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Abstract
This paper describes the activities in Application Level
Active Networks (ALAN) under the DARPA-funded
RADIOACTIVE Project; this is closely related to work
carried out under a European Commission project
ANDROID. The ALAN infrastructure was developed
mainly under other projects; it is summarized here mainly
for background. The version used here relies on separate
Active Applications driven by policies – with the policies
expressed in XML. There are two principal applications
carried through in this project – adaptation of multicast,
multimedia conferencing tools (M-Bone) and Virtual
Private Networks (VPNs). The former were developed in
other projects; the latter derives from the X-Bone overlay
networks of ISI.

It is an important aspect of the project that the final
activity all works in the context of IPv6. The paper
describes the measures that were required to make the
applications into ALAN ones, and the problems
encountered in moving all the components to work in the
IPv6 environment.

1 Introduction

1.1 Preface
The basic architecture described in this paper is not

new, or even original to the authors of this paper. It is
based heavily on the work of Marshall et al [mars99],
[mars00]. Another part, that on policies, is based on the
work of Prnjat et al [prnj01]. However both the
RADIOACTIVE project [kirst01], described here, and the
ANDROID project [carl01] use the same infrastructure.
For this reason, here we use the same description as in the
references.

1.2 Programmable Networks
User expectations of the range and quality of Internet

services are growing rapidly and are outstripping the
ability of the infrastructure to deliver. Flexibility and
responsiveness are two key aspects that must be addressed
before the gap between potential and reality can start to be

closed. Essentially this requires that the network becomes
a programmable infrastructure. There are two main
approaches to this problem:

Active Networking (AN) is based on the dynamic
deployment of new services. It has its roots in the Defense
Advanced Research Projects Agency (DARPA) projects;
the field was surveyed by Tennenhouse in 1997 [tenn97].
The main emphasis is on enhancing the functionality of
Internet Protocol (IP) networks where a number of
problems have been identified, related to the “end-to-end”
model in which computation is performed predominantly
at network endpoints. The role of computation in the
network is restricted to simple header processing for
routing user data, which is transported opaquely. This
approach has worked very well in the development of the
Internet; however some applications can be greatly
enhanced by exploiting the characteristics of the network
to optimize the way user data is processed on intermediate
network nodes. Several intermediate devices already
require specific computational capabilities. Examples
include devices supporting application-specific functions
such as packet filtering, differentiated Quality of Service,
tunneling, intrusion detection and security. In addition,
Network Address Translators (NAT) and Application
Level Gateways (ALG) are used to provide end-to-end
transparency for applications across multiple network
domains. The IETF Network Working Group has
identified the need for such intermediate devices (termed
middle-boxes) and the importance of managing their
operations [midd01].

There are two main approaches to active networking,
discrete and capsule. The discrete approach separates the
mechanism for injecting programs into a programmable
node from the actual processing of packets as they flow
through a node, with a separate mechanism for each
function. Users send a program to a node and this program
would then be stored at the node. When a packet arrives at
the node, its header is examined and a program is used to
process the packet. The program actively processes the
packet, possibly changing its contents, or the resources
associated with a packet.

The capsule approach leads to a more dynamic form of
active network. Each packet in such a network contains
both data and a program fragment (of at least one
instruction) that may include embedded data. The term



capsule is used to describe these new types of packets.
When a capsule arrives at an active node, its contents are
processed using the program in the capsule. The
traditional router or switch, which is responsible for
routing and header processing, is replaced by an active
node that consists of three other major components: a code
loading mechanism, a transient execution environment,
and a more permanent storage area.

Much of the DARPA work in active networking
[darpa] has concentrated on the capsule approach; this is
shown by most of the papers presented at this conference.
In the ANDROID and RADIOACTIVE projects, we adopt
a discrete approach to active networking. Loading of
programs can be more easily controlled, and the
functionality can be more sophisticated without the size
restriction imposed by the size of the capsule.

A further distinction can be drawn between active
networks and active services. Programmability can be
offered at different levels in the OSI protocol stack.
Programmability at lower layers (e.g. transport or
network) is traditionally regarded as active networking.
Performance is potentially high although flexibility is
limited, particularly as concerns over security and safety
are very strong. Active networking is concerned with
providing user control over the routing and forwarding
characteristics of the network. Programmability at higher
levels (e.g. application) does not directly affect the
operation of the lower layers and deployment should be
faster as it can be incremental. Active nodes operating at
the application layer are end systems (c.f. servers and
proxies located within the network) and provide active
services, which can perform essentially any application-
specific processing on user information flows.

There are several problems with putting all such
capability in the router. First, it is much easier to deploy
experimental code in near operational conditions at the
user level; this is because a server can be optimized to run
this style of activity. By contrast most routers require
special hardware support to operate efficiently at high
load. Router vendors are loath to put any hardware
support in routers until the relevant functionality has been
proved essential. Moreover it is easier to allow non-active
traffic to continue to pass at full speed in systems where
the active code is run in a separate server. Finally, it is
easier to protect at least non-active traffic from defective
experimental code if carried out in a server. Most of this
paper concentrates on the Active Server environment.

Performance is often regarded as a problem in
application layer active networking since data always
passes up and down a full protocol stack. However,
processing power or specialized computing resources can
be made available much more easily at the application
layer than within a network-level service such as a router.

1.3 Active Networking: Node-OS
Members of the DARPA active network program

[darpa01] have been developing an architectural
framework of active networking. A node operating
system, called Node-OS [peter99], represents the lowest
level of the framework.

Encapsulation techniques based on an active network
encapsulation protocol (ANEP) [alex97] support the
employment of multiple execution environments within a
single active node: ANEP defines an encapsulation format
allowing packets to be routed through multiple execution
environments coexisting on the same physical nodes. The
complete architecture is described in [calv99]. Portability
of execution environments across different types of
physical node is achieved via a common, standard
interface to Node-OS. This interface defines four
programmable node abstractions: threads, memory,
channels and flows. Threads, memory and channels
abstract computation, storage and communication capacity
used by execution environments, whereas flows abstract
user data-paths with security, authentication and
admission control facilities. The architectural framework
for active networking is being implemented in the A-
BONE test bed [brad01], allowing researchers to
prototype new active architectures.

1.4 Active Services
The Active Services approach attempts to preserve the

routing and forwarding semantics of the Internet
architecture by restricting computation to the application
layer. The active networking approach raises a number of
problems associated with safety and security, for example.
Active services represent a more pragmatic approach to
providing network programmability that is compatible
with existing systems. The possibility of incremental
deployment in the Internet makes active services a
realistic short-term option.

An early example of the active services approach is
described by Amir [amir98]. In ANDROID and
RADIOACTIVE, application layer programmability is
based on work done first by Fry and Ghosh [fry99] while
the latter was at UCL, and then continued from University
of Technology, Sydney [ghos00].

The defining characteristic of an active network is the
ability for users to load software components dynamically,
without explicit reference to any third party. This can
encompass systems with markedly different capabilities.
In the ANDROID project [fish01], the business model;
distinguishes between two flavors of “activeness”; active
routers and active servers. These have different
restrictions on control and different degrees of flexibility.
This distinction is discussed in more detail in the paper
and in the references. In the RADIOACTIVE project, we



consider only active servers. This simplifies the
architecture that we need to describe here.

There are several distinct roles in the business model
described in [fish01]. Each role may be played by any
number of businesses, even within the same business
scenario; these roles include the User, Active Server
operator, component vendor, service integrator and
service provider. One reason for the architecture
developed is to provide for the separation of these roles.

2 An Architecture For Application Layer
Active Networking With Active Servers

2.1 The ALAN Architecture
Application level active network (ALAN) [Fry99]

provides an environment in which developers can
engineer applications through the network by utilizing
platforms on which 3rd party software can be dynamically
loaded and run [Mars99]. The ALAN system consists of
active nodes that are located in the existing Internet. These
nodes run an Execution Environment for Proxylets (EEP).
Proxylets are Active Applications which are downloaded
to the EEP and executed on behalf of users. Those
applications provide functionalities that enhance the level
of service or introduce new services to the final user. End-
to-end active services are provided by one or more EEPs
executing one or more proxylets. Messaging uses XML
[XML01a, XML01b] which is transported over HTTP
[Mars00].

Figure 1 Application layer active network architecture

These concepts are being developed further in the
ANDROID project, which focuses on the development of
a scalable, lightweight management infrastructure for the
ALAN-based active networks. The ANDROID system is
an event driven, policy enabled management system
[Mars00]. The focus of ANDROID is on developing the

management for primary issues of starting and
maintaining the services and on resource management. In
the ANDROID scenario active nodes are distinguished in
two categories: the active routers and the active servers
(Figure 1). The active router provides an execution
environment that runs dynamically loaded routing
software components. Those components offer to users
customized routing tables according to user defined
policies. Flexibility is restricted by allowing users to
provide only configuration policies for components that
are selected by the router operators. The active server, the
equivalent of the ALAN EEP, is the second type of active
node that offers more flexibility to users. It can be
considered as an end system with a full protocol stack. It
also provides an execution environment capable of
running user-provided processes that are unrestricted
above the transport layer [Mars99a]. Multiple EEPs are
allowed to run on each active server. Each EEP is allowed
to run one or more proxylets. In our current
implementation, FunnelWeb, the EEP runs as a Java
Virtual Machine (JVM), with each proxylet running in a
separately spawned JVM. Active server security and
resources (consumed by the proxylets) are managed
locally. Proxylet thread resource consumption is managed
by application providers or the users and is out of the
scope of the ANDROID project. Restricting management
system capability from the thread to proxylet level is done
since in the business environment in question proxylets
are considered as self-contained, user-specified services.

2.2 Radioactive Servers Architecture
The RADIOACTIVE project is funded by the DARPA

Active Network Program [darpa]. We have already
discussed that the ANDROID Project uses both Active
Routers and Active Servers. That project involves many
organizations in addition to UCL; the Active Router
comes from another company 6WIND [6wind01]. In
RADIOACTIVE we wish to have a system that can be
deployed not only by UCL, but could be deployed if
necessary on the A-BONE network, which is being
developed also under the DARPA Active Network
Program to provide a test bed on which the projects
funded under the program could be deployed. This
deployment would not be possible if it was necessary to
deploy a proprietary box in order to experiment with a
larger number of nodes than is available to UCL.

As a result, in the RADIOACTIVE Project, we have
restricted ourselves to working with Active Servers –
using the EEPs of Section 2.1. The Active Server can
offer dynamic programmability. It runs a full protocol
stack and so is logically an end system, although it may be
physically associated with a router and function as a
network intermediary from the viewpoint of users. An
important feature of active servers is that any undesirable
operation will have limited consequences. The control that



can be delegated to general users can be much greater than
in an active router. An active server provides execution
environments (Server-EE), which provide the capability of
running user-provided code, essentially unrestricted,
above the transport layer. This can be achieved safely
since each customer can in principle be provided with a
dedicated active server. An example of the structure of an
EEP is shown in Fig. 2.

Figure 2 FunnelWeb Architecture

In Fig. 2, the Active Applications (AAs) are the
Proxylets mentioned earlier; they are controlled by Policy
Modules (PMs). In general there could be multiple kinds
of server EE’s available, with different component
interfaces so that as few restrictions as possible are placed
on the users of the active infrastructure. However in
RADIOACTIVE, the Proxylets are all written in pure
JAVA, and run over the FunnelWeb Execution
Environment (EE) mentioned earlier – with each instance
of FunnelWeb running in a separate JAVA Virtual
Machine (JVM). A node monitoring/management system
can control the EEP, and each AA has a well-defined
control Interface.

The EEP is made as part of the system of Fig. 3 which
shows the relevant portion of Fig. 1 for the
RADIOACTIVE Project. Here we are concerned only
with Active Services at the edges of the Internet. The EEP
is the Active Server from Fig. 1, the architecture of which
is shown in Fig. 2. End-to-end applications are either
between two Clients or between a Client and a Server.

The Active Service proxylets of Fig, 2 are fetched
dynamically from the Active Applications (AA)
Depository, and the Policy Modules from the Policy
Depository of Fig. 3. FunnelWeb ensures that these
modules can be loaded dynamically and bound together.
Of course one Active Service may require several AA
proxylets and Policy Modules. Moreover, the AA proxylet
may be generic, while the policy module is related to the
specific user request – or organization request; the latter
case might apply, for example, if the application is the set
up of a dynamic Virtual Private Network (VPN).

Internet
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Edge Network
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Policy
Depository
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Depository

Node Monitoring &
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Figure 3 System for Running Active Services

It is desirable that packets that do not require active
processing pass through at full speed; hence packets
requiring active processing need to be marked in some
way to allow correct handling by the routers. The effect of
this marking is to identify the correct routing table within
the router (ER) to be selected. This allows the
discrimination of active and conventional packets and the
selection of an active server. Routing to the active server
can either be direct (treating it as an end system), or via a
local server listening on the anycast address in the packet.
In the absence of an active router, it is possible to
structure the routing tables in the Edge Router(s) so that
all packets that might require active processing are
directed to the Active Server(s). The routing tables on the
Edge Routers are then adjusted so packets originating
from the Active Server are directed to the correct address.

With IP, the marking of packets and their recognition
in the router require some changes in the router itself so
that packets may be routed based on a flow identifier or
multi-field classification. In parallel, we are exploring in
the relevant IETF working group for a standard format to
deal with packets destined for active processing.

Once the relevant packets have been sent to the active
server, it must identify the nature of the processing that
should be applied to the packet, selecting or loading the
appropriate proxylet and delivering the packet for
processing. Proxylet instances running in Server-EEs will
have a range of lifetimes. In particular, some will be long-
lived and support multiple users. In these cases, anycast
routing to proxylets might be appropriate and could be
achieved by the relevant routing table.
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3 Management, Policy Description And
Syntax

3.1 Policy Schema
Management in a distributed system on the scale of the

Internet must address support for multiple domains,
making independent decisions and using a wide range of
technologies. Centralized control will not be possible and
the response of the system will be the result of a collection
of autonomous actions. There is however the need to
exchange management information, for monitoring and
control, between interacting systems. In order to achieve
this we require common information models or at least
common information syntax. It is not reasonable to expect
that a single policy language will be universally accepted
so instead we focus on an approach that is intended to
facilitate exchange of management information between
different systems. This is achieved by identifying a
restricted set of common information, much of which is
optional, and allowing flexible extensions to
accommodate a wide range of specific applications. The
schemas described in this section are used within
ANDROID to provide a unified management framework.

3.2 Policies and Events
In an automated, distributed approach to management,

decision making must be made based on locally available
information and according to a set of rules. These rules,
which govern choices in the behavior of the system, are
termed policies [damn00]. Policies allow the users of a
system to specify the behavior they want it to exhibit.
Policies allow selections to be made from a range of
options provided by the designer of the policy-controlled
component. These selections can be specified in terms of a
set of conditions with associated actions. When a policy is
triggered, conditions involving locally available
information can be evaluated and the appropriate actions
initiated. This allows flexibility to be built into a system
by supporting a range of different behaviors rather than
hard-coding a particular behavior – essentially fixing the
policy at design-time rather than run-time.

Policies provide a mechanism to control system
components. Autonomous decision making also requires
state information to be shared with other components so
that a picture of the local conditions can be built up. An
event-based mechanism is appropriate in a loosely
coupled decentralized system. A distributed approach
based on policies and events allows considerable
flexibility in management [Marsh01]. Management
system components can be organized in a hierarchy, each
with a set of policies controlling its decision making.
Management issues can be resolved at as low a level as
possible, only referring to a higher level when necessary.

In this way, problems of heterogeneity and scale can be
handled by a “divide-and-conquer” approach, and speed
of response can be achieved by resolving problems
locally.

3.3 Management Information
Support for heterogeneous systems makes it essential

that events (monitoring information) and policies (control
information) are represented in a platform neutral way.
XML has recently emerged as a widely accepted way of
representing and exchanging structured information. Its
principal technical strengths are that it has a sufficiently
strict syntax to permit automated validation and
processing of information in an unambiguous way, and
that it has a text-based representation that imposes few
restrictions on network technology or protocols. It allows
users to define representations specific to their own
applications with a well-defined syntax. Translation
between different XML representations is also
straightforward using XSLT [XSLT01] reducing the
requirement for strong standardization. XML does not, of
course, assist in understanding the meaning of the
information represented.

The use of XML as an intermediate representation still
allows policies to be developed using any existing
approach. Distributed systems based on technologies such
as CORBA, EJB or COM can use mechanisms and
protocols optimized for these environments. A well-
defined mapping of management information to an XML-
based representation can assist considerably in inter-
working between systems.

3.4 Policy Syntax
The overall structure of a policy is shown in Figure 4.

The general approach is consistent with [damn00]. A
policy is written to be interpreted by a subject, which is
then expected to perform specified actions on targets,
possibly dependent on some conditions.

The top-level policy specification consists of six
elements. The creator element allows the origin of a
policy to be established. This policy specification is
intended to be applicable in an environment where there
are multiple points of control. Components should be able
to accept control from users with different privileges. The
administrator of a router, for example, will have ultimate
control of its configuration, including the permitted extent
of control by other users. End users may be allowed to
control the way the router behaves for their own traffic.



Figure 4 Schematic of Policy Syntax

The info element contains most of the information
about the policy that is not directly related to the policy
rules. It includes a globally unique identifier for the policy
and an indication of the modality of the policy (positive
authorization – what the subject may do, negative
authorization – what the subject may not do, obligation –
what the subject must do, or refrain – what the subject
should not do). The intention is that the modality should
not be mixed within a single policy. The general policy
handling components of the management system, which
have no detailed knowledge of the specific rules contained
in the policy, may then take advantage of this
classification. It may also contain a textual description of
the policy. The creation time, start time and expiry time of
the policy can also be specified. Finally, a list of policies
replaced by the current policy may be specified. Policies
are considered to be immutable so different versions are
not possible.

The sender element identifies the forwarding path the
policy has taken. This information could be used as a
check that the policy has followed an expected route, or to
establish that the policy has already been received by
other parts of the system. This element may be modified
between creation and receipt of the policy and would
therefore not be subject to digital signing.

The subject element identifies those entities in the
system which are expected to respond to a policy.
Identification of these entities is done by role. This is
important so that a policy can refer to entities that are not
present or not known at the time of creation.

The optional trigger element relates an event (via its
unique event type identifier) to the policies that are
supposed to handle it. When an event is detected, relevant
policies must be activated. It is assumed that a policy is
triggered by a single event. Correlation of events
(aggregation, sequences, threshold rates etc.) is assumed

to result in the generation of a single event, which then
triggers an appropriate policy. A system that provides this
functionality is described in [Nata01]. If a trigger element
is not present, the policy is assumed to be activated as
soon as received. This approach can be used in systems,
which are not based on events. Triggerless policies can be
used, for example, to effect immediate configuration
changes that control subsequent behavior.

Every policy includes one or more actions elements.
These specify the behavior that should result from the
triggering of the policy. Each actions element contains an
optional condition expression and a set of strings
specifying actions to be taken on particular target
components. These actions can use the open content
features of XML schema to allow tags appropriate to any
particular system to be included in a policy instance. All
that is required is for the creator of the policy and the
system on which the action is to be taken to agree on the
syntax and semantics of the action.

For an example of a polcy see Appendix A.

3.5 Events
The structure of an event is shown in Figure 5 Its

purpose is to provide sufficient information to allow
generic components to be used in the distribution of
events to all interested components but also to allow any
additional information to be included to support specific
circumstances. An event following the syntax specified
here may be generated either directly or by an XML-
aware component (such as ANDROID security and
resource managers) or by a special monitoring component
that obtains information using some other mechanism.

Figure 5 Event Specification



The top-level event specification consists of seven
elements. Each event type has a unique event-id, a
globally unique string that may be used to trigger
appropriate policies. Typically this will be used as a key
into a store of policies. The time element identifies when
the event occurred while the optional time-to-live element
specifies for how long the event is relevant. Use of this
information can allow certain events to be discarded if not
handled in time, limiting unnecessary management traffic.
The source element identifies where the event originated.
The sequence element is an integer, which is incremented
with each event produced from a particular source. This
can support partial ordering of events, which may be
useful, for example, in correlation of events from a single
source. The optional information element is a text string
intended to be read by people rather than processed
automatically. The data element has an open content
model and allows any well-formed XML to be included.
This is where any specific information about the event can
be included, using whatever structure is most appropriate.
As with the policy actions, it is only necessary that the
event producer and the interested recipients share
knowledge of the contents of this element.

For an example of an event see Appendix A.

4 The Applications in Radioactive
Many of the applications in the ANDROID project are

the same as in the RADIOACTIVE one. Nevertheless
there are three clear differences:

• In ANDROID all activities are controlled by a
management system; this is absent in
RADIOACTIVE.

• In ANDROID we are considering watermarking as
one application; this is not being considered in
RADIOACTIVE.

• In RADIOACTIVE we are linking into the X-Bone
system from ISI [touc00]; this is not occurring
currently in ANDROID.

The main reasons for the first two differences are that
ANDROID involves many other partners, and we want to
minimize the use of software, which is under proprietary
constraints. One reason for the last is that the X-Bone
project at ISI is also part of the DARPA Active
Networking Program, and we are expected to collaborate
with other projects in the Program. In addition, we feel
that the X-Bone is an interesting approach, which can be
very useful to RADIOACTIVE – and may indeed be used
in other projects. While both projects are aiming to move
to IPv6, this is much more urgent for RADIOACTIVE
than for ANDROID.

4.1 Media Conferencing in the context of IPv6
In earlier projects [kirst00] UCL has adapted the M-

Bone tools running in workstations; these consist of audio
(RAT), video (VIC), shared workspace (NTE). They also
developed secure versions of the tools There are a number
of basic applications that run in servers; these include the
Secure Conferencing Store (SCS) for holding information
on conferences, and a java applet for parsing Session
Description Protocol (SDP) and starting conference tools
(SPAR) [kirst00], [kirst99]. Others include media
recording (MMCR-record) [lam98], media play-out
(MMCR-play) [Lamb02] and media transformation
Transcoding Active Gateway (TAG) [Has00]. The media
tools themselves use a combination of C/C++ and
TCL/TK. All the software running in the servers is written
in Java, with the exception of the SCS which is written in
Perl and runs on an Apache server [apac01].

The M-Bone tools can run in both IPv4 and IPv6.
They can use unicast or multicast – though some
organizations and routers do not support multicast. Some
work was needed to track changes in the underlying IPv6
stacks on various operating systems, but this was a
straightforward activity.

The Transcoding Active Gateway (TAG) was
developed from an earlier Universal Transcoding Gateway
(UTG) [has00]. Within the context of ANDROID, it has
four primary roles:

• Requesting to join or leave a VPN,
• Requesting to join or leave a reflection group,
• Reflection of multicast traffic through a VPN.
• Filtering of traffic by selective blocking.

The server was written in pure Java code, and the
addressing portions were put into well-separated modules.
As a result of the above, the transformation to IPv6 was
relatively straightforward. In the case of the SPAR, it
required the IPv6-enabled SCS, in the case of the
components written in Java, it required the availability of
JDK 1.4, with IPv6 support [sun01a].

4.2 The VPN Application
Currently there is a significant commercial interest in

the development and deployment of what has become
known as Virtual Private Networks (VPNs) over IP. A
VPN is a network built over the shared public IP
infrastructure but operates with the security, management
and Quality of Service (QoS) policies of a private
network. A VPN is a cost-effective means of building and
deploying private communication networks for multi-site
interconnection. The VPN service provider connects
multiple IP addresses at geographically dispersed sites so
that they appear to be within the same private network.



VPNs can be considered a special case of what is
known as overlay networks; isolated virtual networks
created over an existing network. They are composed of
nodes (hosts or routers) and tunnels (paths i.e. multiple
hops, on the underlying network that appear as links in the
overlay). Thus overlay networks also include IP tunneled
networks like the Mbone (multicast backbone) and the
6bone (IPv6 backbone). Overlay networks are useful for
deploying infrastructure on top of existing networks, for
isolating tests of new protocols, partition capacity or
present an environment with a simplified topology.

VPN management
Figure 6 depicts the architecture of most IPSEC

gateways.

IPSec session keys

IPSec master keys
IPSec SA negociation

Preshared keys Preshared keys

IKE IKE

IPSec IPSec

IPSec flows

Certificates
(RSA, key pair, PKCS 10)

Certification
Authority

Figure 6 Architecture of IPSEC gateways

In order to fully understand the scenario it is useful to
know the different levels in this architecture:

Authentication of the members is achieved using
certificates or pre-shared keys. In the case of certificate
usage a Certification Authority (CA) is required. Given
the authorized end-points Internet Key Exchange (IKE)
[RFC2409] is used to generate and negotiate security
associations (SA) and accompanying session keys. The
traffic is secured using IPSEC and the IKE generated
keys. IPSEC can provide both authenticated header (AH)
[RFC2402], and Encapsulated Security Payload (ESP)
[RFC2406] services.

Figure 7 shows a typical platform for a VPN scenario:

IP v4 and/or
IP v6 network

A ctiv e server

H ost

Security gatew ay

IPS EC tu nnel

M anage ment Sys tem

Figure 7 VPN scenario

VPN establishment
The process of establishing a VPN usually involves
several steps:

1. Configuration of the future members of the VPN so
that they can authenticate themselves. This usually
means installing certificates in the machines, or
installing pre-shared keys. This step needs to be done
only once, for instance when subscribing for the first
time to the service. In RADIOACTIVE, with UCL
managed VPN services, the certificates are provided
by a UCL CA, when installing the service the first
time. In this type of service, we can consider that this
step was done once off-line and that it does not
interfere with the dynamic establishment or deletion
of an IPSEC tunnel. This step is just a pre-requisite.

2. The management station prepares the configurations
for each entity of the VPN.

3. The management station connects to each security
gateway using a SSH connection. It executes the
commands on the security gateways and exits. At this
level, the security gateways are ready to establish the
VPN, but the IPSEC tunnels are not really up yet.

After a while (or immediately), a host sends a packet
to its security gateway. If the packet matches the rules,
installed in the security gateway for this VPN, then the
security gateway will then initiate an IKE negotiation with
the end-point of the IPSEC tunnel corresponding to the
destination of the packet. The IKE negotiation is a
complex procedure that involves some communications
between the two gateways. According to what options
were selected, the duration of the process can be short or
long (1 second is the order of magnitude).



The IPv4 versions of the VPN routers could be done
with FreeBSD and Cisco routers. The 6WIND [6wind01]
and CAIRN [cairn01] versions are the only ones that
support IPSEC in its IPv6 mode, and are being used at
present.

The last step is repeated for each IPSEC tunnel when
the first packets reach the gateways.

VPN termination
The VPN termination process is simpler:

1. The management station prepares the configurations
for each entity of the VPN. Usually, this consists of
command files.

2. The management station connects to each security
gateway using a SSH connection.

3. It executes the commands on the security gateways
and exits. At this level, the security gateways delete
the existing IPsec tunnels.

4.3 The X-Bone
The X-Bone [Touc01] follows much the same general

theme as Section 4.3.l. The X-Bone is a system developed
at USC/ISI for managing and deploying IPv4 overlays. Its
goal is to reduce configuration effort and increase network
component sharing. The X-Bone extends current overlay
management by introducing dynamic resource discovery,
monitoring and component reuse since the nodes (hosts or
routers) can simultaneously participate in multiple
overlays. It does not require OS specific or application
specific modifications, only basic IP in IP encapsulation
and existing implementations of dynamic routing and the
Domain Name Service (DNS). Its key features include
the support of recursive overlays (overlays built on top of
other overlays) and the integration of IPsec and dynamic
routing.

The X-Bone allows users to deploy overlays within
seconds without human network manager participation. It
manages inter-overlay resource contention by providing a
uniform coordination point for overlays. This provides a
framework for coordinating reservations, even between
different mechanisms that manage a single class of
resource. By making overlay establishment a fast,
common function, the X-Bone enables new uses for
overlays, such as for distributed applications without
cumbersome application-level service location and routing
support.

The X-Bone is a distributed system composed of
Resource Daemons (RDs) and Overlay Managers (OMs).
Users create overlays by sending a request to an OM using
a Web-based GUI or sending a message directly to the

OM API. The OM then uses multicast expanding ring
search to discover available RDs and subsequently TCP
(with SSL) to configure and monitor resources.

The RDs are daemon processes which configure and
monitor the resources on the nodes. They listen for
invitations on a well-known IP multicast address (using
S/MIME authenticated UDP) and respond according to
their capabilities and available resources indicating
willingness to participate in the overlay.

The OM selects an arbitrary subset from those RDs
that responded and uses X.509 encrypted TCP/SSL
connections to each chosen RD in order to transmit
configuration information. The OM is responsible for
determining the tunnel endpoint addresses and the routing
table entries to be sent to each RD.

The basic X-Bone mechanism is tunneling (or IP in IP
encapsulation); tunnels allow incremental deployment
when the routers in the underlying (base) network are
lacking specific protocol capabilities. The X-Bone uses a
two-layer tunneling mechanism for each level of the
overlay. This results in three IP headers in the case of an
overlay on top of the base network. The additional layer
permits the use of multicast, dynamic routing and IPsec
inside the overlay since these are intrinsically network
layer mechanisms.

The innermost header (internal) indicates the
endpoints in the overlay and the next (external) header
acts as a link layer for the overlay indicating the endpoints
of the tunnel over which the packet is traversing, the final
header (base) indicates the tunnel endpoints in the base
network.

Currently the X-Bone operates using separate, private
IPv4 address spaces for the internal and external addresses
of an overlay. Overlay addresses can be re-used among
overlays that do not overlap. This is determined by the
OM during the initial negotiation phase.

The problem of scarce IP addresses has been
solved with the introduction of the new Internet Protocol;
IP version 6. IPv6 provides bigger address space, seamless
support for mobility and mandatory security features.

With Virtual Private Networks and/or overlay
networks that are tightly controlled and centrally
managed, like the X-Bone, address scarcity is generally
not an issue. However there other reasons why an IPv6
overlay may be preferable compared to an IPv4 one. The
difference is in the unique features of IPv6, better support
for mobile nodes, mandatory security features, auto-
configuration and better support for QoS. For instance
with regards to QoS, in the current IPv4 networks it may
be difficult for a router to determine the QoS Class of a
packet, based on information found in the network layer
packet header, especially when multiple classes of QoS



are involved and encryption is used. However this is not
the case with IPv6-based VPNs, which have the advantage
that the class of service can be specified outside the VPN
envelope of the IP packets.

IPv6 addresses are 128 bits long and in order to be
more manageable they are split into two parts; the network
part, which involves the highest order bits of the address
(netbits) identifying the network that the interface is on,
and the host part involving the lowest order bits (hostbits)
which are left for identifying the interface to the network
or subnetwork (hostbits = 128 – netbits). Providers usually
assign /48 networks with 16 bits used for subneting while
the remaining 64 bits for the host part which is
recommended (but not mandated) to be built from the so
called EUI64 addresses (derived from the 48 bit MAC
addresses filled in with the bits 0xFFFE in the middle).

For the RADIOACTIVE purposes, it was necessary to
provide the modifications to the X-Bone in order to run
using IPv6. This is an ongoing effort at the time of writing
and here we only provide an outline of the method we
intend to use, for more details and initial experimental
demonstration the reader is referred to [gev:02].

4.4 Extending the X-Bone for IPv6 Overlay
Deployment

With X-Bone each level of tunneling (IP
encapsulation) is specified in a separate
“XboneNodeCommand” command sent from the OM to
the RD. Usually there are more than one “tunnel”
commands in each message and there are special
keywords which control the order of execution.

The X-Bone has a simple IPv4 address allocation
process; it assigns subnets to the links using a 30 bit
netmask (0xfffffffc), or it may assign contiguous
addresses in order to maximize the number of hosts. It
uses the Net::Netmask Perl Module with two CIDR
address blocks 172.26.0.0/16 (external) and 172.27.0.0/16
(internal) and 8 subnet bits allowing for 2^8 subnets (or
overlays) and (2^8)/4 hosts (since we want to assign a
two bit host ID to each link without using the special bit
patterns 00 and 11).

At this stage our goal is to extend X-Bone in order to
facilitate the deployment of IPv6 overlays on top of
existing IPv4 networks. The nodes participating in the
IPv6 overlay must themselves have IPv6 support built into
their network stacks.

IPv6 is not yet ubiquitous (although this is changing
fast) and thus we made the minimum set of assumptions
about the connectivity both between the participating RDs
and between the RDs and the OM. Thus we have assumed
that all X-Bone nodes are reachable using IPv4 and

particularly that the OM uses IPv4 multicast in order to
communicate with the RDs.

Moreover X-Bone is written in Perl and at the time of
this writing there were no TCP/SSL libraries that operate
over IPv6. However the capability of deploying IPv6
overlays is particularly important when the X-Bone
components are potentially isolated by IPv4 clouds (see
Figure 8).

In order to achieve this the creator of an X-Bone
overlay should first indicate to the OM the IP version
number required for that particular overlay; (IPv4 or
IPv6). Also the RDs should respond to the invitations by
the OM for participation in an IPv6 overlay only if their
network stack supports IPv6. The response is then sent
back to the OM using UDP/IPv4.

Figure 8 IPv6/IPv4 XBone

After this initial negotiation and discovery phase the
procedure followed by the OM is almost identical to that

followed by the creation of IPv4 overlays, allowing for
substantial code reuse and avoiding the duplication of the
address allocation procedure in the IPv6 case. We achieve
this by treating the IPv4 addresses provided by the
allocator (OM) as 32-bit blocks. We subsequently use
these blocks in the construction of IPv6 addresses by
combining pre-pending a common IPv6 prefix to the IPv4
allocated block. Thus the X-Bone logic required for the
creation of overlay networks becomes orthogonal to the IP
version number.

The price paid for the simplicity is the requirement for
all the RDs (those on the IPv6 capable nodes) to share a
common, pre-configured IPv6 prefix to be used for the
creation of overlays. The length of the prefix has to be less
than 96 bits, given that IPv4 addresses are 32 bits long.

Alternatively the OM could provide them with the
IPv6 prefix in order to ensure that all the RDs use the
same prefix. However at this stage we chose the solution
of the RDs being pre-configured with a common IPv6



prefix this has the advantage that it does not require
changes in the format of the protocol messages between
the OM and the RDs.

But this is a small price to pay compared to the
flexibility, the simplicity and the independence of the X-
Bone protocol logic from the IP version number of the
overlay.

Instead of requiring an additional IPv6 address
allocation procedure or different types of messages we use
the IPv4 addresses and the pre-configured IPv6 prefix
shared by the RDs (running on the v6 capable nodes) in
order to construct appropriate IPv6 addresses for use in
the IPv6 overlay. The OM could then use the same v4-to-
v6 translation procedure for the DNS updates. Thus the
Xbone protocol communicates tunnel endpoint numbering
that can be extended in the IPv6 case.

The X-Bone can be used to bootstrap and manage an
Active Networks (AN) infrastructure, deploying them on
their own overlays. X-Bone also provides a platform to
demonstrate the benefits of AN; although the X-Bone can
be deployed prior to the availability of AN support, it can
be implemented itself in AN technology.

4.5 Changes due to the ALAN Conferencing
and VPNs

The TAG was updated to allow its control
communication to be "routed" between either the TAG
client and the TAG server (for setting up a client-server
reflection), or the VPN Manager (for joining a VPN
conference). These two modes of operation now use
identical control messages which are defined as XML
events. Policies define which events are to be sent where.
The TAG client uses pre-defined policies so that TAG
events are correctly routed to either the TAG server or
VPN manager. Since the VPN manager can be part of a
VPN, it can thus enjoy secure communication of
encryption keys to the remote reflectors.

In summary the following changes were made to the
TAG for ALAN purposes:

• XML events define TAG control messages.

• XML policies define server location.

In addition the design of TAG was changed to
integrate the functionality of the VPN proxylet.

The Reflector Proxylet was extended to accept (via
RMI) new destinations so that it can forward (reflect) to
multiple destinations. This is useful for two reasons:

1. In the VPN mode it will allow each reflector to forward
traffic to each site.

2. In reflector mode the Reflection Manager proxylet will
use the reflector to forward traffic to multiple clients.

Reflection is automatically controlled based on local
activity of each multicast stream.

The user interface has been re-designed to combine the
functions of each mode.

Further work on TAG will include the development of
the Reflector Proxylet to do media transcoding and
policies that define actions to take, based on the
bandwidth available. These policies will be stored and
retrieved from a directory service.

4.6 VPN, the X-Bone and the ALAN
infrastructure

Late in 2000, there was a first demonstration of the
integrated system for a DARPA PI meeting. At that time,
we were still operating at IPv4 without policies integrated
in the ALAN infrastructure. As a result of this work, we
became aware of what changes were needed for a
complete integration and full development. In the
intervening year, these changes have largely been done.
For the X-Bone these involved mainly the provision of
IPv6 support and greater stability. For the ALAN
infrastructure, it required the porting to IPv6, the up-
grading of the TAG as described earlier, and the working
through of policies. These separate components are now
largely ready, so that the next set of integration will start
soon.

5 VPN Management Policies
This section describes the management of a dynamic

VPN service. Management is realized as various scenarios
that relate to the establishment or tear-down of a VPN, or
parts thereof. A VPN Manager centralizes the access
control, and can be used as a final arbiter as to which
endpoints or sites are allowed to join or leave a specific
VPN.

A user of an active service sends events to the VPN
Manager to join or leave a VPN. An optional extension to
this model is an ability to query the parameters associated
with an existing VPN. The VPN Manager sends back an
event to the user or active service to indicate whether the
requested operation was accepted or not. The VPN also
sends events to the routers to configure the VPN. The
management policies are defined on the basis of the
events.

Create/Join VPN Event: For this event, users (or active
services) send a Join-Keep_Alive XML-based message to
create a new, or join an existing, VPN. This message
provides all the information needed to describe the
specific VPN that the user or active service wants to
create (or join). This information itself can be a pre-
registered VPN identification number or a description of
the type of information/traffic to be carried throughout the



lifetime of the VPN. The Create/Join message also
describes the authentication information needed to
validate the user or active service doing the requests.
Several scenarios where this message is involved are
presented below.

No pre-existing VPN & no other requests to join the
VPN. In this case, the VPN manager receives a request
event, but takes no further action because there are no
other participant(s).

No pre-existing VPN & one pre-existing request to join
the VPN. This case represents a second participant of the
VPN, and now the VPN manager can establish a VPN
between the appropriate routers.

Existing VPN. The VPN manager adds a new
participant in the VPN. This requires updates to all the
existing routers participating in the VPN.

In each of the above scenarios, a confirmation message
is sent so that a level of assurance exists that the message
has been received and acted upon by the VPN manager.
Subsequent Join/Create messages by the participants act
as a means of refreshing the soft state associated with a
VPN participant.

Leave VPN Event: For this event, the VPN manager
removes a router from the VPN, and updates all the other
routers with this updated information. If no VPN exists,
the message is discarded.

Query VPN Event: This is considered an optional
event that produces additional information for a VPN
participant. For example, participants may require
knowing the identities of other participants in the VPN in
case they have access policy restrictions.

There are two types of policies that can be applied to
the dynamic management of a VPN. The first is
centralized, at the VPN manager. Policies based on access
control can be used by the VPN manager to reflect a final
point of authority about who is allowed to join the VPN.
Other centralized policies may exist reflecting the form of
security used to validate credentials for those requesting to
join or leave a VPN.

Policies for VPN management may also be in the form
of a decentralized system, reflecting the management
decisions of individual users participating in a VPN. In
this case, there may exist access control policies
determining whether a given end-point is allowed to join a
specific VPN, or if certain types of traffic may enter or
exit the local endpoint of a VPN.

The system is described as it would be for the more
conventional VPNs used in ANDROID. The situation for
use with the X-Bone used in RADIOACTIVE differs in
two respects. First there is no incremental addition or tear
down of links; at that point a complete new topology must

be established. Secondly, for the X-Bone not only the
routers but all the participating nodes have to be specified.

6 Security Considerations
There has been a wide-ranging look at the security

needs of this total system [prnj01]. At the platform
security level, the proxylet deployer is authenticated using
digital signatures. The same applies to policies,
notifications, and proxylet metadata. At the user security
level, certificates and digital signatures are used to
authenticate actors (end users, operators, and proxylets
acting on their behalf).

At the management security level, management
interfaces and the directory itself also need to be secured,
and access to its data and functions authorized properly.
This uses the same mechanisms as those at the platform
level.

6.1 Authentication of actors
Authentication of actors at the boundary of the system

can be achieved by various mechanisms, from a standard
login password to the use of a smart card. We propose to
use Java Authentication and Authorization Services
(JAAS) [sun01b], for this purpose. JAAS is included in
the V1.4 Java SDK [sun01a] and is based on Pluggable
Authentication Modules (PAM), which makes
authentication configurable without impacting on the
application level, and includes the necessary management
tools, and will support smart cards.

JAAS also extends the existing, code-based Java
security architecture by adding principal-based
mechanisms for access control based on users, groups and
roles to the Java policy file. Management of the policy
files may be done or supported by the SDK’s policytool.

The issue of authentication to others, and of delegation
of authority (e.g., by an operator to a proxylet) is not
addressed by JAAS. This might be covered by a Java
implementation of the IETF’s GSS-API (cf. RFC 2853),
which does support these functions.

6.2 Proxylet Security
The policies on the active server form a security

envelope within which the proxylet can securely execute.
The security policies are interpreted, and the security
envelope is formed, by the security manager. No proxylet
can be allowed to run unless the security manager sends
the load event to the EEP. The security manager performs
a number of security actions:

• Proxylet deployer authentication is performed using
role matching (digital signature).



• The authentication of proxylets is performed using
the JAR signing (with the private key of the creator).

• Proxylet access control is achieved through alteration
of the java.policy file which controls access to
resources.

6.3 Management
In the ANDROID project, great care is taken to secure

all parts of the management information – including when
it is stored and when it is in transit. This aspect is not
included in the RADIOACTIVE project.

6.4 The Transcoding Active Gateway (TAG)
The TAG is the instrument used to provide inter-site

connectivity of group communications over unicast links.
Within the context of RADIOACTIVE, it has four
primary roles:

• Requesting to join or leave a VPN.

• Requesting to join or leave a reflection group.

• Reflection of multicast traffic through a VPN.

• Filtering of traffic by selective blocking.

The first two roles are activated by the presence, or
subsequent lack of users participating in a group identified
as subject to active service1. If a site is not part of a VPN,
then when a user either joins, or sends data to, an active
group, the TAG proxylet attempts to do the following:

Check to determine if a policy exists that allows or
disallows the site to participate in that group. This type of
policy represents a distributed access control of group
communication. If it is not allowed, then no other action
is taken. Otherwise, the following is attempted:

An XML event is sent to the VPN manager to request
that its site be added to a VPN. A policy may exist at the
VPN manager that denies or accepts requests from
individual sites. This type of policy represents a
centralized control of group communication.

An XML event is sent to the Reflector manager to
register its presence. Note: the Reflection and the VPN
manager can be co-resident or in different hosts. At this
time, we do not plan on having policies defined for the
Reflection manager - but this may change.

When all users at a site stop sending data, or leave the
group, and the site is a member of the VPN, then the TAG
proxylet sends a leave request to the VPN manager and
updates the reflector manager in the change of status.

1 For the sake of simplicity, we term these groups as
“active” groups or flows.

6.5 Secure Conferencing
The secure conferencing has been described in

[kirst99] and [kirst00]. The media streams are encrypted at
the application level. The details of the conference,
including the encryption keys, are kept in a secured
conference store (SCS) running on an Apache web server.
Users are registered with the store using their certificates.
There are extensive facilities for conference organizers to
set up access control lists constraining access to the
conference store to those desired by the organizer. At
present we have seen no reason to have this aspect of the
system requiring policy control.

Mechanisms requiring users to access a centralized
store have problems in scalability and reliability. We may
in the future make the whole SCS into a Proxylet; this
would allow additional proxies to be set up on demand.
Such a development would require policy control.

7 The Final Demonstration
The final demonstration will build up the configuration

of Fig. 9 – with the whole system running IPv6, and
starting with Active Servers with no VPN. Each
workstation in turn will try to join a multimedia
conference. As each user tries to join, the active server at
each site will discover/determine the presence of group
members. If there is no TAG running, the Policy will be to
load a TAG onto the Active Server, from the AA store,
and the policy from the policy store. It will also send the
configuration information to the X-Bone manager, which
will set up a new VPN overlay. The communication at
each site is multicast; the communication over the VPN is
unicast to all addressees over the VPN. This process is
repeated as each new user comes in. As any user leaves, a
new configuration is set up again without that user.

Figure 9 Schematic of the Final Demonstration
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8 Conclusions
This paper has described the architecture for active

networking developed within the ANDROID and
RADIOACTIVE projects. In particular, it has focused on
management-related issues, such as policies, which
emerge in a large-scale open programmable environment.
It has carried through the whole system for multimedia
conferencing over X-Bone overlay networks.
Conventional network management techniques will not be
able to manage at the level of individual processes,
particularly when they are only active within a single
instance of a distributed application.

We have provided extensive references on different
aspects of the system. Space considerations do not allow
us to give details of many of the vital areas like the
policies used, the management system, the active services
or the security system. The system is, however, very
flexible; the snapshot shown here is just a taste of what
can be done with the system. It is intended to deploy the
system in two IPv6-based projects, 6winit [kirst02] and
6NET [6net02] where the main focus is IPv6 deployment
– but including wireless access.
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11 Appendix A
An example policy from a machine at UCL, supplying

notification rule to trigger on the event below:

<?xml version = "1.0"?><policy
xmlns="http://www.android.org/policy"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-
instance"
xsi:schemaLocation="http://www.android.org/policy
http://10.113.58.33/android/october/xsd/policy.xsd">
<creator><authority><admin-
domain>10.113.58.33</admin-
domain><role>MIDServer</role></authority><identity>a
ndroidmid.10.113.58.33</identity><reply_address>10.11
3.58.33</reply_address></creator><info><policy-
id>notificationtablepolicy</policy-
id><modality>true</modality></info>
<subject><domain><role>configureMID</role></domain
></subject><actions><action><target><domain><role>co
nfigureNotificationTable</role></domain></target><data
><NotificationTable noDefaultSchemaLocation =
"http://10.113.58.33/android/october/xsd/NotificationTabl
e2.xsd"><NotificationRule><notifytarget><eventtype>
ca347bc0-df78-11d5-789b-00018347ec1b
</eventtype><socket><ipaddress>128.16.64.1</ipaddress
><portnumber>8080</portnumber><isMID>false</isMID
></socket></notifytarget><command>add</command></
NotificationRule></NotificationTable></data></action><
/actions></policy>

An example VPN-Join event from a machine at UCL,
attempting to join “VPN Example session”, supplying
login and password for access to VPN manager:

<?xml version = "1.0"?>
<event xmlns="http://www.android.org/event"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-
instance"
xsi:schemaLocation="http://www.android.org/event
http://193.113.58.33/android/october/xsd/event.xsd">
<event-id>ca347bc0-df78-11d5-789b-
00018347ec1b</event-id>
<time>13:00</time>
<source><uri>128.16.64.1</uri>
<entity>TAG</entity></source>
<sequence>3</sequence>
<information>VPN-Join-Request</information>
<data><login>login</login>
<password>password</password>
<vpnId>TAG: VPN Example Session, UK </vpnId>
<keepalive>3</keepalive></data></event>




