Math for MScCS, Tuesday, October 4, 2005

PLEASE WRITE YOUR NAME IN CAPITAL LETTERS:

This is a multiple choice test. For each question, 3 candidate answers are provided. Only one answer is correct. Please put a cross (' X ') near the answer which you think to be correct.

1. Consider the function $f(x)=1+x^{2}$. What is the derivative of f at x ?
[]: $2 x$
[]: 2
[]: x
2. Consider the function $f(x)=2^{x}-3+1$. What is the value of f at $x=3$?
[]: 2
[]: 6
[]: 3
3. Consider the function $f(x)=\frac{1}{x}$. What is the limit of $f(x)$ as x goes to ∞ ?
[]: 0
[]: ∞
[]: the limit does not exist
4. Consider the function $f(x)=\log x$. What is the limit of $f(x)$ as x goes to $+\infty$?
[]: 0
[]: $+\infty$
[]: the limit does not exist
5. The function $f(x)=\frac{1}{2^{x}}$ can also be written as
[]: 2^{-x}
[]: $2^{\frac{1}{x}}$
[]: $\frac{x}{2}$
6. Consider the 2 nd order polynomial $p(x)=a x^{2}+b x+c$, where a, b, c are some real numbers. The formula for the roots of p is
[]: $x=\frac{b \pm c}{a}$
[]: $x=\frac{-b \pm\left(b^{2}-4 a c\right)}{2 a}$
[]: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
7. Which of the following polynomials has two real zeros?
[]: $\quad x^{2}+2 x+1$
[]: $\quad x^{2}-3 x+2$
[]: $\quad x^{2}+x+1$
8. Consider the linear system of equations:

$$
\begin{aligned}
& x+y=1 \\
& x-y=0
\end{aligned}
$$

The solution to the above system of equations is
[]: $x=1, y=0$
[]: $\quad x=1, y=1$
[]: $\quad x=0.5, y=0.5$
9. What is the result of the following computation $2^{2}+2^{3}$?
[]: 2^{5}
[]: $3 \cdot 2^{2}$
[]: $\quad 2^{6}$
10. Consider the matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right]
$$

This matrix is
[]: symmetric
[]: invertible
[]: singular
11. The determinant of matrix A defined in the previous question is:
[]: -3
[]: 0
[]: -1
12. The matrix product between an $n \times k$ matrix and a $k \times \ell$ matrix is a
[]: $n \times \ell$ matrix
[]: $\quad k \times k$ matrix
[]: $\quad k \times \ell$ matrix
13. The identity matrix
[]: has all its elements equal to 1
[]: has determinant equal to -1
[]: is the diagonal matrix with all diagonal elements equal to 1
14. The scalar product between the vectors $(0,1)$ and $(-2,0)$ is
[]: 0
[]: 1
[]: -1
15. (NOTE: In this and the next two questions A, B and C are Boolean variables taking values 0 or 1 (where ' 0 ' means 'FALSE' and ' 1 ' means 'TRUE'). Let " - ", "." and "+" be the standards operators denoting negation, intersection and union respectively.)

What is the result of the Boolean formula $(A+\bar{B}) \cdot C$ when $A=1, B=0$ and $C=1$?
[]: 1
[]: 0
[]: 2
16. The result of the Boolean formula $A+\bar{A}$
[]: is always equal to 1
[]: always equal to 0
[]: depends on the value of A
17. What is the result of the Boolean formula $\overline{A \cdot B}$ when $A=B=0$
[]: 0
[]: 1
[]: The above formula is not well defined
18. What is the binary representation of the decimal number 7 ?
[]: 100
[]: 101
[]: 111
19. Consider the sets of integer numbers $\{-3,-2,-1,0\}$ and $\{0,1,2,3\}$. The union of these two sets is:
[]: the set $\{0\}$
[]: the set $\{-3,-2,-1,0,1,2,3\}$
[]: equal to 0
20. Consider again the two previous sets. Their intersection is
[]: the set $\{0\}$
[]: the set $\{-3,-2,-1,0,1,2,3\}$
[]: equal to 0

