
1

1© Wolfgang Emmerich, 1998/99

Wolfgang Emmerich

3C03 Concurrency:
Modelling Processes

2© Wolfgang Emmerich, 1998/99

Processes and Threads

� Execution of a program is a process
� Concurrent programs consist of multiple

processes
� Threads are lightweight processes
� Both threads and processes can be

modelled in the same way
� We use finite state machines for that

2

3© Wolfgang Emmerich, 1998/99

Labelled Transition Systems

� Special form of finite state machines
� Used to model states of concurrent

programs and transitions between them
� LTS:=(S,T,A,δδδδ ,c) where

• S (a finite set of states)
• T ⊆ S×S (a finite set of transitions)
• A (an alphabet of atomic actions)
• δδδδ: T→ A (a transition labelling)
• c∈S (the current state)

4© Wolfgang Emmerich, 1998/99

1 2 3 4 5

n States

0

0 Current State

Transitions

Graphic LTS Notation

think talk scratch

talk think

scratch

scratch

abc Labels

3

5© Wolfgang Emmerich, 1998/99

LTS Semantics

� All actions that are annotations of
transitions starting from the current state
are enabled

� If process engages in enabled action
target of transition becomes current state

� In this way LTS determines all possible
traces of process

Demo

6© Wolfgang Emmerich, 1998/99

Finite State Processes (FSP)

� LTS become unmanageable for large
number of states and transitions

� Process algebras determine LTSs in a
more concise way

� Finite State Processes (FSP): machine
readable notation for a process algebra

� For each FSP model an equivalent LTS
can be constructed automatically

4

7© Wolfgang Emmerich, 1998/99

FSP Intro: Action Prefix

� Let x be an action and P a process. The
action prefix(x->P) is process that
initially engages in action x and then
behaves in the same way as process P

� Used to model atomic actions
� Actions have lower case identifiers, states

have upper case identifiers
� Example: ONESHOT=(once->STOP).

� Equivalent LTS:

0 1

once

8© Wolfgang Emmerich, 1998/99

FSP Intro: Recursion

� Let P be a process. Then P may be used in
action prefixes in a recursive way.

� Used to model repetitive behaviour
� Example: SWITCH=OFF.

OFF =(on->ON).
ON =(off->OFF).

� Equivalent LTS:

� Note: Processes are equivalent to states

0 1

on

off

5

9© Wolfgang Emmerich, 1998/99

FSP Intro: Local Processes

� It is not necessary for all states/processes
to be globally visible.

� Restricting states/processes by use of ‘,’
� Example:
SWITCH=OFF,
OFF=(on->ON),
ON=(off->OFF).

� OFF and ON are not visible outside SWITCH

� Equivalent to:
SWITCH=(on->off->SWITCH).

10© Wolfgang Emmerich, 1998/99

� (x->P|y->Q) describes a choice that
engages either in x or y. After x it contin-
ues with P, after y it continues with Q

� Example: DRINKS=(

red->tea->DRINKS
| blue->coffee->DRINKS
).

� Equivalent LTS:

FSP Intro: Choice

0 1
red

blue

2
tea

coffee

6

11© Wolfgang Emmerich, 1998/99

FSP Intro: Indexes

� A range type is a finite and scalar type:
� Example: range T=0..3

� If T is a range type then x[i:T] is the
declaration of an action index and P[i:T] is
declares an indexed process.

� A process index variable is valid within
the process, an indexed action is valid
within the scope of the choice.

12© Wolfgang Emmerich, 1998/99

FSP Intro: Index Example

const N =1
range T =0..N
range R =0..2*N
SUM =(in[a:T][b:T]->OUT[a+b],
OUT[s:R]=(out[s]->SUM).

� Equivalent LTS:

0 1
in.0.0

in.0.1

2
out.0

out.1

3

in.1.0

in.1.1

out.2

7

13© Wolfgang Emmerich, 1998/99

FSP Intro: Guarded Actions

� The guarded action when B x->P means
that when the guard B is true action x is
enabled and the process proceeds as P.

� Example:
COUNT(N=3) =COUNT[0],
COUNT[i:0..N]=(when(i<N) inc->COUNT[i+1]

|when(i>0) dec->COUNT[i-1]
).

� Equivalent LTS:

0 1
inc

dec
2

inc

dec
3

inc

dec

14© Wolfgang Emmerich, 1998/99

Summary

� Formal Definition of LTS
� Algebraic notation in FSP
� Equivalence between LTS and FSP
� FSP and LTS concepts introduced so far

are sufficient for sequential programs
� Next session: FSP constructs for

modelling concurrent programs
� Solve Exercises 1 and 2 of tutorial sheet

