Constant Time Queries on Uniformly Distributed Points on a
Hemisphere

Mel Slater
Department of Computer Science
University College London, UK

Abstract

A set of uniformly distributed points on a hemisphere is generated using a popular method
based on triangle subdivision. In applications, each data point (for example, representing a direc-
tion from a point on a surface) is typically associated with additional information (for example, a
radiance value). Given an arbitrary query point on the hemisphere we require the nearest data
point from the given distribution. An algorithm is presented that finds the data point in constant
time, independently of the number of original points in the distribution. A portion of the hemisphere
is rendered such that each point in the distribution has an associated set of quadrilaterals rendered
with a unique color index for that point. The frame-buffer for the rendered hemisphere portion can
be stored in off-screen memory. Any query point can be ‘rendered’ into this off-screen frame buffer,
projected to a ‘pixel’ location, and the color index stored at this pixel location found. This color
index is a lookup into an array of the original data points. This algorithm is presented in detail, and
an illustrative implementation in OpenGL is described.

Keywords
Uniform distribution, sphere, hemisphere, queries, query-point

1. INTRODUCTION

A ‘uniform’ distribution of points on a sphere may be used to represent a set of directions from
a point on a surface. This type of representation is important, for example, in global illumination
methods such as radiosity, and also light field rendering, for example [1][2]. In general data points
are generated on a hemisphere, but associated with each point is additional information - such as a
radiance value. Now given some arbitrary query point on the hemisphere we need to retrieve the
nearest data point and its associated information. Ideally such queries should be executed in con-
stant time independent of the original number of data points.

There is no standard definition of what constitutes a ‘uniform’ distribution on a sphere, and this
paper is not concerned with that issue. Methods are typically based on subdivisions of Platonic sol-
ids as discussed for example in [3] where a unit sphere is initially approximated by an icosahedron,
and each constituent equilateral triangle is subdivided and projected to the surface of the sphere,
recursively to a given depth. We adopt the method described [1] which is concerned with points
distributed on a hemisphere. We approximate the hemisphere by the 4pp’ () half of a regular
octahedron, and again subdivide each constituent equilateral triangle, into four smaller triangles,
project the vertices to the surface of the sphere, and repeat the operation recursively for each new
triangle. At each level of recursion the triangle vertices will be ‘uniformly’ distributed over the
hemisphere. We call these vertices tlata pointson the hemisphere. Now given an arbitrary query
point on the hemisphere we require the nearest data point, in fact a pointer to information that
includes the data point, since it is not usually the point itself that is of interest, but other data associ-
ated with it.

Although the points are uniformly distributed over the sphere there is no obvious way in which
to quickly find the nearest to the query point. The points are not uniformly distributed when pro-
jected to thez = 0 plane, so that partitionird < x, y<1 into a regular grid and storing the data
points in a 2-dimensional array corresponding to this grid would not be suitable. The data points
either in 3D or in projected 2D could be stored in a K-D tree, but then of course there is no constant
time search. In [3] a quad-tree type of data structure was used for searching, since each triangle is
subdivided into 4 and therefore may be considered as the parent of its 4 sub-triangles. Again the

search time is dependent on the number of data points. [1] used the hemisphere subdivision as an
alternative to a hemicube in a proposed radiosity solution. However, in order to find the directions
corresponding to a patch, all relevant directions had to be compared with a patch bounding volume.
Using the constant-time method described in this paper, a patch could be projected to a hemisphere
in approximately the same time as projecting it to a hemicube - i.e., making use of a rasterisation
operation with constant time lookup for the hemisphere elements.

In the next Section we describe the method for generating the data points in more detail. In Sec-
tion 3 we describe a constant-time query method, and provide implementation details in Section 4.

2. Uniform Points on a Sphere

The vertices of the initial half octahedron i=0 space are the gpeg 1) (arel 0 ,
(0,1, 0, (-1,0, 00 and(0,-1, 0) . All points are on the unit sphere centered at the origin. We con-
sider the first quadrant only for the moment, with vertiggs, 0, 1) q(1, 0, 0) aftl 1, 0) . Sub-
divide this triangle by bisecting each of the three sides, to form a set of 4 triangles, as shown in
Figure 1, and project the mid-points to the surface of the sphere (in other words normalize them).
Now treat each new triangle in the same way recursively.

FIGURE 1. Triangle Subdivision

triangle(Point3D p,Point3D q,Point3D r,int depth)
{

Point3D pq,pr.qr,s.t,u;

if([depth < MaxDepth){

pq = (p+q)/2;
s = normalize(pq);
pr = (p+n/2;
u = normalize(pr);
ar = (q+n/2;

t = normalize(qr);
triangle(p,s,u,depth+1);
triangle(s,q,t,depth+1);
triangle(u,t,r,depth+1);
triangle(s,t,u,depth+1);

else{
report(p);
report(q);
report(r);
}
}
A call of triangle(p,q,r,0) will produce the required points. Note that some points may

be reported multiple times. The algorithm can be organized into a non-recursive one to avoid this,
but this is not relevant to the problem of queries.

Itis easy to calculate the number of distinct points that will be generated. Call the pjtial tri-
angle level 0. Then this has two rows, the first with one pgp)t and the second with two points
(gandr). Level 1 is shown in Figure 1 - this has three rows, each row with one more vertex than
the next. Each time we go to another level we double the number of intervals on a triangle edge

(such agg), and the number of points is one plus the number of intervals. Hence if atllevel there
ared pointsthen atlevel+1 there will d-1)+1 points on each edge. Since at level O there
are 2 points on each edge, at level there willbe 1 points. Another way to think of this is that
the overall triangle consists @ +1 rows of points, where itiherow consists of points. Hence
the total number of points at levkls:
| |
1+2+3+...+(2'+1):§&¥¥2 (2)

Now this formulation will generate points on that ‘one quarter’ of the hemisphere bounded by
the originalpqr triangle. It is easy to cover all of the hemisphere (in fact the whole sphere) by rota-
tions. We can patrtition they plane into five regions:

Region 0:x = 0 andy = 0

Region 1:x>0 andy=0

Region 2:x< 0 andy>0 (2)
Region 3:xx<0 andy<0

Region 4:x=0 andy<0

The algorithm above only generates points in Regions 0,1 and the first column of Region 2.
However, given a generated data point in Region 1 we can find equivalent points in regions 2, 3 and
4 by rotating it by multiples of 90 degrees around thexis.

Next consider storing each unique point in an array for later lookup or other processing. We rep-
resent the generated points as if in a triangular array. For example, the points in Regions 0, 1 and
the first column of Region 2 would be represented as follows:

Poo
P10 P11
P20 P21: P22 (3

mel pmll R pmm

wherem = 2' and is the number of levels (or depth of recursion). If we were to generate points to
depthl then the initial three points would &= py, 9 = Pro: T = P~ - NOW Suppose hat ~ and
p, are two points on an edge that is to be bisected, then the mid-point of the edge projected onto
the sphere would be:

. (Pij * Py
Pi+k i+ = hormalize =L——= (4)

where ‘normalize’ projects the point to the surface of the unit sphere.
According to (2) the data points are assigned to the regions are as follows:

Region 0:pg,

Region 1:p;,i 21, 0<j <i

Region 2:p;;, i 2 1,i<j <2i (5)
Region 3:p;;, i 2 1, 2i <j < 3i

Region 4:p;;,i 2 1, 3i <j </4i

These triangular array coordinates are flattened into a linear &gy = 0, 1, ... which stores the
data points generated for all 5 regions. We asdigr= p,, , and then the points in Region 1 are
assigned to the next contiguous block of array positions, followed by all the points of Region 2 in
the next block, and so on. An example for a level 2 subdivision is shown in Figure 2, where the tri-
angular array indices are shown in the lighter font, and the corresponding position in the flattened

3

array in bold. In this scheme, the number of data points assigned to Region 1 is thereforg,l for
two for the next rowp,,, p,; , three for the next ropg,, ps;, P, , and overall:

M:1+2+...+m:ﬂn;—+12 (6)
The pointp; in Regions 0 or 1 will have:
1+142+...+(i-1) = 1+ii;1 (7

elements in the rows ‘above’ it, the firstis fpp, ,thenfer, , and so on for each row up to row
(i—1) . Hence for any poinp; in Region 1, we have

D1+Ki;_12+j = B (8)

For examplep,;, = Dg as shown in Figure 2. Given the array posiion of a point in Region 1, the
equivalent points in Regions 2, 3 and 4 would, using (6), be allocated to array postoRSIM

for R = 1, 2, 3. For example, in Figure 2y = 10 , and the equivalent (rotated) pointgte D
areD,, D,o D4y respectively for Regions 2,3 and 4. However, in order to compute the position cor-
responding to points with = j , we must use:

Dl+gi;_1)+M = Pii 9

sincep;; is equivalentte,, in Region 1.

FIGURE 2. Assignment of Triangular Array Elements to a Flattened Array

3

The new version ofriangle will be as follows:

triangle(Point3D p, Address ap, Point3D g,Address aq,
Point3D r, Address ar, int depth)
{

Point3D pq,pr.qr,s.t,u;
Address as,au,at;

if(depth < MaxDepth){
pq = (p+q)/2; as = (ap+taq)/2;
s = normalize(pq);
= (p+n)/2; au = (ap+ar)/2;
= normalize(pr);
r = (g+r)/2; at = (ap+ar)/2;
t = normalize(qr);
triangle(p,ap,s,as,u,au,depth+1);
triangle(s,as,q,aq,t,at,depth+1);
triangle(u,au,t,at,r,ar,depth+1);
triangle(s,as,t,at,u,au,depth+1);

else{
putDirection(p,ap);
putDirection(q,aq);
putDirection(r,ar);
}
void putDirection(Point3D p, Address ap)
int j = getindex(ap);

I*shown only for p in Region 1*

D[] =p

D[j+M] = rotate90(p);
D[j+2*M] = rotate180(p);
D[j+3*M] = rotate270(p);

HereAddress is a tuple consisting of thie,j indices of the conceptual triangular array. The func-
tion getindex takes an address and returns the position in the array using (8) and (9). The func-
tion putDirection is responsible for allocating points to the arayWhat is shown is simplified
since it does not take into account boundary conditions suétj=&s , points with i=j and so on.

The full implementation is shown in the code accompanying the ﬁaper

3. Querying the Points on the Hemisphere

Now given the distribution of points, how would we execute a query? - i.e., given an arbitrary
pointg on the hemisphere, find the array index of the nearest point amongst the distribution of data
points. Restric to be in Region 0 or 1 for the moment. The fundamental idea is to render the
hemisphere ‘quarter’ of Region 1 into the frame buffer, such that each generated data point has an
associated set of polygons representing all the points on the hemisphere closest to that point. Each
such polygon is rendered with a ‘color index’ which corresponds exactly to the array index of the
data point. The frame buffer is read back into a 2-dimensional array. Now given anygoiat
compute the pixel position to which it would be projected. We use that to look up the color index at
that position in the buffer, which gives us the closest corresponding generated point by way of the
array look-up.

Figure 3 shows an example of how a triangle would be rendered. is the mid-point of the trian-
gle, andi, i, i, arethe array indices of the vertipeg andr . Hence associated with each vertex is
a quadrilateral, and this is rendered with color index corresponding to the array index of that vertex.
After rendering, the frame buffer is read back into an array calledPsest, , wherePixel[Win-
dowSize*y+x] is the color index for pixel positiorx(y), and assuming a square window of width

1. http://www.cs.ucl.ac.uk/staff/m.slater/Papers/Sphere

5

windowSize . Now any query point is projected to the display in the sense that,it} pixel posi-
tion is computed (of course using the same viewing parameters as those used to create the frame-
buffer), and then its color index can be looked up infdel array.

If the point is not in Region 0 or 1, then it may be rotated back to Region 1, the color index for
Region 1 found, and then the appropriate multipl®/of6) used to find the array position appropri-
ate to its region.

The quarter hemisphere must, of course, be rendered such that each data point and its associated
quadrilateral is visible. This can be achieved for example, with a view direction through the origin
and the centre of the initial trianglgl/ 3,1/3,1/3) , looking at the inside of the hemisphere quad-
rant. This is shown in Figure 4 for the calse 5

FIGURE 3. A Triangle is Partitioned into Quadrilaterals
p

FIGURE 4.

%
heatid 3

e
:.'f Attal oy

'
Yud™s vy
: s
Y aP Y, Vs Ta e b1y .
3 S ArATRy T

i, I
F T et

L
T

4. Implementation Issues

This algorithm can be implemented in OpenGL, and an illustrative implementation is provided.
When the quadrant of the sphere is first rendered the modelview and projection matrices are imme-
diately recorded and multiplied together and the result stored for later use with query points. Given
a query point, this matrix is used to multiply the point delivering a point in homogeneous coordi-
nates, which is divided by it/ coordinate to perform the projection. The projected point is then
transformed to window coordinates. Color index O should be reserved for black, and all positive

color indices may be used to index points, hence the actual color index should be 1 plus the array
index.

When the quadrant is rendered the framebuffer is immediately read into memory using glRead-
Pixels. This is then the two-dimensional array of color index values. Using the OpenGL color
index, however, may not always be appropriate since the supported number of color index values
may be less than what is required for a given level of recursion. The total number generated data
points is 1+ 2m(m+1) (using (6)). However, the maximum color index required is that corre-
sponding to the poinp,,, whichis+m* . For 6 levels of recursion the number of points generated
on the sphere is 8321. On the SGI O2 on which the algorithm was implemented the maximum color
index was 4096. On other systems it might be considerably less than this. Instead of using the color
index as such, the array indices can be stored in RGB values, packed into the red, green and blue
fields.

The algorithm may not report correct results in two circumstances. First, a point not actually on
the hemisphere may nevertheless return an index value - simply because it is projected into the
framebuffer at a point where there is a non-zero color index. This should not be a problem provided
that the calling program always provides points known to be on the hemisphere, which would nor-
mally be the case. Second, the rendered quadrilaterals are not exactly on the sphere of course.
Hence it might be the case that a point on the hemisphere near the edges of Region 1 might project
to just outside the rendered region and pick up a zero color index. In order to overcome this prob-
lem, if it occurs, the neighboring pixel positions are examined, and the one containing the data
point which has the highest correlation with the query point is returned.

The implementation tested 1,000,000 pseudo-randomly generated query points at various levels
of recursion. The results are shown in Table 1. The ‘non results’ column refers to the number of
times out of 1,000,000 that the query point was projected to a black region of the framebuffer, and
all its surrounding pixels were also black. As can be seen, this event is rare, but it is expected that
this would occur more often for the lowest levels of recursion, since the approximation of the
sphere by the quadrilaterals is at its worst. The correlation is the minimum correlation between
guery point and returned data point amongst all the valid results. Of course the time to execute the
gueries was the same for all levels of recursion.

Table 1: Results for 1,000,000 Randomly Selected Query Points at Various Levels of Recursion

level No. of Data | No. of Non- Minimum

Points Results Correlation
3 145 48 0.9841
4 545 0 0.9958
5 2113 0 0.9988
6 8321 0 0.9996
7 33025 0 0.9999

References

[1] Gatenby, Neil; Hewitt, Terry. Radiosity in Computer Graphics: A Proposed Alternative to
the Hemi-Cube Algorithm. In Second Eurographics Workshop on Rendering, Barcelona,
1991. Also reprinted in "Photorealistic Rendering in Computer Graphics", Springer-Verlag,
ppl04-111.

[2] Camahort, E., Lerios, A., Fussell, D. (1998) Uniformly Sampled Light Fields, Rendering
Techniques'98, 117-130.

[3] Giraldo, F.X. (1997) Lagrange-Galerkin Methods on Spherical Geodesic Grids, Journal of
Computational Physics, 136, 107-213.

Acknowledgements

This research is part of work funded by the UK EPSRC Senior Research Fellowship of the
author. Thanks to Franco Tecchia, Yiorgos Chrysanthou, Jesper Mortensen, Pankaj Khanna, and
Insu Yu for helpful comments and suggestions.

	Constant Time Queries on Uniformly Distributed Points on a Hemisphere
	Keywords
	1. INTRODUCTION
	2. Uniform Points on a Sphere
	3. Querying the Points on the Hemisphere
	4. Implementation Issues

