GI13 - Problem set (Due Thursday 12am, March 24)

Note: Presentation, clarity, and synthesis of exposition will be taken into account in the assessment of these exercises.

1. $[\mathbf{2 0} \mathbf{~ p t s}]$ (representer theorem)

Consider the ridge regression optimisation problem

$$
\begin{equation*}
\min _{w \in \mathbb{R}^{N}}\left\{\sum_{i=1}^{m}\left(w^{\top} \phi\left(x_{i}\right)-y_{i}\right)^{2}+\gamma\|w\|^{2}\right\} \tag{1}
\end{equation*}
$$

where $\|\cdot\|$ denotes the L_{2} norm, $\gamma>0$ is a fixed real number, $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ is a feature map, $x_{1}, \ldots, x_{m} \in \mathbb{R}^{d}$ are given inputs and $y_{1}, \ldots, y_{m} \in \mathbb{R}$ given outputs.
Using the Representer Theorem, derive a problem equivalent (dual) to (1), which involves only the Gram matrix (and does not involve the inputs x_{i}). Assume that the Gram matrix is invertible. Then, derive the optimal solution of the dual problem. Let \hat{w} be the solution of problem (1). Write an expression for the function

$$
x \mapsto \hat{w}^{\top} \phi(x)
$$

in terms of the kernel K defined as $K(x, t)=\phi(x)^{\top} \phi(t)$.
2. [15 pts] (kernels)

Consider the Gaussian kernel $K(x, t)=\exp \left(-\beta(x-t)^{2}\right)$, for $x, t \in \mathbb{R}$. Find a feature map representation for this kernel (hint: use the result for the infinite polynomial kernel).
3. [15 pts] (ℓ_{1}-norm interpolation)

Consider the minimal ℓ_{1}-norm interpolation problem $\min \left\{\|w\|_{1}: w \in \mathbb{R}^{d}, w^{\top} x_{i}=y_{i}, i=1, \ldots, m\right\}$, where $w \in \mathbb{R}^{d}$ is a vector of parameters we minimize over, $\|w\|=\sum_{i=1}^{n}\left|w_{i}\right|$, and $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) \in$ $\mathbb{R}^{d} \times \mathbb{R}$ are given datapoints which can be interpolated.
(a) Show that this problem is linear programming problem.
(b) Consider the case that $d=2$ and $m=1$. Give an instance (that is, provide the value $\left(x_{1}, y_{1}\right)$ of the interpolating datapoint) for which the optimization problem has a unique solution.
4. [8 pts] (trace norm regularization) Let $W \in \mathbb{R}^{d \times n}$ be a $d \times n$ matrix. Write a singular value decomposition of W and then prove that

$$
\sum_{i=1}^{d} \sum_{j=1}^{n} W_{i j}^{2}=\operatorname{tr}\left(W^{\top} W\right)=\operatorname{tr}\left(W W^{\top}\right)=\sum_{i=1}^{r} \sigma_{i}^{2}
$$

where $W_{i j}$ denotes the (i, j) element of $W, \sigma_{1}, \ldots, \sigma_{r}$ are the singular values of W and r is the rank of W.
5. [12 pts] (convex functions)

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function such that

$$
f(w) \geq 0 \quad \text { for every } w \in \mathbb{R}^{d}
$$

Show that the function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined as

$$
g(w)=(f(w))^{2} \quad \text { for every } w \in \mathbb{R}^{d}
$$

is also convex. As a special case deduce that, for every norm $\|\cdot\|$, the function

$$
w \mapsto\|w\|^{2}
$$

is convex.

6. [10 pts] (convexity)

Let S_{++}^{n} be the open cone of positive definite matrices. Prove that the function $f: \mathbb{R}^{d} \times S_{++}^{d}$ defined as $f(z, A) \mapsto z^{\top} A^{-1} z$ is convex.
7. [10 $\mathbf{p t s}$] (linear programming)

Solve the following linear programming problem

$$
\begin{array}{rr}
\min _{x, y \in \mathbb{R}} & 2 y-x \\
\text { subject to } & 2 x-y \leq-1 \\
& -3 x-y \leq 0 .
\end{array}
$$

Hint: Solve the inequalities for y, then replace y in the objective and minimise over x; consider cases if it helps.
8. [10 pts] (convex optimization) Consider the optimisation problem

$$
\min _{w \in \mathbb{R}^{d}} \sum_{i=1}^{m} \max \left\{w_{i}^{2}+2 w_{i}-5,0\right\}+\|w\|^{2}
$$

where w_{i} denotes the i-th component of w. Is this a convex program? Assume that a minimiser exists. Is the minimiser unique or not? Rewrite the problem in the standard form of a well known type (LP, QP, QCQP, SDP).
9. BONUS 1 [$\mathbf{5} \mathbf{~ p t s}$] (kernels)

Let $x, t \in[-1,1]$ and define the kernel

$$
K(x, t)=\frac{1}{1-x t} .
$$

(a) $[\mathbf{3} \mathbf{p t s}]$ Show that K is a valid kernel.
(b) $[\mathbf{2} \mathbf{~ p t s}]$ Given any distinct inputs $x_{1}, \ldots, x_{m} \in[-1,1]$ show that the kernel matrix $\mathbf{K}=\left(K\left(x_{i}, x_{j}\right)\right.$: $i, j=1, \ldots, m)$ is invertible.

