
1

1© Wolfgang Emmerich, 1998/99

Wolfgang Emmerich

3C03 Concurrency:
Concurrent Architectures -

Announcer/Listener

2© Wolfgang Emmerich, 1998/99

Outline

� Motivation
� Announcer-Listener
� Announcer-Listener Model
� Announcer-Listener Safety and Progress
� Announcer-Listener Implementation
� Summary

2

3© Wolfgang Emmerich, 1998/99

Motivation

� Notification of events
� Originate in one location (announcer)
� Communicated to multiple interested

parties (listeners)
� Announcer does not know listeners
� Listeners do not know announcer
� Communication managed by connector

called event manager

4© Wolfgang Emmerich, 1998/99

Announcer-Listener Architecture

EVENTMANAGER

LISTENER

LISTENER

LISTENER

ANNOUNCER

3

5© Wolfgang Emmerich, 1998/99

Application Examples

� User Interface Frameworks:
• AWT Listeners are ordinary objects
• Events are mouse clicks, button presses
• Events cause operations to be invoked in

Listeners

� CORBA Event Service
• Event Producers are Announcers
• Event Channels are Event Managers
• Event Consumers are Listeners
• Used, for example in distributed stock tickers

6© Wolfgang Emmerich, 1998/99

Filtering & Recursive Events

� Listeners may only be interested in a
subset of events

� They register with Event Manager using a
“pattern” of events they wish to receive

� Listeners may themselves be announcers
and forward events into subsequent Event
Managers

� Listeners do not have to be active
processes

4

7© Wolfgang Emmerich, 1998/99

Event Manager Model

set Listeners={a,b,c,d}
set Pattern = {pat1,pat2}
REGISTER = IDLE,
IDLE=(register[p:Pattern]->MATCH[p]

|announce[Pattern]->IDLE),
MATCH[p:Pattern]=

(announce[a:Pattern]->
if (a==p) then (event[a]->MATCH[p]

|deregister->IDLE)
else MATCH[p]

|deregister->IDLE).
||EVENTMGR=(Listeners:REGISTER)

/{announce/Listeners.announce}.

LTSA

8© Wolfgang Emmerich, 1998/99

Announcer-Listener Model

ANNOUNCER = (announce[Pattern]->ANNOUNCER).

LISTENER(P='pattern)=(register[P]->LISTENING),

LISTENING=(compute->LISTENING

|event[P]->LISTENING

|event[P]->deregister->STOP

)+{register[Pattern]}.

||ANNOUNCER_LISTENER=(a:LISTENER('pat1)

||b:LISTENER('pat1)

||c:LISTENER('pat2)

||d:LISTENER('pat2)

||EVENTMGR

||ANNOUNCER).

5

9© Wolfgang Emmerich, 1998/99

Announcer-Listener Analysis

� Safety-Properties:
• Listeners receive events then and only then

when they are registered for them
• Listeners only receive events that match the

patterns they have registered for

� Progress-Properties
• Announcer should be able to announce

events independent of state of Listeners

10© Wolfgang Emmerich, 1998/99

Announcer-Listener Analysis

� Safety Properties:
property

SAFE=(register[p:Pattern]->SAFE[p]),

SAFE[p:Pattern]=(event[p]->SAFE[p]
|deregister->SAFE).

� Progress Properties:
progress ANNOUNCE[p:Pattern]={announce[p]}

6

11© Wolfgang Emmerich, 1998/99

Announcer-Listener Example

� Game:
• Coloured Blocks are moving around on a

canvas
• Hit them with a mouse press
• A hit block turns black and stops moving
• Blocks are threads that listen for mouse

events
• Events are announced by the display canvas
• Events are generated by the AWT classes for

Event handling
Demo

12© Wolfgang Emmerich, 1998/99

Announcer Listener Design

ThreadApplet

Canvas

display

listener

movers 1..*

BoxMover
- hit : Boolean = false

+ run()
- isHit()

displays

BoxCanvas

+ addMouseListener()
+ removeMouseListener()

EventDemo

+ init()
+ go()
+ ended()
+ stop()
+ handleEvent()

BoxMover::MyListener

+ mousePressed()

MouseAdapter

MouseListener

7

13© Wolfgang Emmerich, 1998/99

Summary

� Announcer-Listener
� Applications for Announcer-Listener
� Announcer-Listener Model
� Announcer-Listener Safety and Progress
� Announcer-Listener Implementation
� Summary

