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Abstract

A two-class imbalanced data problem (IDP) emerges
when the data from majority class are compactly clustered
and the data from minority class are scattered. Though a
discriminative binary Support Vector Machine (SVM) can
be trained by manually balancing the data, its performance
is usually poor due to the inadequate representation of the
minority class. A recognition-based one-class SVM can be
trained using the data from the well-represented class only.
However, it is not highly discriminative. Exploiting the com-
plementary natures of the two types of SVMs in an ensemble
can bring benefits from both worlds in addressing the IDP.
Experimental results on both artificial and real benchmark
data sets support the feasibility of our proposed method.

1. Introduction

The imbalanced data problem (IDP), also known as the
class imbalance problem, has received considerable atten-
tion in recent years from the machine learning community
[5]. In some imbalanced data sets, the class with large size
of samples is compactly clustered and the class with small
size of samples are scattered. For example, in patient moni-
toring, the morphologies of normal patient signals are sim-
ilar to each other and the data can be easily collected. The
signals corresponding to the abnormalities of the patients
may exhibit various morphologies and are more difficult to
collect compared to normal signals. Such a problem also
exists in many other applications such object detection, net-
work intrusion detection and information retrieval, etc. This
kind of IDP can be addressed using a discriminative model,
such as a Binary Support Vector Classifier (BSVC) [12] by
manually balancing the data or compensating the class im-
balance using different costs to the two classes. However,
its performance is usually still poor due to the inadequately
represented minority class. A recognition-based model such
as a One-class Support Vector Classifier – νSVC [11], may
do better than a discriminative model for such a problem by

training the νSVC using the data from the well-represented
class only. It avoids the problem caused by the inadequate
representation of the minority class in BSVC. However,
such a recognition-based model is not highly discriminative
since the information from the minority class is left unused.
Exploiting the complementary nature of such two differ-
ent types of kernel machines, an ensemble constructed from
them is expected to perform better than that of using either
of them separately. Hence we propose to integrate these
two Hybrid Kernel Machines into an Ensemble (HKME) to
address this kind of IDP aforementioned. Trained using dif-
ferent data, these two kernel machines perform differently
on this kind of imbalanced data sets. The nature of HKME
is in-between the two-class classifier and one-class classi-
fier. Hence the HKME can be regarded as a one-and-half
classifier. The performance of the HKME is evaluated us-
ing an artificial data set and two real benchmark data sets.

2. Related Work

Some attempts have been reported to deal with the IDP,
which can be classified into the following 3 approaches
[5]. The first approach is re-sampling the training data set
to make it balanced. This can be implemented either by
undersampling in which the data from the majority class
are down-sampled so that the size of the majority class
dataset matches the size of the minority class dataset [5, 7],
or by oversampling in which the data from minority class
are over-sampled so that the size of minority class dataset
matches the size of the majority class dataset [5]. There are
also some attempts to combine these two approaches [2].
But the problem of undersampling is that some of the in-
formation may be lost if down-sampling is not conducted
properly and the distribution of training data set is changed
by re-sampling. So whether this is beneficial to classifica-
tion remains unknown.

The second approach is to compensate for the class im-
balance by altering the costs of the two classes in the train-
ing of classifiers. For example, using different penalty con-
stants for different classes of data was used in BSVC in [9].



The third approach is to use recognition-based one-class
classifiers instead of discrimination-based learning by leav-
ing the data from one of the two classes totally unused (usu-
ally the minority class). The problem in one-class classifi-
cation is different from those in conventional two-class clas-
sification where it is assumed that only information of one
of the classes, the target class, is available and no infor-
mation about the other class, the outlier class, is available.
The task of one-class classification is to define a boundary
around the target class, such that it accepts as much of the
targets as possible and excluding the outliers as much as
possible. For example, Japkowicz proposed to use an au-
toencoder to solve the IDP [5]. However, the recognition-
based approach is usually outperformed by discrimination-
based approach as a consequence of excluding the informa-
tion from the minority class in the training of the model [9],
except for seriously imbalanced data sets.

3. Proposed Method
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Figure 1. The flowchart of HKME.

The proposed HKME is illustrated in Figure 1, which
consists of a BSV C and a νSVC.

3.1. Discriminative BSVC

BSV C is a discriminative classifier. Given a two-class
(labelled by yi = ±1) training set X = {xi ∈ Rd|i =
1, 2, · · · , N} with N samples, the data are mapped to an-
other feature space where the data can be separated by an
optimal separating hyperplane expressed as

f(x) =
N∑

i=1

yiβiK(xi, x) + b (1)

where b is a bias item, βis (i = 1, 2, · · · , N ) are the solution
of a quadratic programming problem that finds the maxi-
mum margin, k(·) is a kernel function. BSVCs have been
increasingly used in many applications [12] and they have
good generalization ability by finding an optimal separating
hyperplane which minimizes the classification errors made

on the training set while maximize the “margin” between
different classes. But SVM also suffers from the IDP [1].

3.2. Recognition-based νSVC

νSVC is a kind of SVM [11] which can be used as a one-
class classifier. It is an recognition-based model because
only data from one-class is used in νSVC and no informa-
tion about the other class is used in the training. Given a set
of target data, they are mapped into a higher-dimensional
space. The mapped target data are separated from the origin
(corresponding to the outliers) with maximum margin using
a hyperplane, which can be found by solving a quadratic
programming problem [11]. The decision function corre-
sponding to the hyperplane is similar to Equation 1. In IDP,
the νSVC can be used to recognize the well-represented tar-
get data. But it is not highly discriminative since the data
from the other class is totally unused.

3.3. Hybrid Kernel Machine Ensemble

In this framework, the HKME consists of two different
base classifiers, a two-class BSVC and a one-class νSVC
with Gaussian Radial Basis Function kernels. On one hand,
the ν SVC can be trained using only the data for majority
class, so it can avoid the problem of inadequate representa-
tion of the minority data but at the cost of discriminatory
ability. On the other hand, a BSV C can be trained us-
ing balanced data set using oversampling or undersampling.
Since the νSVC and BSVC are trained using different data
sets, the training sets of such two kernel machines can be
considered diverse. Furthermore, the different nature of the
two SVMs can further help to increase the diversity of such
an ensemble. Since neither two-class BSVC nor one-class
νSVC can solve the IDP well alone, exploiting the com-
plementary nature of these two different types of models,
a combination of them is expected to perform better than
that of using either of them separately for the classification
of this kind of imbalanced data set. Hence constructing a
HKME by integrating these two hybrid kernel machines
in an ensemble is proposed to address this kind of IDP. This
is the novelty of this proposal.

Several fusion rules are investigated for constructing the
HKME for this kind of IDP, including Average (AV G),
Decision Template (DET ) and stacking [6, 8], etc. Let
Ci(x) = {Ci1(x), Ci2(x), · · · , Cik(x)} be a set of individ-
ual classifiers in an ensemble, each of which gets an input
feature vector x = [x1, x2, · · · , xd]T and assigns it to a class
label yi from Y = {−1,+1}, the goal is to find the a class
label for x based on the posterior probability outputs of k
classifiers C1(x), C2(x), · · · , Ck(x). As for SVM, the pos-
terior probability can be estimated using a sigmoid function.



• Averaging: It calculates the average of the outputs of
the k individual classifiers and assigns the input x the
class with the largest posterior probability [6].

• Decision template: The decision template DETj for
class yj ∈ {−1,+1} is the average of the outputs of
individual classifiers in the training set to class yj [8].
The ensemble DET assigns the input x with the label
given by the individual classifier whose Euclidean dis-
tance to the decision template DETj is the smallest.

• Stacking: Taking the output of individual classifiers
Ci(x) as input of a upper layer classifier and the fi-
nal decision is determined by the upper layer classi-
fier. The upper layer classifiers used here include lin-
ear discriminant classifiers (LDCs) and quadratic dis-
criminant classifiers (QDCs) assuming normally dis-
tributed classes [8].

4. Experimental Results and Discussions

The following experiments are conducted to evaluate the
performance of our proposed HKME for the IDP afore-
mentioned. A measure called Balanced Classification Rate
(BCR) is used to evaluate the performance of HKME in
this study. It is the algebraic mean of A+ and A−, BCR =
A++A−

2 , where A+ and A− denote the classification accu-
racy rate of positive class and negative class respectively.
This measure has been used in evaluating the performance
of classifiers in imbalanced data sets [4]. Only when both
A+ and A− have large value can BCR have a large value.
Therefore, the use of BCR can have a balanced assessment
of the classifiers in this kind of imbalanced data sets as the
BCR favors both lower false positives and false negatives.

4.1. Artificial Data Set

The first experiment was conducted using a checker-
board data set. The data are within a unit square in the
two-dimensional space as shown in Figure 3. The majority
class occupies the two diagonal squares of the checkerboard
and the minority class uniformly occupies in a 2× 2 square
around the majority class. The data distribution is roughly
in agreement with the assumption that our proposal is based
upon. The proposed HKME is compared with the other
generally used methods to address the IDP, including over-
sampling, down-sampling, SMOTE [2] and BSV C using
different costs to the two classes. The number of negative
data was fixed as 256, the number of positive data were de-
creased so that the imbalance ratio is increased from 1 : 1 to
32 : 1. The number of test data consists of 1000 points from
each class. The parameters of all the BSVCs are optimized
using 3-fold cross validation. The parameters of the νSVC

are optimized using artificially generated outlier data. The
experiment was repeated 10 times and the average value of
the BCRs by different schemes are reported in Figure 2 in
which only AV G fusion rules was used.
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Figure 2. The result on checkerboard data set with differ-
ent imbalance ratio.

It is observed from Figure 2 that BSV C (trained using
original data set) perform well when the imbalance ratio is
not very high, but its performance deteriorates with the in-
crease of imbalance ratio. HKME using AV G rule per-
forms the best among all the approaches. The BSV C using
different costs to two classes perform quite well compared
original BSV C. Undersampling performs better than orig-
inal BSV C, but is outperformed by using different costs.
SMOTE performs reasonably well. Oversampling performs
the worst among all the approaches due to overfitting.

The good performance of HKME may come from the
fact that it benefits from the strength of both of its individ-
ual classifiers, the discriminative BSV C and recognition-
based νSV C. This can be explained using their decision
boundaries as illustrated in Figure 3. νSV C performs well
due to its ability to model compactly clustered target class.
But it has to reject some target samples to form a tighter
boundary, so it tends to push the decision boundary towards
the majority class. However, discriminative BSV C tends to
push the decision boundary toward the minority class. The
ensemble of these two SV M tends to compensate these two
different trends and strike a compromise. As shown in the
figure, the decision boundary of HKME is located in be-
tween two classifiers, which is closer to the ideal decision
boundary (two squares in the checkerboard).

4.2. Real Benchmark Data Sets

In order to show the performance of the proposed
HKME on real data, the following experiments were con-
ducted using 2 real data sets. One is Wisconsin Breast Can-
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Figure 3. Comparison of the decision boundaries of
νSVC, BSVC, and HKME.

Table 1. BCR (average ± standard deviation in %)
achieved using (A) Breast Cancer (B) and Blood data set.

(A)
Imbalance Ratio 1 : 10 1 : 30 1 : 50

νSV C 94.3 ± 1.8 94.3 ± 1.8 94.3 ± 1.8
BSV C 93.1 ± 2.5 85.1 ± 3.2 85.1 ± 3.2

Different Costs 95.6 ± 1.0 92.2 ± 4.5 92.2 ± 4.5
Oversampling 50.2 ± 0.2 50.1 ± 0.2 50.1 ± 0.2

Undersampling 95.3 ± 1.5 92.2 ± 2.4 92.2 ± 2.4
SMOTE 88.0 ± 3.3 77.6 ± 6.1 77.6 ± 6.1

HKME (AVG) 92.8 ± 1.0 90.8 ± 2.9 90.8 ± 2.9
HKME (DET) 94.0 ± 1.5 93.6 ± 1.3 93.6 ± 1.3
HKME (LDC) 93.2 ± 1.4 93.2 ± 1.5 93.2 ± 1.5
HKME (QDC) 95.1 ± 1.2 95.0 ± 1.2 95.0 ± 1.2

(B)
Imbalance Ratio 1 : 5 1 : 10 1 : 20

νSV C 82.0 ± 9.8 77.5 ± 6.8 77.5 ± 6.8
BSV C 77.0 ± 10.6 71.5 ± 8.2 71.5 ± 8.2

Different Costs 86.0 ± 9.7 80.0 ± 12.2 80.0 ± 12.2
Oversampling 59.5 ± 12.3 52.0 ± 6.3 52.0 ± 6.3
Undersampling 82.0 ± 12.3 84.5 ± 9.6 84.5 ± 9.6

SMOTE 75.5 ± 10.4 72.0 ± 14.6 72.0 ± 14.6

HKME (AVG) 85.5 ± 12.3 82.0 ± 10.1 82.0 ± 10.1
HKME (DET) 85.5 ± 8.6 82.5 ± 8.2 82.5 ± 8.2
HKME (LDC) 84.5 ± 8.3 84.0 ± 8.4 84.0 ± 8.4
HKME (QDC) 83.5 ± 11.0 82.0 ± 7.9 82.0 ± 7.9

cer (Breast) from UCI database [10]. The other is Blood
Disorder data set (Blood) from Biomed dataset in the Statlib
data archive [3]. These data sets were splitted into training
and test data sets randomly. The majority classes were used
to train νSVC. The number of target data was fixed and the
number of minority class was reduced to change the imbal-
ance ratio. The experiments were repeated 10 times, the
average results are reported in Table 1.

It is observed that all the HKMEs performs well in
these two data sets and show performance improvement
over both νSV C and BSV C and other schemes in all
the cases, among which the LDC fusion rule performs the
best. The reason may be that the distribution of the data in
these data sets is roughly in agreement to the assumption in
HKME. For example, in the Blood data set, the majority
class is the observations made on normal healthy patients

while the minority class is those that exhibiting abnormal-
ities due to a rare genetic disease [3]. Hence the νSVC
performs reasonably well. So is the HKME.

5. Conclusion

A novel hybrid kernel machine ensemble is proposed to
address a kind of IDP in which the majority class is well
represented while the minority class is inadequately repre-
sented by the training data. The generally used discrimina-
tive BSV Cs suffer from the poor representation of the mi-
nority class. The recognition-based νSVCs can model the
majority class well, but it is not highly discriminative due to
the exclusion of the minority class in their training. The in-
tegration of such two different types of kernel machines can
improve the classification over the use of either of them.
Experimental results on both artificial and real benchmark
data sets show the good performance of proposed method.

References

[1] R. Akbani, S. Kwek, and N. Japkowicz. Applying support
vector machines to imbalanced datasets. In ECML, pages
39–50, 2004.

[2] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer.
SMOTE: Synthetic minority over-sampling technique. Ar-
tifical Intelligence Research, (16):321–357, 2002.

[3] L. Cox, M. Johnson, and K. Kafadar. Exposition of statisti-
cal graphics technology. In ASA Proceedings of the Statisti-
cal Computation Section, pages 55–56, 1982.

[4] M. Gal-Or, J. H. May, and W. E. Spangler. Assessing
the predictive accuracy of diversity measures with domain-
dependent asymmetric misclassification costs. Information
Fusion Journal, 6(1):3748, 2005.

[5] N. Japkowicz and S. Stephen. The class imbalance problem:
A systematic study. Intelligent Data Analysis, 6(5):429–450,
November 2002.

[6] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining
classifiers. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 20(3):226–239, March 1998.

[7] M. Kubat and S. Matwin. Addressing the curse of imbal-
anced training sets: One sided selection. In ICML, pages
179–186, Nashville, Tennessee, 1997. Morgan Kaufmann.

[8] L. I. Kuncheva, J. Bezdek, and R. Duin. Decision templates
for multiple classifier fusion: an experimental comparison.
Pattern Recognition, 34(2):299–314, 2001.

[9] B. Raskutti and A. Kowalczyk. Extreme re-balancing for
SVMs: a case study. SIGKDD Explor. Newsl., 6(1):60–69,
2004.

[10] C. B. S. Hettich and C. Merz. UCI repository of machine
learning databases, 1998.

[11] B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola,
and R. C. Williamson. Estimating the support of a high-
dimensional distribution. Neural Computation, 13(7):1443–
1471, 2001.

[12] V. Vapnik. Statistical Learning Theory. Wiley, New York,
1998.


