
6 Evolution of Images using Partial Differential Equations

6.1 Variational Methods in Imaging

We here introduce a functional used frequently in image reconstruction and image processing.

Ψ(f) =

∫
Ω

ψ (|∇f |) dx (38)

We want to derive the Gateaux derivative for Eq. 38 in direction h, defined to be

Ψ′(f)h := lim
ε→0

[
Ψ(f + εh)−Ψ(f)

ε

]
(39)

for arbitrary function h satisfying the same boundary conditions as f . Ψ′(f) is a linear operator
mapping from the space of functions to a scalar value. If we can show that it does not depend
on h then Ψ′(f) is the Fréchet derivative of Ψ and constitutes a generalised notion of a gradient.

Expanding Eq. 38 we have

Ψ(f + εh) =

∫
Ω

ψ
(√

∇f · ∇f + 2ε∇f · ∇h+ ε2∇h · ∇h
)
dx

Taking the Taylor series we have

Ψ(f + εh) = Ψ(f) +

∫
Ω

2εψ′ (|∇f |) 1
2
|∇f |−1∇f · ∇hdx+O(ε2)

Making the definition

γ :=
ψ′ (|∇f |)
|∇f |

we have

Ψ′(f)h =

∫
Ω

γ∇f · ∇hdx = −
∫
Ω

h∇ · γ∇fdx

where the last expression results from using the divergence theorem. We now define the differ-
ential operator

L(f) = −∇ · γ∇
so that we can state

Ψ′(f)h =

∫
Ω

hL(f)fdx = 〈h,L(f)f〉 = 〈h, δΨ〉

Note that

• L(f) is a linear operator, but it is parameterised on f because of the function γ.

• Ψ′(f) does not depend on h. It is a linear integral operator with kernel function δΨ.

• δΨ := L(f)f is an image.
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We use the kernel of the Fréchet derivative of Ψ to define a time-domain Partial Differential
Equation (PDE) [

∂

∂t
+ L

]
f(x, t) = 0 (40)

We can solve Eq. 40 by using the Green’s operator

(Gf)(x, t) :=
∫
Ω

G(x,x′, t, t′)f(x′, t′)ddx′dt′ (41)

where G(x,x′, t, t′) is the Green’s function of L (with appropriate boundary conditions), which
has the property [

∂

∂t
+ L

]
G(x,x′, t, t′) = δ(x,x′, t, t′) (42)

It follows that [
∂

∂t
+ L

]
G f = G

[
∂

∂t
+ L

]
f = f (43)

and the solution to any inhomogoeous PDE[
∂

∂t
+ L

]
f(x, t) = q(x, t) (44)

is given by
f = Gq . (45)

6.2 Gaussian Convolution as a Diffusion Process

Figure 7: 3D plot of Green’s function for the homogeneous diffusion equation (Eq. 46)

We first consider the case where ψ(s) = 1
2s

2 ⇔ ψ′(s) = s. It follows that γ = 1 and

L(f) = −∇2
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which is the stationary Laplacian (does not depend on f). The resultant diffusion is isotropic
and the resultant Green’s function is also stationary

G(x,x′, t, t′) = GH(x− x′, t− t′) := 1√
2π(t− t′)d

exp

[
−|x− x′|2

4(t− t′)
]

t > t′ (46)

so that the solution to the equation[
∂

∂t
−∇2

]
f(x, t) = q(x, t) (47)

is given by the stationary convolution

f =

∫
Rd

GH(x− x′, t− t′)q(x′, t′)dnx′dt′ = GH ∗ q . (48)

Importantly, the converse is also true : Convolution of an image f0 with a Gaussian Gσ of
standard deviation σ is the same as evolving the isotropic equation Eq. 47 with initial condition

q = f0|t=0 for a time t = σ2

2 . This gives us a third mechanism (in addition to spatial and
Fourier domain convolution) for performing Gaussian smoothing. The advantage comes when
we consider efficient methods for solving Eq. 47 in a discrete setting in section 6.4. Figure 7
shows a 3D plot of the function Eq. 46.

6.3 Anisotropic Diffusion

Figure 8: Left to right : i ) Different varational forms for ψ = 1
2s

2 (black), Total Variation
(red), Smoothed Total Variation (green), Perona-Malik (blue), Huber (magenta circles); ii) the

derivative ψ′(s); iii) diffusivity γ = ψ′(s)
s

When the function ψ in Eq. 38 is not the quadratic function, the resultant diffusion scheme is
anisotropic. We’ll consider some common examples

1. Total Variation. If ψ(s) = s⇔ ψ′(s) = 1, then γ = 1
|∇f |

L(f)f = −∇ · 1

|∇f |∇f = κ

where κ is the image curvature.
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2. Smoothed Total Variation. Because of the division by zero of γ = 1
|∇f | when f is constant,

total variation is often implemented by some approximation such as

ψ(s) = T
√
s2 + T 2 − T 2 ⇔ ψ′(s) =

sT√
s2 + T 2

⇔ γ =
T√|∇f |2 + T 2

=
1√

1 +
(
|∇f |
T

)2

where T is a threshold.

3. Perona-Malik. If ψ(s) = T 2

2 log
(
1 +

(
s
T

)2)⇔ ψ′(s) = sT 2

T 2+s2 then γ = T 2

T 2+|∇f |2

L(f)f = −∇ · 1

1 +
(
|∇f |)
T

)2∇f

where T is a threshold

4. Huber. This functional is designed to give a smooth transition from a quadratic functional
when |∇f | → 0 and a linear functional (as in Total Variation) when |∇f | → ∞. It is
achieved using

ψ(s) =

{
Ts− T 2

2 s > T
s2

2 s ≤ T
⇔ ψ′(s) =

{
T s > T

s s ≤ T
⇔ γ =

{
T
|∇f | |∇f | > T

1 |∇f | ≤ T

These schemes do not correspond to stationary convolution, instead they are a way of imple-
menting a blurring process that depends on the local image structure.

6.4 Implementation of Diffusion using Finite Differencing

We make use of the discrete differentiation methods we introduced in section 4.1. We will
assume that an image is sampled on a regular grid of spacing Δx,Δy centred at an origin

(x0, y0) , and that the time series is at regular intervals {tn = t0 + nΔt} leading to {f (n)i,j =
f(x0 + ihΔx, y0 + jΔy, t0 + nΔt)}.

6.4.1 Explicit Methods

In the explicit scheme, all derivatives are approximated at t = tn and the subsequent point in
time is evaluated as

f
(n+1)
ij = f

(n)
ij +Δt

[
γi+ 1

2 ,j
(f

(n)
i+1,j − f (n)i,j )− γi− 1

2 ,j
(f

(n)
i,j − f (n)i−1,j)

+ γi,j+ 1
2
(f

(n)
i,j+1 − f (n)i,j )− γi,j− 1

2
(f

(n)
i,j − f (n)i,j−1)

]
(49)

=
(
1−Δt

(
γi+ 1

2 ,j
+ γi− 1

2 ,j
+ γi,j+ 1

2
+ γi,j− 1

2

))
f
(n)
i,j .

+Δt
(
γi+ 1

2 ,j
f
(n)
i+1,j + γi− 1

2 ,j
f
(n)
i−1,j + γi,j+ 1

2
f
(n)
i,j+1 + γi,j− 1

2
f
(n)
i,j−1

)
(50)
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where the inter-pixel diffusivity is the average of its neighbours γi± 1
2 ,j

= 1
2 (γi,j + γi±1,j) ,

γi,j± 1
2
= 1

2 (γi,j + γi,j±1). We see that Eq. 50 can be written in matrix-vector form as

f (n+1) = [I+ΔtA] f (n) (51)

where the matrix A has the structure

Ai,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γi,j− 1
2

j = i−N
γi− 1

2 ,j
j = i− 1

−
(
γi+ 1

2 ,j
+ γi− 1

2 ,j
+ γi,j+ 1

2
+ γi,j− 1

2

)
i = j

γi+ 1
2 ,j

j = i+ 1

γi,j+ 1
2

j = i+N

(52)

which results from reading out the two-dimensional image f in row-order, i.e. pixels neighbouring
in the x-direciton have an index differeing by one, whereas those in the y-direction have an index
differing by N . This structure is referred to as tridiagonal with fringes. The explicit scheme
Eq. 50 is efficient because it does not require the explicit construction of matrix A, only the smal
number of summations and multiplications shown. However, due to the Courant-Friedrichs-
Levy (CFL) condition for such schemes it is only conditionally stable. In fact it is required that

Δt ≤ min(Δx,Δy)
2 for the scheme to converge. This step may be too small for some requirements.

6.4.2 Implicit Methods

The implicit scheme evaluates derivatives by backward differencing in time, leading to

[I−ΔtA] f (n+1) = f (n) (53)

This requires the inversion of a large N2 × N2 matrix. However, since the structure is of the
special form given in Eq. 52 it can be efficiently decomposed and inverted. The explicit scheme
is unconditionally stable : it can be evaluated at arbitrarily large values of the time-step Δt.

6.4.3 Alternating Direction Implicit and Semi-implicit methods

A method that is more optimal is Alternating Direction Implicit (ADI). Here it is noted that
the matrix in Eq. 52 can be split as A = A(x) + A(y) where

A
(x)
i,j =

⎧⎪⎪⎨
⎪⎪⎩
γi− 1

2 ,j
j = i− 1

−
(
γi+ 1

2 ,j
+ γi− 1

2 ,j

)
i = j

γi+ 1
2 ,j

j = i+ 1

A
(y)
i,j =

⎧⎪⎪⎨
⎪⎪⎩
γi,j− 1

2
j = i−N

−
(
γi,j+ 1

2
+ γi,j− 1

2

)
i = j

γi,j+ 1
2

j = i+N

(54)
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and the ADI schemes is written in two steps[
I− Δt

2
A(x)

]
f (n+

1
2 ) =

[
I+

Δt

2
A(y)

]
f (n) (55)[

I− Δt

2
A(y)

]
f (n+1) =

[
I+

Δt

2
A(x)

]
f (n+

1
2 ) (56)

In Eq. 55 the matrix on the left is precisely tridiagonal (no fringes) and may be inverted in O(n)
time by LU-decomposition and forward/backward substitution. In Eq. 56 the same method can

be employed by first reading out the image f (n+
1
2 ) in column order : this means that y-neighbours

have index differing by 1 and x-neighbours have index differing by N .

The ADI scheme is both computationally fast and unconditionally stable.
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