Segmented Adaptation of Traffic Aggregates

Hermann de Meer and Piers O’Hanlon

Dept. of Computer Science, University College London
{H.DeMeer,P.0Hanlon}@cs.ucl.ac.uk

Abstract. Congestion control in heterogeneous Quality-of-Service (QoS)
architectures remains a major challenge. The solution proposed in this
paper entails three constituents. Taking the current trend towards Dif-
ferentiated Services (DiffServ) as a likely candidate for future Internet
QoS-architectures, our approach is based on aggregated, domain-based,
and class-of-service based congestion control. The overall framework for
congestion control, as suggested here, reflects essential properties of un-
derlying QoS-architectures and their instantiations in real implementa-
tions. As such an approach calls for highly flexible architectures, we sug-
gest the use of Active Networking, and in particular Application Level
Active Networking, as an enabling technology for a seamless and rapid
integration of the proposed scheme into current architectures.

1 Introduction

Congestion control in IP networks has traditionally relied upon mechanisms
of the transport protocol TCP, and thus, on the cooperation of applications
in the face of network congestion. With the advance of real-time multimedia
communication applications on the Internet, on the other hand, a non-congestion
sensitive usage of UDP has become increasingly popular for several reasons. The
prospect of a massive usage of non-responsive transport protocols such as raw
UDP, however, has created some concern about the viability of a “laissez-faire”
approach that has traditionally been adhered to in the Internet [3].

In the same vein, issues in sharing bottlenecks and techniques of how to en-
force fairness among competing elastic and non-elastic applications has triggered
a hefty discussion within the Internet research community recently. While some
form of fairness among competing flows appears appealing to one camp of re-
searchers others are worried about the implied overhead of policing and enforcing
control policies on a flow basis. To yet another camp, the idea of enforcing fair-
ness in sharing bottlenecks does not appear as compelling at all. Disregarding
implementation and run-time overhead, a fair sharing of bandwidth may not eas-
ily translate to a concept of fairness at the application level as QoS requirements
and pricing conditions may vary vastly. While the concern about congestion con-
trol is being widely shared the jury is still out on measures of how to approach
the problem [3].

QoS architectures within the confines of the DiffServ model are currently be-
ing introduced into the Internet to provide preferred handling of privileged traffic

load classes [8]. Subscribers to such a privileged class expect to receive a higher
level of service at a premium price. Within the confines of a DiffServ architecture,
and in particular within Assured Forwarding (AF) subclasses, congestion may
still arise and QoS violations may occur at times, despite traffic conditioning
and resource provisioning. QoS architectures rely on class-dedicated resource
provisioning of some sort and thus try to reduce the probability of congestion
occurrence on the one hand and the impact of congestion events on privileged
traffic on the other hand. Although the latter aspect may seem less obvious,
we believe that it does reveal a most important aspect of the semantics of QoS
architectures. OQur approach is essentially based upon that observation.

Congestion can be seen as a possible cause (error) or “fault” in delivering
a networking service with a required QoS. Since the possibility of such a QoS
fault is likely to be an occasional matter-of-fact characteristic of any DiffServ
architecture, we suggest that it is systematically taken into account as part of
an overall model of QoS semantics of a given architecture. Such an approach is
common practice in designing fault-tolerant distributed systems [2]. We therefore
advocate to characterize QoS architectures not only in terms of assured transport
privileges, but also in terms of adequate recovery measures in the presence of
QoS faults as a result of congestion.

Assessing current trends in the design of QoS DiffServ architectures reveals
inherent possibilities of QoS faults. Taking the derived fault models into account,
we conclude the measures as presented in this paper. The suggested solution
is based on the three elements of aggregated congestion control, domain-based
congestion control, and class-of-service based congestion control.

Our approach is based on the introduction of new control and management
functions into existing architectures. Introducing new services into an existing
networking environment, however, is a challenge of its own, as re-programming
of routers has traditionally been solely controlled by hardware vendors. While
Active and Programmable Networking technologies have been pursued as a pos-
sible once-and-for-all solution to the often lamented inflexibility of networking
infrastructure by the research community, there is still a long way to go for
Active Networking infrastructure to be widely available [1]. Our pragmatic so-
lution, therefore, relies on our Application Level Active Networking (ALAN)
infrastructure, called FunnelWeb, that requires only a minimum support from
the networking layer [4].

In Sect. 2, we first introduce the notion of QoS fault-tolerance measures in
DiffServ architectures and then look at segmented adaptation as a special case
of it. An illustrating test scenario completes that section. FunnelWeb, our Appli-
cation Level Active Networking infrastructure, is introduced in Sect. 3, followed
by presentation of an implementation of the segmented adaptation scheme based
on that infrastructure. Section 4, which shows some of our simulation studies
and first numerical results, is followed by the conclusion in Sect. 5.

2 Decomposition of Elasticity and Feedback

2.1 QoS Failure Semantics in Networks and Segments

Current discussions on DiffServ QoS architecting largely fall into two categories.
One focus is on traffic conditioning and admission control at network edges and
the other is on resource provisioning at the network nodes by defining so-called
per hop behaviors (PHB). Combining proper traffic conditioning at the edges
with nodes configured according to PHB specifications is designed to result in
well-defined edge-to-edge behaviors for an aggregate traffic load. Such a behavior
aggregate, whose scope is limited to an administrative domain as a segment of
the network, is referred to as a per domain behavior (PDB) [6].

The ultimate goal in the current DiffServ bottom-up approach is to com-
pose end-to-end QoS services from PDBs. Conditioning and provisioning are
performed based on service level specifications (SLS) as part of more general
service level agreements (SLA).

A wide spread belief is that adequately provisioned resources at the network
nodes and carefully set conditioning elements at the edges can assure, or even
guarantee, a targeted level of QoS. While that may be true for many condi-
tions, there have not yet been any proofs of such procedures to reliably exist
under fairly general conditions. Provisioning and conditioning are rather static
and slow operations that need to account for repeated occurrences of aggrega-
tion/disaggregations at nodes of the a network segment, or to possibly deal with
other hard to control stochastic events that may have an adverse impact on the
delivered QoS of the network segment. While the likelihood of occurrence of
congestion inducing events that may trigger a segmented QoS fault may be low,
we nevertheless argue that precautions should be taken against them. This is
particularly the case given the hierarchical structure of the DiffServ architecture
in which end-to-end services may well be composed of a chain or mesh of PDBs.
While a segmented QoS fault may be rare under ideal conditions, the whole
chain could break if any segment exhibits a QoS failure, which is likely to occur
an order of magnitude more often than a QoS failure of a single segment.

As a result of this analysis, we argue for the explicit extension of the QoS
DiffServ model to incorporate (segmented) QoS fault tolerance. Our view is that
this is in compliance with Huston’s recent proposal for the next generation of
DiffServ architectures [9]. Only we are suggesting a more systematic approach
based on the well-understood technology of distributed fault-tolerant systems [2]
and its application to the concept of (segmented) QoS faults. Expressing Hus-
ton’s proposal in terms of these concepts and terminologies it could be rephrased
as augmenting PDBs with QoS error state detection mechanisms in order to sig-
nal implied QoS fault events to the edge routers. The edge routers in turn may
choose to trigger error recovery techniques in order to re-establish a well-defined
QoS level according to a given SLA. The recovery action to perform would clearly
depend on the QoS class itself as well as on other factors such as pricing. For
graceful adaptation we suggest the introduction of service curves for definition
of QoS levels within the SLA. The benefit of such an approach is that QoS guar-

antees can be expressed as simple functions of the service curves, as opposed
to rigid definitions in traditional SLAs. This technique would allow for smooth
movement between different service levels dependent upon network state and
stipulated class of service through the selection of appropriate service curves.

In general, any disturbances could lead to an error such as congestion. Con-
gestion may lead to a violation of the targeted QoS, referred to here as a QoS
fault in that segment. Local error recovery methods such as adaptive QoS routing
could mask the fault so that no QoS failure of the PDB becomes externally visi-
ble. But error recovery could also, and mostly will, rely on external cooperation
as provided by contracted elasticity of up-stream domains to adapt the service-
qualified load sensibly. Formally, the purpose of introducing QoS fault tolerance
is to reduce to likelihood of “externally” visible end-to-end QoS failures. !

QoS error recovery actions would be performed on whole traffic aggregates
in accordance with the DiffServ model and are suggested to be specified as
part of (bilateral) SLAs among providers. No involvement of any flow-specific
knowledge or measure is needed or wanted for the method to be effective. We
see this as an argument in favor of scalability and flexibility. In analogy to TCP-
based congestion control, one could refer to cooperating service providers as
being elastic. We believe elasticity and cooperation among service providers in
terms of realizing QoS fault-tolerance as vital for the success of the DiffServ
model, in analogy to the viability of the best-effort model based on elasticity or
TCP-friendliness of cooperating applications.

Once the DiffServ model has been adopted, we believe that the approach
of segmented adaptation and other domain based error recovery methods as
suggested here do not imply any further violations of the end-to-end princi-
ples [7]. On the contrary, incorporating QoS fault tolerance into the DiffServ
model increases flexibility and mutual independence between applications and
the network transport mechanisms as it re-establishes backward compatibility
with TCP-like end-to-end congestion control [3]. It provides the means for self-
protection of network segments and may even allow the introduction of incentives
to applications for backing off, perhaps based on local access policies. We see
segmented QoS error recovery as an essential means to enable the network to
control its own resource utilization within the DiffServ framework. Although
elasticity of applications does help significantly, the network should not rely on
applications to cooperate in order to deliver its advertised services.

Our approach introduces a dynamic factor into SLAs and the execution of
management tasks and traffic conditioning operations. Currently we limit our-
selves to implementing simple QoS fault indication mechanisms and restrict the
experimental setting to dynamically reconfiguring traffic conditioning operations
to yield an adaptation effect on traffic aggregates. The concept, however, is by
no means limited to these specific measures and is potentially open to any error
state (or congestion) discovery, QoS fault notification, and QoS error recovery
procedure. Depending on local policies and effectiveness of QoS error recovery,
congestion signals may, however, propagate all the way back to access domains.

! For more information on the the use of terms “error”, “fault” and “failure” see [2].

Local access policies and strategies may become effective and non-elastic ap-
plications can, for example, be penalized. But these decisions would be made
locally by the access bandwidth brokers and would not impose any burden on
the core or edge routers further down-stream.

The way adaptation of traffic aggregates is performed, as well as other mech-
anisms forming part of a QoS fault tolerance framework, also depends on the
service class that is supported by a PDB in a given segment. This entails error
detection schemes such as random early detection (RED) [3], QoS fault classifi-
cation mechanisms such as identifying affected and responsible traffic aggregates,
and also the adaptation strategy itself. A best-effort service, for instance, offers
little clue about the nature, scope and duration of a congestion state. Entropy is
reduced, however, in the case of DiffServ service classes. Here the occurrence of
congestion may indicate longer term provisioning problems rather than coinci-
dental short bursts that have an adverse effect. Adaptation may occur rarely but
load reduction may have to last longer under these circumstances. We anticipate
time scales to be in the order of session durations for Assured Service traffic
aggregates. Expedited Service classes may require even longer down scaling of
the traffic aggregate, perhaps permanently so, as a congestion state could be
seen as a severe error that indicates a prohibitively poor provisioning strategy.
While it seems to be obvious that service-class types have a significant impact
on the best adaptation strategy for traffic aggregates, we are far from having
final answers to these questions. We consider this for further research but regard
a differentiated adaptation behavior that reflects service class differentiation as
an essential constituent for segmented adaptation of traffic aggregates in the
DiffServ framework.

2.2 An Economical Motivation

A definition of suitable SLAs including QoS fault tolerance mechanisms would be
subject to economically motivated bilateral agreements and technologically en-
abled solutions. For example, imagine an up-stream provider having a contract
with a down-stream provider to forward 5Mbps of a certain Assured Forwarding
(AF) QoS-type of traffic aggregate through its domain. Minimizing the per-
centile of QoS failures by overprovisioning the down-stream networking segment,
may get excessively costly beyond a certain percentile threshold. In contrast, it
might be much less expensive, and thus to the mutual benefit, to agree on clearly
stated QoS fault models, fault notifications and recovery procedures. The result-
ing QoS fault tolerance may involve cooperation between neighbouring providers
such as reducing the aggregated rate to 2Mpbs, say, that is sent down-stream
upon receiving a congestion signal. Nothing is said of how the up-stream provider
achieves the requested QoS recovery measure, be it by re-setting traffic condi-
tioning parameters at its corresponding egress link or by applying QoS routing
and traffic management techniques, or any combination thereof and further mea-
sures. The down-stream provider would rely on the potential - and rare - case of
cooperative elasticity in the way it manages and runs its own network segment.
Of course, the necessary QoS fault-tolerance mechanisms have to be in place as

well, which is a cost factor too, so a trade-off analysis may reveal the optimum
point of operation based on all given local conditions and QoS requirements.

Specifying QoS failure semantics and provisioning of QoS fault tolerance
based on bilateral agreements may not only enhance the end-to-end QoS as
to be experienced by applications but is also envisioned to lead to a mode of
operation that allows minimization of constraining cost functions.

2.3 A Test Scenario

A test scenario is given in Fig. 1. Four autonomous systems (AS) are intercon-
nected by properly defined DiffServ links with the capacity as indicated in the
legend of Fig. 1. All indicated intra-AS links are also considered to be DiffServ
capable. Edge routers are labeled by names with initial letter E, followed by a
number indicating the particular AS the router belongs to and a symbol indi-
cating the particular router in that domain. Core routers are indicated by an
initial letter C. Hosts are simply designated by the source running on it.

Assured Forwarding (AF) links have been set up between the nodes with
the edge routers configured for time sliding window with three color marker
(TSW3CM) policier. The initial state is that four hosts are transmitting traffic.
One FTP source is running over a TCP connection from end host srcf in AS1
to its sink in AS3. One 4Mbps UDP constant bit rate source (with randomized
departure times to avoid phase effects) is running from src2 in AS4 to its sink
in AS3. Similarly, sre8 in AS4 is transmitting a 2Mbps CBR stream to its sink
in AS3. And, finally, a third CBR UDP source src4 is transmitting 4Mbps UDP
traffic to its sink in AS3.

We hayve artificially created the congested AF link ¢3r1—c3r2in AS3 by defin-
ing the traffic matrix and choosing the link capacities accordingly. For the sake
of demonstration we have exaggerated the congestion event as we are not as
interested in an exact modeling of congestion occurrence at this point, but in
the effectiveness of our congestion recovery methods in relation to a given AS.

Congestion Notification (CN) signals originating from link ¢3r1-c3r2 in AS3
are propagated back to the edge routers and adaptation of traffic aggregates
is performed to re-condition the traffic load that enters AS3 at the particular
ingress link. Two solutions are possible in this case, either the advertised ca-
pacity of egress link e2r3—e3rl or of the ingress link e3rl—c3rl can be reduced
accordingly. As results presented later suggest, the latter action is considered as
less desirable and should only be used as a intermediate step for self-protection
of AS3. The goal, however, is to initiate a reduced traffic flow from AS2 to AS3
with respect to a congested traffic class. This is considered a method to recover
from a segment-AS3 QoS-fault and is achieved by providing elasticity of AS2.

Once adaptation of the traffic aggregate on the identified ingress link of AS3
has been performed properly, AS3 should be well protected and be back to
normal operation, with no congestion in the core nodes. The edge router of AS2
may decide to forward the CN signal to AS4 in order to trigger a reduction of
advertised AF capacity of link edr1—e2r2. If that step is performed properly, both
AS2 and AS3 should have recovered from a possible segmented QoS failure and

Eor Src4.UDP 4M Eor3
AS? :l\\ _CN

Sink:srcl,src3
. Edge Router 5Mbis
—— 10Mb/s
O Core Router
J End Host Congested

Fig. 1. Test Scenario

be back to normal AF forwarding mode, albeit at a potentially reduced rate.
It is up to AS4 to decide on quenching source src2 or on taking other recovery
actions internally. Of course, the simple scenario indicated in Fig. 1 is likely to
be a partial representation only, in reality many more links and nodes would be
available, providing more options for recovery.

Given that aggregated links may be shared by many traffic types in DiffServ
we would like to mention the fact that the presented scenario implicitly entails
QoS routing, as flows src2 and sred follow different paths, although originating
and terminating in the same ASs. While not particularly significant in the results
presented in this paper, our overall approach does take QoS routing into account.
However, we will not further elaborate on QoS routing in this paper.

3 An Implementation Based on ALAN

3.1 The Concept of ALAN

The concept of Application Level Active Networking (ALAN) has been devel-
oped to introduce flexibility and openness into networking architectures, at the
application level, without compromising performance and security of core net-
working functions [4].

ALAN differs from network layer Active Networking (AN), where packets
carry active code which may be executed at the network level in devices such as
routers. The AN approach attempts to solve the flexibility problem while creating
a number of new challenges, in particular, with respect to security, network
stability and performance. In contrast, the ALAN approach leaves the basic
network infrastructure unchanged and provides a framework for deployment of
application level active services. General purpose computational nodes are placed
inside the network at strategic locations to host execution environments that can

be dynamically installed to perform application level functions that, however,
interfere in a very limited way with network transport mechanisms. This concept
is similar to current methods in optimization of content delivery in the Internet
that have been widely adopted by the industry. The main difference is that we
are deploying general purpose “boxes” that are designed and intended to be
easily re-programmable.

3.2 FunnelWeb

We are using the FunnelWeb [4] implementation for ALAN - see Fig. 2. This
system consists of deploying active elements in the network which provide an
application level execution environment. In FunnelWeb the active applications,
or active services, take the form of prozylets. Proxylets are written in Java and
are loaded by reference. Proxylets may be loaded and executed on active node
machines running an Ezecution Environment for Prozylets (EEP). There are
interfaces for monitoring and control of the proxylet on the EEP.

EEP <—| Monitor Interface
(Execution Environment
for Proxylets)
Proxylet b
Server \] Proxylet

[Control Interface] [Control Interfaoe] [Control Intem:-x:e]

Fig. 2. FunnelWeb Architecture

3.3 Active Segmented Adaptation

In our approach, adaptation of inter domain traffic is to be performed at the edge
routers of autonomous domains according to pre-negotiated, bi-lateral, service
curve oriented SLAs. Normally, traffic crossing network boundaries is handled
within negotiated standard SLS operation. An SLS may specify what to do in the
case of out-of-profile traffic [10], resulting in some level of traffic conditioning at
the edges such as dropping or re-classification. In contrast, dynamic adaptation of
traffic aggregates may well be performed on in-profile traffic in the ezceptional
case of congestion events. Adaptation may be implemented in any form that
reduces the relevant traffic load class, be it by dropping, re-classification or re-
shaping. The resulting action is dependent upon the local and class-based QoS
failure semantics, the correspondingly suggested recovery methods, and further
conditions such as pricing that may be included in a bi-lateral SLA.

Active services in the form of proxylets are dynamically deployed to augment
and customize traffic conditioning at the edges. We refer to this approach as an
active bandwidth broker (ABB). An ABB also forwards and filters congestion

signals to neighbouring domains according to actively extended SLAs. A dy-
namic change of traffic conditioning can be accomplished easily as the required
traffic conditioning modules are already in place due to the underlying DiffServ
architecture. Only an interface is needed for a dynamic parameterization of the
conditioning modules. The change of the parameter settings is triggered by the
proxylets. Local policies can easily be incorporated and changes to policies can
be realized on demand due to the inherent flexibilty of FunnelWeb.

Segmented adaptation is designed to utilize explicit CNs from the core of
an AS to its edges. These congestion signals may be generated when certain
resource utilization levels at a router exceed given thresholds. Such notifications
contain information from packet headers regarding the sources of congestion. At
the current point we plan to multicast notifications from the congested router to
the proxylets attached to the edge routers. It may also be possible to unicast such
notifications by usage of an active intermediary that would be able to specifically
route the CN signal.

Once the proxylets at the edge router, as a constituent of an ABB, receives
a CN they may decide to comply with it or to discard it, depending on the valid
policy. Type of action taken may include a variety of strategies to control ag-
gregates’ behavior dependent upon the nature of the congestion and the service
class affected. In addition, the ABB may choose to forward the CN to peering
ABBs and to trigger a corresponding adaptation of the traffic aggregate at cor-
responding actively extended edge routers (potentially more responsible for the
congesting traffic) dependent upon the contents of the CN and installed policy.
Action taken would have a lifetime dependent upon the continuing congestion
state of the core network as reported by subsequent refreshing CNs. If neither
CN signals are received from the defective down-stream domain, nor any arriv-
ing traffic exceeds the lowered egress rate, after a “reasonable” period, recovery
from an AS QoS fault is assumed to be completed and the link is opened again
to full capacity. Referring to Fig. 1, when recovery has been completed for AS3
and AS2 only link e4rl-e2r2 remains scaled down as long as recovery has not
been completed within AS4, all other AF links would be back to normal. Note
that the current procedure of AF adaptation is based on intuition, but more
systematic, preferably formal modeling, studies are needed.

We are implementing the system using two proxylets as illustrated in Fig. 3.
The SLA prozylet provides facilities for implementation of SLS service curve be-
haviour which interfaces with the conditioning elements. The SLA proxylet also
specifies the conditions in which peering ABBs should get involved and propa-
gate the congestion notification signal propagate further up-stream. The ASA
proxylet, where ASA refers to active segmented adaptation, controls operation
of QoS error recovery in terms of aggregated adaptation as discussed earlier.

Using FunnelWeb provides high flexibility to dynamically change policies or
to update adaptation and other recovery procedures upon demand. In our case,
FunnelWeb allows us to rapidly and seamlessly integrate SLA extensions into
existing networking infrastructures to create our customized testbed.

i EF
BB + AF
L [sa] ; oF
. w \
CONGESTION ... \ ‘
NOTIFICATION R S . = MANAGEMENT

Fig. 3. Active Bandwidth Broker

4 Some Simulation Results

Referring to the test scenario in Fig. 1, we performed some early simulations to
study the effectiveness of adaptation of traffic aggregates. The simulations have
been carried out using The Network Simulator [5]. While our focus is on inter-
domain adaptation of traffic aggregates, we also present additional results on
intra-domain aggregated adaptation on links local to AS3. This provides more
systematic insights into the impact of adaptation steps. Indeed, the concept
would also allow adaptation on local links as an immediate recovery method.
The first graph in Fig. 4 depicts the flow specific throughput in the initial state
of the network with the indicated congested link in AS3 of Fig. 1. Srcl, src2, and
src3 share the congested link. As a result, the TCP flow is almost completely
starved while src2 and src3 share the remaining bandwidth but both suffer from
considerable losses. Upon reception of CN signals, the total bandwidth on ingress
link e3r1-c3rl is immediately reduced to 2Mbps, shifting the congestion towards
edge router e3r3. Such a measure could be useful as an immediate measure to
shift a bottleneck away from a hot spot to increase the overall healthiness of
a domain. The resulting situation can be seen in the middle graph of Fig. 4.
The TCP session is still completely starved but at least the QoS of src3 is back
to normal and the throughput is back to the targeted rate, link c3rl—c3r2 has
recovered from its congested state and AF QoS is guaranteed again for that part
of segment AS3. In a practical setting, this step could be seen as a realization
of self-protection of the congestion affected AS.

Next, the CN signal is propagated further up-stream to edge router e2r3
in domain AS2. At which point the advertised bandwidth of link e2r3—e3rl is
reduced until no more CN signals arrive. Domain AS3 has now recovered com-
pletely and is again fully complying with a PDB specification of the AF QoS
class. Note, the approach does not boil down to a hop-by-hop control mechanisms
- only edge routers are involved in the adaptation process.

Finally, link capacity e4r1—e2r2 is reduced to 2Mbps and all other link restric-
tions are released shortly afterwards, as there is no congestion observed on any
link of AS2 or AS3. The resulting effective throughput is given in the right graph
of Fig. 4. AS2 and AS3 are not only loss free and fully back to AF forwarding
mode, but TCP srcl has gained it’s share of link ¢3r1-3r2.

From the simulation studies it is clear that there are difficulties in specifying
reasonable adaptation strategies. So far we have only relied on our intuition, but

T R R R R
8
I R e
L

8538855
T T T
L
o 2855
T T T T

Fig. 4. Initial situation e3rl-c3rl:down2 edrl-e2r2:down2

more systematic investigations are obviously needed here. It should be noted,
however, that the problem of defining strategies in back-propagation of CN sig-
nals and performing up or downscaling of QoS DiffServ virtual links appears
similar in nature to matching of traffic conditioning and resource provision-
ing in general. Hence, this problem must be solved for the DiffServ model to
become completely viable [9]. Once there are reasonable solutions for the pro-
visioning/conditioning problem, these results should also be applicable to the
related adaptation problem of traffic aggregates. But as we doubt there will ever
be a perfect solution to this problem, segmented QoS fault tolerance and adap-
tation of traffic aggregates may be as essential to the the viability of the DiffServ
model, as the solution of the provisioning/conditioning problem itself.

5 Conclusions

In this paper we have introduced the concept of segmented adaptation of traffic
aggregates. The concept reflects essential characteristics of evolving DiffServ QoS
architectures such as those being built on the principle of composing end-to-end
QoS services from autonomous segments that are characterized by their PDBs.
The entities of interest are traffic aggregates of given quality and quantity, which
are negotiated between neighbouring providers Adaptation of traffic aggregates
is motivated by the observation that PDBs are likely to be defective with respect
to the delivered service quality at times.

Segmented QoS fault tolerance mechanisms, of which adaptation of traffic
aggregates is designed to be a particular case, are to be provided to enhance
end-to-end QoS and to confine or to reduce the probability of occurrences of
end-to-end QoS failures. We envision segmented QoS fault tolerance as being
the necessary “glue” to form end-to-end QoS services from well-defined PDBs
as building blocks. Our approach has been built on an extended concept of
distributed bandwidth brokers that control the adaptation of traffic aggregates
according to policies provided by SLAs. An actively extended SLA specifies how,
according to a service curve, service-class dependent parameters and values of
an SLS are altered upon reception of a congestion signal.

Building adaptation on edge-to-edge segmentation and aggregation of traffic
is believed to result in a highly scalable approach for congestion control, or, more
generally, QoS fault tolerance. Decoupling applications and network transport
mechanisms further within the DiffServ model is likely to increase the overall
flexibility in terms of the end-to-end argument. The introduction of network self-
protection as an immediate consequence of the approach eliminates the reliance
on the cooperation of applications in the face of congestion, whilst being fully
backward compatible with TCP-friendly schemes for congestion control.

As a proof of concept, we are working on an implementation of a testbed,
based on our ALAN platform that allows the introduction of new services into
an existing networking infrastructure. While early simulation results on the ef-
fectiveness of segmented adaptation of traffic aggregates have been discussed in
this paper, there is large scope for exploration of the area. Some examples of
open issues are finding reasonably good procedures and parameter settings for
error (congestion) detection, identification and classification of segmented QoS
faults of traffic aggregates or defining service-class specific adaptation procedures
properly. Other pending problems are investigating the effectiveness of combining
adaptation of traffic aggregates with other segmented QoS fault masking tech-
niques such as QoS routing, or defining strategies for propagating congestion
signals further up-stream, and the security issues associated with such proce-
dures. Each mentioned aspect opens up a new potential for research within the
framework of segmented QoS fault tolerance, in general, and segmented adapta-
tion of traffic aggregates, in particular.

References

1. Campbell, A.T., H. De Meer, M.E. Kounavis, K. Miki, J.B. Vicente, and D. Villela :
“A Survey of Programmable Networks”; ACM SIGCOMM Computer Communica-
tions Review, (Apr. 1999).

2. Cristian, F. : “Understanding Fault-Tolerant Distributed Systems”; Communica-
tions of the ACM, Vol. 34 (2), (Feb. 1991) 56-78.

3. Floyd, S. and K. Fall : “Promoting the Use of End-to-End Congestion Control in
the Internet”; IEEE/ACM Transactions on Networking, Vol. 7(4) (1999) 458-472.
4. Ghosh, A., M. Fry and J. Crowcroft : “An Architecture for Application Layer Rout-

ing”; Yasuda, H. (Ed), Active Networks, LNCS 1942, Springer: (2000) 71-86.

5. The Network Simulator ns2, http://www.isi.edu/nsnam/ns/.

6. Nichols, K. and B. Carpenter : “Definition of Differentiated Services
Per Domain Behaviors and Rules for their Specification”; Internet Draft,
hitp://www.ietf.org/internet-drafts/draft-ietf-diffserv-pdb-def-03.tzt, (Jan. 2001).

7. Saltzer, J.H., D.P. Reed, and D.D. Clark : “End-to-End Arguments in System De-
sign”; ACM Transactions of Computer Systems, Vol. 2 (4), (Nov. 1984) 277-288.

8. Blake, S., D. Black, M. Carlson. E. Davies, Z. Wang, and W. Weiss : “An Architec-
ture for Differentiated Services”; http://www.ietf.org/rfc/rfc2475.txt, (Dec. 1998).

9. Huston, G. : “Next Steps for the IP QoS Architecture”;
http://www.ietf.org/rfc/rfc2990.tzt, (Nov. 2000).
10. Goderis D., et al. : “Service Level Specification Semantics, Parameters and Ne-

gotiation Requirements”; http://search.ietf.org/internet-drafts/draft-tequila-diffserv-
sls-00.tzt, (Jul. 2000).

