GI13 – Problem set (Due Thursday 12am, March 24)

Note: Presentation, clarity, and synthesis of exposition will be taken into account in the assessment of these exercises.

1. [20 pts] (representer theorem)

Consider the ridge regression optimisation problem

$$\min_{w \in \mathbb{R}^N} \left\{ \sum_{i=1}^m (w^{\mathsf{T}} \phi(x_i) - y_i)^2 + \gamma \, \|w\|^2 \right\} \,, \tag{1}$$

where $\|\cdot\|$ denotes the L_2 norm, $\gamma > 0$ is a fixed real number, $\phi : \mathbb{R}^d \to \mathbb{R}^N$ is a feature map, $x_1, \ldots, x_m \in \mathbb{R}^d$ are given inputs and $y_1, \ldots, y_m \in \mathbb{R}$ given outputs.

Using the Representer Theorem, derive a problem equivalent (dual) to (1), which involves only the Gram matrix (and does not involve the inputs x_i). Assume that the Gram matrix is invertible. Then, derive the optimal solution of the dual problem. Let \hat{w} be the solution of problem (1). Write an expression for the function

 $x \mapsto \hat{w}^{\mathsf{T}} \phi(x)$

in terms of the kernel K defined as $K(x,t) = \phi(x)^{\top} \phi(t)$.

2. **[15 pts]** (kernels)

Consider the Gaussian kernel $K(x,t) = \exp(-\beta(x-t)^2)$, for $x, t \in \mathbb{R}$. Find a feature map representation for this kernel (*hint*: use the result for the infinite polynomial kernel).

3. **[15 pts]** (ℓ_1 -norm interpolation)

Consider the minimal ℓ_1 -norm interpolation problem $\min\{||w||_1 : w \in \mathbb{R}^d, w^{\top}x_i = y_i, i = 1, ..., m\}$, where $w \in \mathbb{R}^d$ is a vector of parameters we minimize over, $||w|| = \sum_{i=1}^n |w_i|$, and $(x_1, y_1), ..., (x_m, y_m) \in \mathbb{R}^d \times \mathbb{R}$ are given datapoints which can be interpolated.

- (a) Show that this problem is linear programming problem.
- (b) Consider the case that d = 2 and m = 1. Give an instance (that is, provide the value (x_1, y_1) of the interpolating datapoint) for which the optimization problem has a unique solution.
- 4. [8 pts] (trace norm regularization) Let $W \in \mathbb{R}^{d \times n}$ be a $d \times n$ matrix. Write a singular value decomposition of W and then prove that

$$\sum_{i=1}^d \sum_{j=1}^n W_{ij}^2 = \operatorname{tr}(W^{\scriptscriptstyle \top} W) = \operatorname{tr}(WW^{\scriptscriptstyle \top}) = \sum_{i=1}^r \sigma_i^2$$

where W_{ij} denotes the (i, j) element of $W, \sigma_1, \ldots, \sigma_r$ are the singular values of W and r is the rank of W.

5. [12 pts] (convex functions)

Let $f : \mathbb{R}^d \to \mathbb{R}$ be a *convex* function such that

$$f(w) \ge 0$$
 for every $w \in \mathbb{R}^d$.

Show that the function $g: {\rm I\!R}^d \to {\rm I\!R}$ defined as

$$g(w) = (f(w))^2$$
 for every $w \in \mathbb{R}^d$

is also convex. As a special case deduce that, for every norm $\|\cdot\|$, the function

 $w\mapsto \|w\|^2$

is convex.

6. **[10 pts]** (*convexity*)

Let S_{++}^n be the open cone of positive definite matrices. Prove that the function $f : \mathbb{R}^d \times S_{++}^d$ defined as $f(z, A) \mapsto z^{\mathsf{T}} A^{-1} z$ is convex.

7. [10 pts] (linear programming)

Solve the following linear programming problem

$$\min_{\substack{x,y \in \mathbb{R} \\ \text{subject to}}} 2y - x$$

$$2x - y \le -1$$

$$-3x - y \le 0.$$

Hint: Solve the inequalities for y, then replace y in the objective and minimise over x; consider cases if it helps.

8. [10 pts] (convex optimization) Consider the optimisation problem

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^m \max\{w_i^2 + 2w_i - 5, 0\} + ||w||^2,$$

where w_i denotes the *i*-th component of w. Is this a convex program? Assume that a minimiser exists. Is the minimiser unique or not? Rewrite the problem in the standard form of a well known type (LP, QP, QCQP, SDP).

9. BONUS 1 [5 pts] (kernels)

Let $x, t \in [-1, 1]$ and define the kernel

$$K(x,t) = \frac{1}{1-xt}.$$

- (a) **[3 pts]** Show that K is a valid kernel.
- (b) [2 pts] Given any distinct inputs $x_1, \ldots, x_m \in [-1, 1]$ show that the kernel matrix $\mathbf{K} = (K(x_i, x_j) : i, j = 1, \ldots, m)$ is invertible.