent for the client.

� Cannot tell difference between server and
transactional server.



4

7© Wolfgang Emmerich, 1998/99

Two-Phase Commit

� Multiple autonomous distributed servers:
• For a commit, all transactional servers have

to be able to commit.
• If a single transactional server cannot commit

its changes every server has to abort.

� Single phase protocol is insufficient.
� Two phases are needed:

• Phase one: Voting
• Phase two: Completion.

8© Wolfgang Emmerich, 1998/99

Phase One

� Called the voting phase.
� Coordinator asks all servers if they are

able (and willing) to commit.
� Servers reply:

• Yes: it will commit if asked, but does not yet
know if it is actually going to commit.

• No: it immediately aborts its operations.

� Hence, servers can unilaterally abort but
not unilaterally commit a transaction.



5

9© Wolfgang Emmerich, 1998/99

Phase Two

� Called the completion phase.
� Co-ordinator collates all votes, including

its own, and decides to
• commit if everyone voted ‘Yes’.
• abort if anyone voted ‘No’.

� All voters that voted ‘Yes’ are sent
• ‘DoCommit’ if transaction is to be committed.
• Otherwise ‘Abort'.

� Servers acknowledge DoCommit once
they have committed.

10© Wolfgang Emmerich, 1998/99

Server Uncertainty (1)

� Period when a server must be able to
commit, but does not yet know if has to.

� This period is known as server
uncertainty.

� Usually short (time needed for co-
ordinator to receive and process votes).

� However, failures can lengthen this
process, which may cause problems.



6

11© Wolfgang Emmerich, 1998/99

Recovery in Two-Phase Commit

� Failures prior to start of 2PC results in abort.
� Coordinator failure prior to transmitting

commit messages results in abort.
� After this point, co-ordinator will retransmit

all Commit messages on restart.
� If server fails prior to voting, it aborts.
� If it fails after voting, it sends GetDecision.
� If it fails after committing it (re)sends

HaveCommitted message.

12© Wolfgang Emmerich, 1998/99

Complexity

� Assuming N participating servers:
� (N-1) Voting requests from coordinator to

servers.
� (N-1) Completion requests from

coordinator to servers.
� Hence, complexity of requests is linear in

the number of participating servers.



7

13© Wolfgang Emmerich, 1998/99

Committing Nested Transactions

� Cannot use same mechanism to commit
nested transactions as:
• subtransactions can abort independently of

parent.
• subtransactions must have made decision to

commit or abort before parent transaction.

� Top level transaction needs to be able to
communicate its decision down to all
subtransactions so they may react
accordingly.

14© Wolfgang Emmerich, 1998/99

Provisional Commit

� Subtransactions vote either:
• aborted or
• provisionally committed.

� Abort is handled as normal.
� Provisional commit means that

coordinator and transactional servers are
willing to commit subtransaction but have
not yet done so.



8

15© Wolfgang Emmerich, 1998/99

Locking and Provisional Commits

� Locks cannot be released after provisional
commit.

� Data items remain ‘protected’ until top-level
transaction commits.

� This may reduce concurrency.
� Interactions between sibling

subtransactions:
• should they be prevented (different)?
• allowed (part of the same transaction)?

� Generally they are prevented.

16© Wolfgang Emmerich, 1998/99

CORBA Transaction Service

Application
Objects

CORBA
facilities

CORBAservices

Domain
Interfaces

Object Request Broker

Object
Transactions



9

17© Wolfgang Emmerich, 1998/99

IDL Interfaces

� Object Transaction Service defined
through three IDL interfaces:

� Current
� Coordinator
� Resource

18© Wolfgang Emmerich, 1998/99

Current

interface Current {

void begin() raises (...);

void commit (in boolean report_heuristics)

raises (NoTransaction, HeuristicMixed,
HeuristicHazard);

void rollback() raises(NoTransaction);

Status get_status();

string get_transaction_name();
Coordinator get_control();

Coordinator suspend();

void resume(in Coordinator which)

raises(InvalidControl);
};



10

19© Wolfgang Emmerich, 1998/99

Coordinator

interface Coordinator {

Status get_status();

Status get_parent_status();

Status get_top_level_status();

boolean is_same_transaction(in Coordinator tr);

boolean is_related_transaction(in Coordinator tr)

RecoveryCoordinator register_resource(

in Resource r) raises(Inactive);

void register_subtran_aware(

in SubtransactionAwareResource r)

raises(Inactive, NotSubtransaction);

…
};

20© Wolfgang Emmerich, 1998/99

Resource

interface Resource {

Vote prepare();

void rollback() raises(...);

void commit() raises(...);

void commit_one_phase raises(...);

void forget();

};

interface SubtransactionAwareResource:Resource
{

void commit_subtransaction(in Coordinator p);

void rollback_subtransaction();

};



11

21© Wolfgang Emmerich, 1998/99

Acc1@bankA
:Resource

Acc2@bankB
:Resource :Current :Coordinator

get_control()

begin()

debit()

get_control()

register_resource()

credit()

register_resource()

prepare()

commit()
commit()
prepare()

Example: Funds Transfer

commit()

22© Wolfgang Emmerich, 1998/99

Summary

� Roles in Distributed Transaction
Processing

� Two Phase Commit Protocol (2PC)
� Impact of 2PC on Concurrency Control
� CORBA Object Transactions
� Next Session: Questions & Answers


