
BioSystems 76 (2004) 291–301

Evolving beyond perfection: an investigation of the effects of
long-term evolution on fractal gene regulatory networks

Peter J. Bentley
Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK

Received 28 February 2003; received in revised form 11 July 2003; accepted 1 August 2003

Abstract

This paper continues a theme of exploring algorithms based on principles of biological development for tasks such as pattern
generation, machine learning and robot control. Previous work has investigated the use of genes expressed as fractal proteins
to enable greater evolvability of gene regulatory networks (GRNs). Here, the evolution of such GRNs is investigated further to
determine whether evolution exhibits natural tendencies towards efficiency and graceful degradation of developmental programs.
Experiments where “perfect” GRNs are evolved for a further thousand generations without the addition of any further selection
pressure, confirm this hypothesis. After further evolution, the perfect GRNs operate in a more efficient manner (using fewer
proteins) and show an improved ability to function correctly with missing genes. When the algorithm is applied to applications
(e.g. robot control) this equates to efficient and fault-tolerant controllers.
© 2004 Elsevier Ireland Ltd. All rights reserved.

Keywords:Fractal proteins; Self-organizing and self-repairing systems; Evolutionary algorithms; Bio-developmental systems; Gene networks

1. Introduction

It is a common misconception held by many that a
good design must be the result of conscious analysis,
understanding, planning and knowledge. This is, after
all, how many see the processes of human design.
So when anyone used to human design encounters
evolutionary design (in nature or computer), the most
common objection is that there is no analysis, under-
standing, planning or knowledge. “How can random
chance produce better designs than our carefully
thought out designs?” the critics complain.

Yet it is clear that evolution does create designs that
are better in many respects. Natural solutions often ex-
ploit the intrinsic properties of materials far more ef-
ficiently than human solutions. For example, what we
might consider to be just hair—something for trapping

E-mail address:p.bentley@cs.ucl.ac.uk (P.J. Bentley).

air and insulating against cold—nature also uses for di-
verse purposes such as powerful horns or poison-filled
defences. Natural solutions also, almost without ex-
ception, display graceful degradation. When damaged,
life is designed to carry on working, whether the loss
is a limb or a gene. Nature gives her designs an elegant
efficiency and ability to survive damage that we can
only admire. In this paper, we explore the idea that the
reason why natural solutions show these capabilities is
because of the process by which they were designed.

When we design something, our designs are clear,
unambiguous plans that must followed to the letter. If
they are not, then the result will not work. Our designs
are brittle. Natural designs are not built as one-off
plans, to be followed perfectly. Evolution must con-
tend with random perturbations during processes of
development, in environments and in reproduction (re-
sulting in mutation). Although driven by this variabil-
ity, evolution must also protect her solutions against
the ravages of its randomness. Therefore, in addition to

0303-2647/$ – see front matter © 2004 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.biosystems.2004.05.019

292 P.J. Bentley / BioSystems 76 (2004) 291–301

having selection pressure towards solutions that must
survive in the short term, evolution endures longer,
implicit pressures towards the creation of robust and
efficient solutions that will not be lost through genetic
drift. It is the hypothesis of this work that an evolution-
ary algorithm—properly designed and set up—will
also exhibit the same natural tendencies towards the
improvement of robustness and efficiency of develop-
mental processes. This paper provides evidence that
supports this hypothesis.

2. Background

Evolutionary algorithms have long been (incor-
rectly) regarded simply as optimisers, where the goals
are normally to find the globally best solution with
the least amount of computation. Should efficient
solutions be desired, then additional selection pres-
sures (fitness criteria) are added. For example, to
reduce solution size in genetic programming (GP),
functions that penalise larger solutions are employed.
More recently, research in more advanced evolution-
ary systems that employ developmental stages from
genotype to phenotype is increasing. Researchers
such asHornby (2003), Bongard (2002), andKumar
and Bentley (2003)have demonstrated that various
types of development can enable smaller genotypes
to represent more complex phenotypes through the
ability of development to discover modularities and
repetition. However, the idea that evolution may have
a natural tendency to improve the efficiency of such
developmental processes further does not seem com-
mon in the literature.

Other scientists in the field have been focussing
on the ability of evolution, and more commonly
developmental methods, to enable self-repairing
behaviour and graceful degradation of solutions.
For example,Sipper (2002)demonstrates a simple
self-repair capability for electronic circuits by the
use of cellular-automata-like “biodules”. Using ideas
inspired from embryology, the circuits can function-
ally self-organise, while redundant biodules enable
damage to be overcome. Similarly the work of Andy
Tyrrell and his group create fault-tolerant hardware
inspired by ideas of embryology and immune sys-
tems (Jackson and Tyrrell, 2002). Adrian Thompson
has spent some years investigating how evolvable

hardware can provide robust solutions, for example
circuits that handle large variations in temperature
and fabrication, by testing designs in different envi-
ronments during evolution (Thompson and Layzell,
2002). More recently, Julian Miller has described ex-
periments evolving developmental programs to create
“French Flag” patterns (Miller and Banzhaf, 2003).
He shows that development is able to regenerate these
patterns should some of their cells be removed. Fi-
nally, current work byMahdavi and Bentley (2003)
demonstrates how adaptive evolutionary control can
enable a “Smart Snake” to redevelop new movement
strategies even after the loss of a crucial muscle
(Nitinol wire).

However, it is the work ofThompson (1997)that
most resembles the idea investigated here. In his re-
search on fault-tolerant systems, Thompson describes
how “graceful degradation for free” can be achieved
in theory and in practice for robot controllers, “from
the nature of the evolutionary process.” Thompson
suggests that mutation-insensitive individuals will, in
the long term, survive better, thus producing a pres-
sure towards fault-tolerant solutions. Significantly,
these findings have only ever been tested on systems
where there is a direct mapping from gene to pheno-
typic feature and hence from mutation-insensitivity to
fault-tolerance. In this work, the use of developmental
processes means that there are no direct mappings:
pleiotropy and polygeny are prevalent, and genes are
reused over many developmental iterations. Never-
theless, it is the hypothesis of this work that through
the Baldwin effect, even mutations that cause highly
indirect and seemingly inconsequential changes to
developmental programs will eventually result in
solutions becoming more efficient and fault-tolerant.

The work described in this paper forms part of
a project called MOBIUS (modelling biology using
smart materials). The aims of this research are to free
evolution from the traditional constraints imposed by
evolutionary computation (EC). Smart materials will
be used to provide a rich environment in which evolu-
tion can be embodied (Quick et al., 1999), enabling the
intrinsic evolution of potentially unconventional and
diverse robot morphologies. Evolution will employ
new genetic representations based on natural develop-
mental processes, designed to be evolvable, scalable
and free of constraints. Previous papers have described
initial research on this topic: how evolved genes can

P.J. Bentley / BioSystems 76 (2004) 291–301 293

be expressed into fractal proteins that form themselves
into complex and desirable gene regulatory networks,
(Bentley, 2003a,b). Current work has shown how such
GRNs can be used to learn paths for a robot through
a maze.

This paper uses the concept of a fractal gene reg-
ulatory network as a framework in which to test the
hypothesis that an evolutionary algorithm can exhibit
natural tendencies towards the improvement of ro-
bustness and efficiency of developmental systems. If
shown to be correct, it demonstrates a way of automat-
ically generating efficient and fault-tolerant develop-
mental procedures (that can be applied to applications
such as machine learning and robot control).

3. Fractal proteins

Development is the set of processes that lead from
egg to embryo to adult. Instead of using a gene for a pa-
rameter value as we do in standard EC (i.e., a gene for
long legs), natural development uses genes to define
proteins. If expressed, every gene generates a specific
protein. This protein might activate or suppress other
genes, might be used for signalling amongst other
cells, or might modify the function of the cell it lies
within. The result is an emergent “computer program”
made from dynamically forming gene regulatory net-
works (GRNs) that control all cell growth, position and
behaviour in a developing creature (Lewis et al., 2001).
In this work, a biologically plausible model of gene
regulatory networks is constructed through the use of
genes that are expressed intofractal proteins—subsets
of the Mandelbrot set that can interact and react ac-
cording to their own fractal chemistry. The motiva-
tions behind this work can be listed as follows: (fur-
ther motivations and discussions on fractal proteins
are provided in (Bentley, 2003a,b)).

1. Natural evolution extensively exploits the complex-
ity, redundancy and richness of chemical systems
in the design of DNA and the resulting develop-
mental systems in organisms. Providing a computer
system with genes that define fractal proteins gives
the system complexity, redundancy and richness to
exploit.

2. It is extremely difficult and computationally in-
tensive to model natural chemical systems accu-

rately in an artificial chemistry. Fractal proteins
have many of the same properties as natural pro-
teins, without any modelling overheads.

3. A fractal protein (with the infinite complexity of
the Mandelbrot set) can be defined by just three
genes.

4. The “fractal genetic space” is highly evolvable—a
small change to a gene produces a small change
to the fractal protein, while the self-similarity of
fractals ensures that any specific shape can be found
in an infinite number of places.

5. When fractal proteins are permitted to interact
according to their morphologies, a hugely com-
plex (and eminently exploitable) fractal chemistry
emerges naturally.

6. Calculating subsets of Mandelbrot sets isfast so
there is little overhead.

It should be noted that the system used for the experi-
ments in this paper is an extended version of systems
described elsewhere. While the detail provided below
is in some respects a distraction from the theme of this
paper, for reasons of reproducibility it is provided in
full.

3.1. Representation

Currently in this representation, there exist:

fractal proteins, defined as subsets of the Mandel-
brot set;

environment, which can contain one or more frac-
tal proteins (expressed from the environment
gene(s)), and one or morecells;

cell, which contains agenomeandcytoplasm, and
which has somebehaviours;

cytoplasm, which can contain one or more fractal
proteins;

genome, which comprisesstructural genesandreg-
ulatory genes. In this work, the structural genes
are divided into different types:cell receptor
genes, environment genesandbehavioural genes;

regulatory gene, comprising operator (or promoter)
region and coding (or output) region;

cell receptor gene, a structural gene with a coding
region which acts like a mask, permitting variable
portions of the environmental proteins to enter
the corresponding cell cytoplasm;

294 P.J. Bentley / BioSystems 76 (2004) 291–301

Fig. 1. Representation using fractal proteins.

environment gene, a structural gene which deter-
mines which proteins (maternal factors) will be
present in the environment of the cell(s);

behavioural gene, a structural gene comprising op-
erator region and a cellular behaviour region.

Fig. 1 illustrates the representation.Fig. 2 provides
an overview of the algorithm used to develop a pheno-
type from a genotype. Note how most of the dynamics
rely on the interaction of fractal proteins. Evolution
is used to design genes that are expressed into fractal
proteins with specific shapes, which result in develop-
mental processes with specific dynamics.

Fig. 2. The fractal development algorithm.

Fig. 3. Example of a fractal protein defined by (x = 0.132541887,
y = 0.698126164,z = 0.468306528).

3.2. Defining a fractal protein

In more detail, a fractal protein is a finite square
subset of the Mandelbrot set, defined by three codons
(x, y, z) that form the coding region of a gene in the
genome of a cell. Each (x, y, z) triplet is expressed
as a protein by calculating the square fractal subset
with centre coordinates (x, y) and sides of lengthz,
seeFig. 3 for an example. In this way, it is possible
to achieve as much complexity (or more) compared to
natural protein folding in nature.

In addition to shape, each fractal protein represents
a certainconcentrationof protein (from 0 meaning
“does not exist” to 200 meaning “saturated”), deter-
mined by protein production and diffusion rates.

3.3. Fractal chemistry

Cell cytoplasms and the environment usually con-
tain more than one fractal protein. In an attempt to
harness the complexity available from these fractals,
multiple proteins are merged. The result is a product of
their own “fractal chemistry” which naturally emerges
through the fractal interactions.

Fractal proteins are merged (for each point sampled)
by iterating through the fractal equation of all proteins
in “parallel”, and stopping as soon as the length of
any is unbounded (i.e. greater than 2). Intuitively, this
results in black regions being treated as though they are
transparent, and paler regions “winning” over darker
regions. SeeFig. 4 for an example.

3.4. Calculating concentration levels

The total concentration of two or more merged frac-
tal proteins is the mean of the different concentrations

P.J. Bentley / BioSystems 76 (2004) 291–301 295

Fig. 4. Two fractal proteins (left and middle) and the resulting
merged fractal protein combination (right).

seen in their merged product. For example,Fig. 4
shows how fractal proteins are merged to form a new
fractal shape.Fig. 5 illustrates the resultant areas of
different concentration in the product. When being
compared to the (xp, yp, zp) promoter region of a gene
(the “conditional” part of the gene to be matched,
see later section on genes), the concentration seen
on that promoter is described by all those regions
that “fall under” the promoter, seeFig. 5. In other
words, the merged product is masked by the pro-
moter fractal, and the total concentration on the pro-
moter is the mean of the resulting concentrations, see
Fig. 6.

3.5. Updating protein concentration levels

Every developmental time step, the new concen-
tration of each protein is calculated (synchronously).
This is formed by summing two separate terms: the
previous concentration level after diffusion (Dc) and
the new concentration output by a gene (Gc). These
two terms model the reduction in concentration of pro-
teins over time, and the production of new proteins

Fig. 5. The different concentrations of the two fractal proteins (left
and middle) and the concentration levels in their merged product
(right).

Fig. 6. The shape of the desired protein as defined by a promoter
(left), the shape and concentration levels of merged proteins in
the cytoplasm (middle) and the concentration levels seen on that
promoter (right), where total concentration is taken as mean. Note
that although a merged protein may decrease affinity (similarity) to
the promoter, should the second protein have a higher concentration
level to the first, it will boost overall concentration seen by the
promoter, i.e., act like a catalyst to speed up (or slow down, if
lower) the “reaction”.

over time, respectively, where

Dc = Pc− Pc/Cp + 0.2

Pc is protein concentration in previous time step, Cp
is a constant normally set to 5, the final addition of
0.2 ensures a minimum level of diffusion and:

Gc = Tc× Cm,

Tc is the mean concentration seen at the promoter,Cm
is a concentration multiplier, where:

Cm= tanh((Tc− ct)/Cw)/Ci

wherect is the concentration threshold from the gene
promoter, Cw is a constant (set to 30 for these experi-
ments), Ci is a constant (set to 2 for these experiments).

3.6. Genes

The environment gene, cell receptor gene, regula-
tory genes, and behavioural genes all contain seven
real-coded values:

xp yp zp Affinity
threshold

Concentration
threshold

x y z Type

where xp, yp, zp, affinity threshold, concentration
thresholddefines the promoter (operator or precon-
dition) for the gene and (x, y, z) defines the coding
region of the gene. Thetypevalue defines which type
of gene is being represented, and can be one or all
of the following: environment, receptor, behavioural,

296 P.J. Bentley / BioSystems 76 (2004) 291–301

or regulatory. This enables the type of genes to be
set independently of their position in the genome,
enabling variable-length genomes. It also enables
genes to be multi-functional, i.e. a gene might be
expressed both as an environmental protein and a
behaviour.

Whenaffinity thresholdis a positive value, one or
more proteins must match the promoter shape defined
by (xp, yp, zp) with a difference equal to or lower
than affinity thresholdfor the gene to be activated.
When affinity thresholdis a negative value, one or
more proteins must match the promoter shape defined
by (xp, yp, zp) with a difference equal to or lower than
|affinity threshold| for the gene to be repressed (not
activated).

To calculate whether a gene should be activated, all
fractal proteins in the cell cytoplasm are merged (in-
cluding the masked environmental proteins, see later)
and the combined fractal mixture is compared to the
promoter region of the gene.

The similarity between two fractal proteins (or a
fractal protein and a merged fractal protein combina-
tion) is calculated by sampling a series of points in
each and summing the difference between all the re-
sulting values. (Black regions of fractals are ignored.)
Given the similarity matching score between cell cyto-
plasm fractals and gene promoter, the activation prob-
ability of a gene is given by

Pa = (1 + tanh((m − At − Ct)/Cs))/2

wherem is the matching score,At is Affinity threshold
(the matching threshold from the gene promoter), Ct
is a threshold constant (normally set to 50), Cs is a
sharpness constant (normally set to 50).

3.6.1. Regulatory gene
Should a regulatory gene be activated by other

protein(s) in the cytoplasm (which have concen-
trations above 0) matching its promoter region, its
corresponding coding region (x, y, z) is expressed
(by calculating the subset of the Mandelbrot set) and
new concentration level calculated. To do this, the
concentration of the resulting protein is modified by
incrementing withgeneoutputconc, the result of a
function of the concentration threshold (ct) and the
mean total concentration seen at the gene promoter
(totalconc), as given in Section 3.5. In this way,
higher concentrations of protein on the promoter will

cause an increased rate of output protein concentra-
tion growth, while lower concentrations (below thect
threshold) will increase the diffusion rate of the out-
put protein (its concentration will decrease at a higher
rate).

The cell cytoplasm, which holds all current proteins,
is updated at the end of the developmental cycle.

3.6.2. Cell receptor gene
At present, the promoter region of the cell receptor

gene is ignored, and this gene is always activated.
As usual, the corresponding coding region (x, y, z) is
expressed by calculating the subset of the Mandelbrot
set. However, the resultant fractal protein is treated as
a mask for the environmental proteins, where all black
regions of the mask are treated as opaque, and all other
regions treated as transparent. For an example, seeFig.
7. If there is more than one receptor gene, only the
first in the genome is used.

3.6.3. Environment gene
Like the cell receptor gene, this gene is always ac-

tivated. It produces environmental factors for all cells:
fractal proteins of concentration 200. If there is more
than one environmental gene, the expressed environ-
mental proteins are merged before being masked by
the receptor protein.

3.6.4. Behavioural gene
A behavioural gene is activated when other pro-

tein(s) in the cytoplasm match its promoter region
and the overall concentration is above itsconcen-
tration thresholdvalue. Instead of the coding region
(x, y, z) being expressed as a protein, these three
real values are decoded to specify a range of differ-
ent cellular functions, depending on the application.

Fig. 7. Cell receptor protein (left), environment protein (middle),
resulting masked protein to be combined with cytoplasm (right).

P.J. Bentley / BioSystems 76 (2004) 291–301 297

If there are more behavioural genes than are re-
quired, only the first encountered in the genome are
used.

3.7. Fractal sampling

All fractal calculations (masking, merging, compar-
isons) are performed at the same time, by sampling the
fractals at a resolution of 15× 15 points. Note that the
comparison is normally performed between the single
fractal defined by (xp, yp, zp) of a gene and the merged
combination of all other proteins currently in the cy-
toplasm. The fractal being compared is treated a little
like the cell receptor mask—only those regions that
are not black are actually compared with the contents
of the cytoplasm.

3.8. Development

As was illustrated inFig. 2, an individual begins
life as a single cell in a given environment. To de-
velop the individual from this zygote into the final
phenotype, fractal proteins are iteratively calculated
and matched against all genes of the genome. Should
any genes be activated, the result of their activation
(be it a new protein, receptor or cellular behaviour)
is generated at the end of the current cycle. Devel-
opment continues ford cycles, whered is dependent
on the problem. Note that if one of the cellular be-
haviours includes the creation of new cells, then devel-
opment will iterate through all genes of the genome in
all cells.

3.9. Evolution

The genetic algorithm used in this work has been
used extensively elsewhere for other applications (in-
cluding GADES (Bentley, 1999)). A dual population
structure is employed, where child solutions are main-
tained and evaluated, and then inserted into a larger
adult population, replacing the least fit. The fittestn
are randomly picked as parents from the adult popu-
lation. The degree of negative selection pressure can
be controlled by modifying the relative sizes of the
two populations. Likewise the degree of positive se-
lection pressure is set by varyingn. When child and
adult population sizes are equal, the algorithm resem-
bles a canonical or generational GA. When the child

population size is reduced, the algorithm resembles a
steady-state GA. Typically the child population size is
set to 80% of the adult size andn = 40%. (For further
details of this GA, refer to (Bentley, 1999).)

Unless specified, alleles are initialised randomly,
with (xp, yp, zp) and (x, y, z) values between−1.0
and 1.0 andthresh between−10,000 and 10,000.
The ranges and precision of the alleles are limited
only by the storage capacity ofdouble and long
‘C’ data types—no range constraints were set in the
code.

3.9.1. Genetic operators
Genes are real-coded, but genomes may com-

prise variable numbers of genes. Given two parent
genomes, the crossover operator examines each gene
of parent1 in turn, finding the most similar gene of
the same type in parent 2. Similarity is measured by
calculating the differences between values of oper-
ator and coding regions of genes. One of the two
genes is then randomly allocated to the child. If
the genome of parent 2 is shorter, the child inherits
the remaining genes from parent 1. If the genomes
are the same length, this crossover acts as uniform
crossover.

Mutation is also interesting, particularly since these
genes actually code for proteins in this system. There
are four main types of mutation used here

1. Creep mutation, where (xp, yp, zp) and (x, y, z) val-
ues are incremented or decremented by a random
number between 0 and 0.5,affinity thresholdis in-
cremented or decremented by a random number be-
tween 0 and 16,384 andconcentration thresholdis
incremented or decremented by a random number
between 0 and 200.

2. Duplication mutation, where a (xp, yp, zp) or (x,
y, z) region of one gene randomly replaces a (xp,
yp, zp) or (x, y, z) of another gene. (This permits
evolution to create matching promoter regions and
coding regions quickly).

3. Gene mutation, where a random gene in the
genome is either removed or a duplicate added.

4. Sign flip mutation, where the sign ofaffinity thresh-
old is reversed.

Crossover is always applied; all mutations occur
with probability 0.01 per gene.

298 P.J. Bentley / BioSystems 76 (2004) 291–301

4. Experiments

A single cell with 1 environment gene, 1 receptor
gene, 1 behavioural gene and 6 regulatory genes was
used. (Note that with variable length genomes, evo-
lution was free to modify these numbers). The oper-
ator and coding regions of the genes were randomly
initialised with the alleles that defined 10 previously
evolved protein fractals (Bentley, 2003a). 16 develop-
mental steps were employed, and the evolutionary al-
gorithm ran for up to 1000 generations. If a perfect
GRN evolved (i.e., one in which the state of the be-
havioural gene matches the desired output pattern at
every developmental step), the system then continued
to evolve for a further 1001 generations. All other pa-
rameters were as described above.

A simple fitness function was used: it measured the
output from the behavioural gene at every develop-
mental step, and calculated how much this output devi-
ated from a predefined pattern, seeTable 1. In addition,
the number of incorrect positive and negative edges in
the pattern of ons and offs was measured, with penal-
ties given in proportion to the number wrong. Note
that the fitness function only evaluated correctness of
the GRN pattern, it did not measure efficiency or ro-
bustness in any way. The system was run 20 times;
the typevalue in genes was not evolved.

Although the desired pattern may seem elementary,
it involves switching on the behavioural gene on step
5 (i.e., counting to four), switching it off on step 9
(counting to four again), and then on again on step 13
(after counting to four yet again). Clearly if the GRN
can learn to repeat the pattern from 1 to 8 on steps
9–16, then things are slightly simpler, but there is still
significant complexity here. (Further work has demon-
strated how evolution of other developmental patterns
can be used for robot control, where the pattern de-
termines the path taken by the robot through a maze.
Here, we focus on a more regular and easier-to-analyse
target.)

Table 1
Desired output pattern over 16 developmental steps to be created by GRN in developing phenotype (‘na’ means behavioural gene not
activated, ‘a’ means b-gene activated)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

na na na na a a a a na na na na a a a a

5. Results and analysis

The results were fascinating and in some respects
surprising. Out of 20 runs, 12 evolved perfect GRN
patterns (the others all were very nearly perfect).
Table 2 provides details of the results. Because of
the complexity of fractal protein interactions, a full
analysis of how even a simple GRN operates is an ex-
tensive undertaking. Purely for illustrative purposes,
Fig. 8 shows the changes in protein concentrations
over time for two solutions to this problem; a full
analysis of fractal protein interactions is given in
(Bentley, 2003a).

For this work, to assess the efficiency of the GRNs,
they were analysed to determine

1. how many proteins had concentrations above zero
(any with concentrations of zero for all 16 devel-
opmental steps mean that the protein is never used,
hence the corresponding regulatory gene has no ef-
fect);

2. how many genes could be individually removed
in turn from the genome without detrimentally af-
fecting the activation pattern by the behavioural
gene.

The second-to-last run inTable 2provides a nice
example of the effects of further evolution. Here the
perfect pattern was found after 36 generations, with
the total number of genes, and number of genes of each
type unchanged from the start. The analysis shows that
5 of the 6 regulatory genes are used in this solution,
and out of the total 9 genes in the genome, only 2 could
be removed without damaging the pattern. After 1037
generations, the genome still contains 9 genes, but
now there are 2 environment, 2 behavioural and only 4
regulatory. The analysis shows that only 4 regulatory
genes are now being used to generate the pattern, and
because of the use of redundancy, 4 out of 9 genes
could be individually removed without damaging the
pattern.

P.J. Bentley / BioSystems 76 (2004) 291–301 299

Table 2
Number of generations, genes in genomes, proteins with positive concentrations in the GRN, and robustness of the 12 perfect solutions

Perfect solution after
n generations:

Number of genes
(env, rec, beh, reg)

No. of proteins used Genes that can be individually removed
without affecting solution

34 1, 1, 1, 6 5 1 (/9)
1035 1, 1, 2, 5 4 4 (/9)

68 1, 1, 1, 7 6 3+ 1 near-perfect score (/10)
1069 2, 1, 1, 6 4 3+ 1 near perfect score (/9)

78 1, 1, 1, 6 5 2 (/9)
1079 2, 1, 1, 7 4 5 (/10)

39 1, 1, 1, 6 2 4 (/9)
1040 1, 1, 3, 5 2 5 (/10)

16 1, 1, 1, 6 4 2 (/9)
1017 1, 1, 4, 4 2 5 (/10)

36 1, 1, 1, 6 6 0+ 2 near perfect scores (/9)
1037 1, 1, 2, 10 5 7+ 1 near perfect score (/14)

40 1, 1, 1, 6 3 3 (/9)
1041 1, 1, 1, 4 3 1 (/7)

47 1, 1, 1, 7 5 3+ 1 near perfect score (/10)
1048 2, 1, 1, 8 4 5+ 1 near perfect score (/12)
164 1, 1, 1, 6 4 4 (/9)

1165 1, 2, 1, 8 2 8 (/12)
292 1, 1, 1, 6 3 3+ 1 near perfect (/9)

1293 2, 1, 1, 6 3 4+ 1 near perfect (/10)
36 1, 1, 1, 6 5 2 (/9)

1037 2, 2, 1, 4 4 4 (/9)
200 1, 1, 1, 7 3 4+ 1 near perfect (/10)

1201 1, 1, 2, 6 2 5 (/10)

As can be seen inTable 2, in every case further
evolution improves the “perfect” solutions by

• increasing efficiency:reducing the number of pro-
teins (actual genes used to make the solution)
and/or;

Fig. 8. Protein concentration levels during development of two perfect solutions to the problem. Note how radically different dynamics
can produce the same behavioural gene pattern.

• increasing robustness:increasing the percent-
age of genes that can be removed without af-
fecting the solution (either by reducing number
of proteins or by introducing redundant dupli-
cates).

300 P.J. Bentley / BioSystems 76 (2004) 291–301

A typical evolutionary run seems to find the desired
GRN pattern by merging the effects of many different
genes and proteins. Once found, the perfect solution
is fine-tuned by removing the genes that have smaller
effects resulting in shorter genomes, followed some-
times by intron growth. Without any additional selec-
tion pressures, the natural tendency of this system is
to reduce the number of genes used in solutions and
increase the ability of the solutions to survive damage.

Finally, it is clear that this system, although allow-
ing variable genomes, does not behave in the same
manner as GP systems. By the end of the further 1001
generations, in 7/12 runs evolution had added one or
more non-functioning genes (intron growth or bloat).
However, perhaps because of the high reactivity of
fractal proteins with each other, or perhaps because
probability of mutation is fixed per gene and not per
genome so larger genomes do not imply fewer aver-
age mutations, in the other five cases the total num-
ber of genes remained constant or even fell. Also note
that although intron growth is occasionally apparent, it
seems likely that the presence of introns would enable
quicker evolution of new solutions should the selec-
tion pressure change towards other patterns. So even
the apparently wasteful addition of introns may actu-
ally be a useful feature in this kind of system.

6. Conclusions

Researchers are now focussing their attention on the
creation of technologies with some of the same fea-
tures of natural systems. This paper has focussed on
two of these capabilities: efficiency and graceful deg-
radation, in the context of gene regulatory networks. It
has been shown that given 1000 generations of evolu-
tion after a “perfect” solution is found, an evolutionary
algorithm that generates fractal gene regulatory net-
works within a developmental process has a natural
tendency towards the creation of efficient and com-
pact solutions by reducing the number of genes and
proteins employed within solutions. It has also been
shown that the same system has a natural tendency
towards more robust solutions, increasing the ability
of GRNs to survive damage by the removal of genes.

These tendencies were not explicitly demanded
by selective pressures, nor were they deliberately
“designed into” the system. It is conceivable that im-

provements of performance may be possible if these
measures are taken. However, the important finding
of this work is the utility of evolution as a method
of design. As shown byThompson (1997)andEigen
(1987) in simpler systems, evolution can provide
fault tolerance “for free.” This research shows that
the same findings are evident for evolutionary devel-
opment. Over long time-scales, randomness causes
evolution to preserve her developmental programs by
making them more efficient and giving them abili-
ties to work even when damaged. When evolutionary
developmental algorithms such as this are applied
to applications (e.g. robot control) this equates to
efficient and fault-tolerant controllers.

Acknowledgements

Thanks to Sanjeev Kumar for his comments. This
material is based upon work supported by the Euro-
pean Office of Aerospace Research and Development
(EOARD), Airforce Office of Scientific Research,
Airforce Research Laboratory, under contract no.
F61775-02-WE014. Any opinions, findings and con-
clusions or recommendations expressed in this ma-
terial are those of the author and do not necessarily
reflect the views of EOARD. MOBIUS is an project.

References

Bentley, P.J., 2003a. Fractal proteins. To appear in Genet. Program.
Evol. Machines J.

Bentley, P.J. 2003b. Evolving fractal proteins. In: Proceedings
of ICES’03, the Fifth International Conference on Evolvable
Systems: from Biology to Hardware.

Bentley, P.J., 1999. From coffee tables to hospitals: generic
evolutionary design. In: Bentley, P.J. (Ed), Evolutionary Design
by Computers, chapter 18. Morgan Kaufmann Publishers, San
Francisco, pp. 405–423.

Bongard, J.C., 2002. Evolving Modular Genetic Regulatory
Networks. In: Proceedings of the IEEE 2002 Congress
on Evolutionary Computation (CEC2002). IEEE Press,
pp. 1872–1877.

Eigen, M., 1987. New concepts for dealing with the evolution
of nucleis acids. In: Cold Spring Harbor Symposium on
Quantitative Biology, vol. LII.

Hornby, G.S., 2003. Ph.D. dissertation. Generative representations
for evolutionary design automation. Department of Computer
Science, Brandeis University.

Jackson, A.H., Tyrrell, A.M., 2002. Implementing asynchronous
embryonic circuits using AARDVArc. In: Proceedings of 2002

P.J. Bentley / BioSystems 76 (2004) 291–301 301

NASA/DoD Conference on Evolvable Hardware (EH-2002).
IEEE Computing Society, Alexandria, Virginia, 15–18 July
2002, pp. 231–240.

Kumar, S., Bentley, P.J., 2003. Computational embryology: past,
present and future. In: Ghosh, Tsutsui (Eds.), Theory and
Application of Evolutionary Computation: Recent Trends.
Springer Verlag, UK.

Mahdavi, S., Bentley, P.J., 2003. Adaptive evolutionary motion
of smart robots. To appear in EvoROB2003, second European
Workshop on Evolutionary Robotics.

Miller, J., Banzhaf, W., 2003. Evolving the program for a cell:
from French flags to Boolean circuits. In: Kumar, S., Bentley,
P.J. (Eds.), On Growth, Form and Computers. Academic Press
(to appear as an invited chapter).

Quick, T., Dautenhahn, K., Nehaniv, C., Roberts, G., 1999. The
essence of embodiment: a framework for understanding and
exploiting structural coupling between system and environment.
In: Proceedings of the Third International Conference on
Computing Anticipatory Systems (CASYS’99), Symposium 4
on Anticipatory, Control and Robotic Systems. Liege, Belgium,
pp. 16–17.

Sipper, M., 2002. Machine Nature: the Coming of Age of
Bio-Inspired Computing. McGraw-Hill, New York.

Thompson, A., 1997. Evolving inherently fault-tolerant systems.
In: Proceedings of the Institutional Mechanical Engineers.

Lewis, W., Beddington, R., Jessell, T., Lawrence, P., Meyerowitz,
E., Smith, J. Principles of Development, second ed. Oxford
University Press.

	Evolving beyond perfection: an investigation of the effects of long-term evolution on fractal gene regulatory networks
	Introduction
	Background
	Fractal proteins
	Representation
	Defining a fractal protein
	Fractal chemistry
	Calculating concentration levels
	Updating protein concentration levels
	Genes
	Regulatory gene
	Cell receptor gene
	Environment gene
	Behavioural gene

	Fractal sampling
	Development
	Evolution
	Genetic operators

	Experiments
	Results and analysis
	Conclusions
	Acknowledgements
	References

