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Today’s Plan

• Sparsity in linear regression

• Formulation as a convex program – Lasso

• Group Lasso

• Matrix estimation problems (Collaborative Filtering, Multi-task
Learning, Inverse Covariance, Sparse Coding, etc.)

• Structure Sparsity

• Dictionary Learning / Sparse Coding

• Nonlinear extension
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L1-regularization

Least absolute shrinkage and selection operator (LASSO):

min
‖w‖1≤α

1

2
‖y − Xw‖2

2

where ‖w‖1 =
∑d

j=1 |wj|

• equivalent problem: min
w∈IRd

1
2‖y − Xw‖2

2 + λ‖w‖1

• can be rewritten as a QP:

min
w+,w−≥0

1

2
‖y − X(w+ − w−)‖2

2 + λe⊤(w+ + w−)
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L1-norm regularization encourages sparsity

Consider the case X = I:

min
w∈IRd

1

2
‖w − y‖2

2 + λ‖w‖1

Lemma: Let Hλ(t) = (|t| − λ)+sgn(t), t ∈ IR. The solution ŵ is given by

ŵi = Hλ(yi), i = 1, . . . , d

Proof: First note that the problem decouples: ŵi = argmin
˘

1
2(wi − yi)

2 + λ|wi|
¯

.

By symmetry ŵiyi ≥ 0, thus w.l.o.g. we can assume yi ≥ 0. Now, if ŵi > 0 the

objective function is differentiable and setting the derivative to zero gives ŵi = yi − λ.

Since the minimum is unique we conclude that ŵi = (yi − λ)+.
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Minimal norm interpolation

If the linear system Xw = y of equations admits a solution, when λ → 0
the L1-regularization problem reduces to:

min {‖w‖1 : Xw = y} (MNI)

which is a linear program (exercise)

• the solution is in general not unique

• suppose that the y = Xw∗; under which condition w∗ is also the unique
solution to (MNI)?
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Restricted isometry property

Without further assumptions there is no hope that ŵ = w∗

The following condition are sufficient:

• Sparsity: card{j : |w∗
j | 6= 0} ≤ s, with s ≪ d

• X satisfies the restricted isometry property (RIP): there is a δs ∈ (0, 1)
such that, for every w ∈ IRd with card{j : wj 6= 0} ≤ s, it holds that

(1 − δs)‖w‖2
2 ≤ ‖Xw‖2

2 ≤ (1 + δs)‖w‖2
2
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Optimality conditions

Directional derivative of a function f : IRd → IR at w in the direction d:

D+f(w; d) := lim
ǫ→0+

f(w + ǫd) − f(w)

ǫ

• when f is convex, the limit is always well defined and finite

Theorem 1: ŵ ∈ arg min
w∈IRd

f(w) iff D+f(ŵ; d) ≥ 0 ∀d ∈ IRd

• if f is differentiable at w then D+f(w; d) = d⊤∇f(w) and Theorem 1
says that ŵ is a solution iff ∇f(ŵ) = 0
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Optimality conditions (cont.)

If f is convex its subdifferential at w is defined as

∂f(w) = {u : f(v) ≥ f(w) + u⊤(v − w), ∀v ∈ IRd}

• a set-valued function!

• always a closed convex set

• the elements of ∂f(w) are called the subgradients of f at w

• intuition: u ∈ ∂f(w) if the affine function f(w) + u⊤(v − w) is a global
underestimator of f

Theorem 2: ŵ ∈ arg min
w∈IRd

f(w), iff 0 ∈ ∂f(ŵ) (easy to proof)
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Optimality conditions (cont.)

Theorem 2: ŵ ∈ arg min
w∈IRd

f(w), iff 0 ∈ ∂f(ŵ)

• if f is differentiable then ∂f(w) = {∇f(w)} and Theorem 2 says that
ŵ is a solution iff ∇f(ŵ) = 0

Some properties of gradients are still true for subgradients, e.g:

• ∂(af)(w) = af(w), for all a ≥ 0

• If f and g are convex then ∂(f + g)(w) = ∂f(w) + ∂g(w)
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Optimality conditions for Lasso

min ‖y − Xw‖2
2 + λ‖w‖1

• by Theorem 2 and the properties of subgradients, w is a optimal
solution iff

X⊤(y − Xw) ∈ λ∂‖w‖1

• to compute ∂‖w‖1 use the sum rule and the subgradient of the absolute
value: ∂|t| = {sgn(t)} if t 6= 0 and ∂|t| = {u : |u| ≤ 1} if t = 0

Case X = I: ŵ is a solution iff, for every i = 1, . . . , d, yi − ŵi = λsgn(ŵi)
if ŵi 6= 0 and |yi − ŵi| ≤ λ otherwise (verify that these formulae yield the
soft thresolding solution on page 4)
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General learning method

In generally we will consider optimization problems of the form

min
w∈IRd

F (w), where F (w) = f(w) + g(w)

Often f will be a data term: f(w) =
∑m

i=1 E(w⊤xi, yi), and g a convex
penalty function (non necessarily smooth, e.g. the L1-norm)

Next week we will discuss a general and efficient method to solve the above problem

under the assumptions that f has some smoothness property and g is “simple”, in the

sense that the following problem is easy to solve

min
w

1

2
‖w − y‖

2
+ g(w)
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Group Lasso

Enforce sparsity across a-priori known groups of variables:

min
W∈IRd

f(w) + λ

N
∑

ℓ=1

‖w|Jℓ
‖2

where J1, . . . , JN are prescribed subsets of {1, . . . , d}

• In the original formulation (Yuan and Lin, 2006) the groups form a
partition of the index set {1, . . . , n}

• Overlapping groups (Zhao et al. 2009; Jennaton et al. 2010):
hierarchical structures such as DAGS

Example: J1 = {1, 2, . . . , d}, J2 = {2, 3, . . . , n}, . . . , Jn = {n}
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Multi-task learning

• Learning multiple linear regression or binary classification tasks
simultaneously

• Formulate as a matrix estimation problem (W = [w1, . . . , wT ])

min
W∈IRd×T

T
∑

t=1

m
∑

i=1

E(w⊤xti, yti) + λg(W )

• Relationships between tasks modeled via sparsity constraints on W

• Few common important variables (special case of Group Lasso):

g(W ) =

d
∑

j=1

‖wj‖2
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Structured Sparsity

• The above regularizer favors matrices with many zero rows (few
features shared by the tasks)

g(W ) =

d
∑

j=1

√

√

√

√

T
∑

t=1

w2
tj
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2. Structured Sparsity (cont.)

Compare matrices W favored by different norms (green = 0, blue = 1):

#rows = 13 5 3

g(W ) = 19 12 8
∑

tj

|wtj| = 29 29 29
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Estimation of a low rank matrix

min
W∈IRd×T

{

m
∑

i=1

(yi − 〈W, Xi〉)
2 : rank(W ) ≤ k

}

• Multi-task learning: choose Xi = xie
⊤
ci
, hence 〈W, Xi〉 = w⊤

ci
xi

• Collaborative filtering: choose Xi = eri
e⊤

ci
, hence 〈W,Xi〉 = Wrici

,
where ri ∈ {1, . . . , d} and ci ∈ {1, . . . , T} (rows / columns indices)

Relax the rank with the trace (or nuclear) norm: ‖W‖∗ =
min(d,T )
∑

i=1

σi(W )
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Trace norm regularization

min
W∈IRd×T

m
∑

i=1

(yi − 〈W, Xi〉)
2 + λ‖W‖∗

• complete data case: min
W∈IRd×T

‖Y − W‖2
Fr + λ‖W‖∗

• if Y = Udiag(σ)V ⊤ then the solution is (recall Hλ from page 4):

Ŵ = Udiag(Hλ(σ))V ⊤

Proof uses von Neumann’s Theorem: tr(Y ⊤W ) ≤ σ(Y )⊤σ(W ) and equality holds iff

Y and W have the same ordered system of singular vectors
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Sparse Inverse Covariance Selection

Let x1, . . . , xm ∼ p, where p(x) = 1
(2π)d det(Σ)

e−(x−µ)⊤Σ−1(x−µ)

Maximum likelihood estimate for the covariance

Σ̂ = arg max
Σ≻0

d
∏

i=1

p(xi) = arg max
Σ≻0

d
∏

i=1

log p(xi)

= arg max
Σ≻0

{

− log det(Σ) − 〈S,Σ−1〉
}

where S = 1
m

m
∑

i=1

(xi − µ)(xi − µ)⊤

• The solution is Σ̂ = S (show it as an exercise)
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Sparse Inverse Covariance Selection (cont.)

Inverse covariance provides information about the relationship between
variables: Σ−1

ij = 0 iff xi and xj are conditionally independent

Ŵ = arg max
W≻0

{log det(W ) − 〈S,W 〉} = arg min
W≻0

{〈S,W 〉 − log det(W )}

If we expect many pairs of variables to be conditionally independent we
could solve the problem

min {〈S,W 〉 − log det(W ) : W ≻ 0, card{(i, j) : |Wij| > 0} ≤ k}

which can be relaxed to the convex program

min {〈S,W 〉 − log det(W ) : W ≻ 0, ‖W‖1 ≤ k}
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Dictionary Learning / Sparse Coding

Given x1, . . . , xm ∼ p find d × k matrix W which minimize the average
reconstruction error:

m
∑

i=1

min
z∈Z

‖xi − Wz‖2
2

Can be seen as a constrained matrix factorization problem

min
{

‖X − WZ‖2
F : W ∈ W, Z ∈ Z

}

where X = [x1, . . . , xm] and W ⊆ IRd×k, Z ⊆ IRk×m

Interpretation: the columns of W are some basis vectors (could be
linearly dependent) and the columns of Z are the codes / coefficients used
to reconstruct the inputs as a linear combination of the basis vectors
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Examples

• PCA: W = IRd×k, Z = IRk×m

• k-means clustering: W = IRd×k, Z = {Z : zi ∈ {e1, . . . , ek}}

• Nonnegative matrix factorization

min
W,Z≥0

‖X − WZ‖2
F

• Sparse coding: W = IRd×k, Z = {Z : ‖zi‖0 ≤ s}

Can be relaxed to the problem: min ‖X − WZ‖2
Fr + λ‖Z‖1
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Nonlinear extension

The methods we have seen so far can be extended to a RKHS setting; for
example the Lasso extends to the problem

min

m
∑

i=1

E

(

N
∑

ℓ=1

fℓ(xi), yi

)

+ λ

N
∑

ℓ=1

‖fℓ‖Kℓ
(∗)

• minimum is over functions f1, . . . , fN , with fℓ ∈ HKℓ
, with K1, . . . ,KN

some prescribed kernels

• feature space formulation (recall Kℓ(x, t) = 〈φℓ(x), φℓ(t)〉)

min

m
∑

i=1

E

(

N
∑

ℓ=1

w⊤
ℓ φℓ(xi), yi

)

+ λ

N
∑

ℓ=1

‖wℓ‖2
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Connection to Group Lasso

Two important “parametric” versions of the above formulation:

• Lasso: choose fj(x) = wjxj, Kj(x, t) = xjtj

m
∑

i=1

E(w⊤xi, yi) + γ

d
∑

j=1

|wj|

• Group Lasso: choose fj(x) =
∑

j∈Jℓ
wjxj, Kj(x, t) = 〈x|Jℓ

, t|Jℓ
〉,

where {Jℓ}
n
ℓ=1 is a partition of index set {1, . . . , d}

m
∑

i=1

E(w⊤xi, yi) + γ

N
∑

ℓ=1

‖w|Jℓ
‖2
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Representer theorem

Two reformulations of (*) as a finite dimension optimization problem

• Using the representer theorem:

min

m
∑

i=1

E





N
∑

ℓ=1

m
∑

j=1

Kℓ(xi, xj)αℓ,j, yi



+ λ

N
∑

ℓ=1

√

α⊤
ℓ Kℓαℓ

• Using the formula
∑

ℓ |tℓ| = inf
z>0

1
2

∑

ℓ

t2ℓ
zℓ

+ zℓ, rewrite the problem as

inf
z>0

min

m
∑

i=1

E(f(xi), yi) +
λ

2
‖f‖2

P

ℓ

zℓKℓ
+
∑

ℓ

zℓ
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