# Advanced Topics in Machine Learning (Part II) 

4. Sparsity Methods

Massimiliano Pontil

## Today's Plan

- Sparsity in linear regression
- Formulation as a convex program - Lasso
- Group Lasso
- Matrix estimation problems (Collaborative Filtering, Multi-task Learning, Inverse Covariance, Sparse Coding, etc.)
- Structure Sparsity
- Dictionary Learning / Sparse Coding
- Nonlinear extension


## L1-regularization

Least absolute shrinkage and selection operator (LASSO):

$$
\min _{\|w\|_{1} \leq \alpha} \frac{1}{2}\|y-X w\|_{2}^{2}
$$

where $\|w\|_{1}=\sum_{j=1}^{d}\left|w_{j}\right|$

- equivalent problem: $\min _{w \in \mathbb{R}^{d}} \frac{1}{2}\|y-X w\|_{2}^{2}+\lambda\|w\|_{1}$
- can be rewritten as a QP:

$$
\min _{w^{+}, w^{-} \geq 0} \frac{1}{2}\left\|y-X\left(w^{+}-w^{-}\right)\right\|_{2}^{2}+\lambda e^{\top}\left(w^{+}+w^{-}\right)
$$

## L1-norm regularization encourages sparsity

Consider the case $X=I$ :

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{2}\|w-y\|_{2}^{2}+\lambda\|w\|_{1}
$$

Lemma: Let $H_{\lambda}(t)=(|t|-\lambda)_{+} \operatorname{sgn}(t), t \in \mathbb{R}$. The solution $\hat{w}$ is given by

$$
\hat{w}_{i}=H_{\lambda}\left(y_{i}\right), \quad i=1, \ldots, d
$$

Proof: First note that the problem decouples: $\hat{w}_{i}=\operatorname{argmin}\left\{\frac{1}{2}\left(w_{i}-y_{i}\right)^{2}+\lambda\left|w_{i}\right|\right\}$. By symmetry $\hat{w}_{i} y_{i} \geq 0$, thus w.l.o.g. we can assume $y_{i} \geq 0$. Now, if $\hat{w}_{i}>0$ the objective function is differentiable and setting the derivative to zero gives $\hat{w}_{i}=y_{i}-\lambda$. Since the minimum is unique we conclude that $\hat{w}_{i}=\left(y_{i}-\lambda\right)_{+}$.

## Minimal norm interpolation

If the linear system $X w=y$ of equations admits a solution, when $\lambda \rightarrow 0$ the L1-regularization problem reduces to:

$$
\min \left\{\|w\|_{1}: X w=y\right\} \quad(\mathrm{MNI})
$$

which is a linear program (exercise)

- the solution is in general not unique
- suppose that the $y=X w^{*}$; under which condition $w^{*}$ is also the unique solution to (MNI)?


## Restricted isometry property

Without further assumptions there is no hope that $\hat{w}=w^{*}$
The following condition are sufficient:

- Sparsity: $\operatorname{card}\left\{j:\left|w_{j}^{*}\right| \neq 0\right\} \leq s$, with $s \ll d$
- $X$ satisfies the restricted isometry property (RIP): there is a $\delta_{s} \in(0,1)$ such that, for every $w \in \mathbb{R}^{d}$ with $\operatorname{card}\left\{j: w_{j} \neq 0\right\} \leq s$, it holds that

$$
\left(1-\delta_{s}\right)\|w\|_{2}^{2} \leq\|X w\|_{2}^{2} \leq\left(1+\delta_{s}\right)\|w\|_{2}^{2}
$$

## Optimality conditions

Directional derivative of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at $w$ in the direction $d$ :

$$
D^{+} f(w ; d):=\lim _{\epsilon \rightarrow 0^{+}} \frac{f(w+\epsilon d)-f(w)}{\epsilon}
$$

- when $f$ is convex, the limit is always well defined and finite

Theorem 1: $\hat{w} \in \arg \min _{w \in \mathbb{R}^{d}} f(w)$ iff $D^{+} f(\hat{w} ; d) \geq 0 \forall d \in \mathbb{R}^{d}$

- if $f$ is differentiable at $w$ then $D^{+} f(w ; d)=d^{\top} \nabla f(w)$ and Theorem 1 says that $\hat{w}$ is a solution iff $\nabla f(\hat{w})=0$


## Optimality conditions (cont.)

If $f$ is convex its subdifferential at $w$ is defined as

$$
\partial f(w)=\left\{u: f(v) \geq f(w)+u^{\top}(v-w), \forall v \in \mathbb{R}^{d}\right\}
$$

- a set-valued function!
- always a closed convex set
- the elements of $\partial f(w)$ are called the subgradients of $f$ at $w$
- intuition: $u \in \partial f(w)$ if the affine function $f(w)+u^{\top}(v-w)$ is a global underestimator of $f$

Theorem 2: $\hat{w} \in \arg \min _{w \in \mathbb{R}^{d}} f(w)$, iff $0 \in \partial f(\hat{w}) \quad$ (easy to proof)

## Optimality conditions (cont.)

Theorem 2: $\hat{w} \in \arg \min _{w \in \mathbb{R}^{d}} f(w)$, iff $0 \in \partial f(\hat{w})$

- if $f$ is differentiable then $\partial f(w)=\{\nabla f(w)\}$ and Theorem 2 says that $\hat{w}$ is a solution iff $\nabla f(\hat{w})=0$

Some properties of gradients are still true for subgradients, e.g:

- $\partial(a f)(w)=a f(w)$, for all $a \geq 0$
- If $f$ and $g$ are convex then $\partial(f+g)(w)=\partial f(w)+\partial g(w)$


## Optimality conditions for Lasso

$$
\min \|y-X w\|_{2}^{2}+\lambda\|w\|_{1}
$$

- by Theorem 2 and the properties of subgradients, $w$ is a optimal solution iff

$$
X^{\top}(y-X w) \in \lambda \partial\|w\|_{1}
$$

- to compute $\partial\|w\|_{1}$ use the sum rule and the subgradient of the absolute value: $\partial|t|=\{\operatorname{sgn}(t)\}$ if $t \neq 0$ and $\partial|t|=\{u:|u| \leq 1\}$ if $t=0$

Case $X=I: \hat{w}$ is a solution iff, for every $i=1, \ldots, d, y_{i}-\hat{w}_{i}=\lambda \operatorname{sgn}\left(\hat{w}_{i}\right)$ if $\hat{w}_{i} \neq 0$ and $\left|y_{i}-\hat{w}_{i}\right| \leq \lambda$ otherwise (verify that these formulae yield the soft thresolding solution on page 4)

## General learning method

In generally we will consider optimization problems of the form

$$
\min _{w \in \mathbb{R}^{d}} F(w), \quad \text { where } F(w)=f(w)+g(w)
$$

Often $f$ will be a data term: $f(w)=\sum_{i=1}^{m} E\left(w^{\top} x_{i}, y_{i}\right)$, and $g$ a convex penalty function (non necessarily smooth, e.g. the L1-norm)

Next week we will discuss a general and efficient method to solve the above problem under the assumptions that $f$ has some smoothness property and $g$ is "simple", in the sense that the following problem is easy to solve

$$
\min _{w} \frac{1}{2}\|w-y\|^{2}+g(w)
$$

## Group Lasso

Enforce sparsity across a-priori known groups of variables:

$$
\min _{W \in \mathbb{R}^{d}} f(w)+\lambda \sum_{\ell=1}^{N}\left\|w_{\mid J_{\ell}}\right\|_{2}
$$

where $J_{1}, \ldots, J_{N}$ are prescribed subsets of $\{1, \ldots, d\}$

- In the original formulation (Yuan and Lin, 2006) the groups form a partition of the index set $\{1, \ldots, n\}$
- Overlapping groups (Zhao et al. 2009; Jennaton et al. 2010): hierarchical structures such as DAGS

Example: $J_{1}=\{1,2, \ldots, d\}, J_{2}=\{2,3, \ldots, n\}, \ldots, J_{n}=\{n\}$

## Multi-task learning

- Learning multiple linear regression or binary classification tasks simultaneously
- Formulate as a matrix estimation problem ( $W=\left[w_{1}, \ldots, w_{T}\right]$ )

$$
\min _{W \in \mathbb{R}^{d \times T}} \sum_{t=1}^{T} \sum_{i=1}^{m} E\left(w^{\top} x_{t i}, y_{t i}\right)+\lambda g(W)
$$

- Relationships between tasks modeled via sparsity constraints on $W$
- Few common important variables (special case of Group Lasso):

$$
g(W)=\sum_{j=1}^{d}\left\|w^{j}\right\|_{2}
$$

## Structured Sparsity

- The above regularizer favors matrices with many zero rows (few features shared by the tasks)



## 2. Structured Sparsity (cont.)

Compare matrices $W$ favored by different norms (green $=0$, blue $=1$ ):


$$
\begin{array}{rlrl}
\# \text { rows } & =13 & 5 \\
g(W) & =19 & 12 \\
\sum_{t j}\left|w_{t j}\right| & =29 & & 29
\end{array}
$$

$$
3
$$

$$
8
$$29

## Estimation of a low rank matrix

$$
\min _{W \in \mathbb{R}^{d \times T}}\left\{\sum_{i=1}^{m}\left(y_{i}-\left\langle W, X_{i}\right\rangle\right)^{2}: \operatorname{rank}(W) \leq k\right\}
$$

- Multi-task learning: choose $X_{i}=x_{i} e_{c_{i}}^{\top}$, hence $\left\langle W, X_{i}\right\rangle=w_{c_{i}}^{\top} x_{i}$
- Collaborative filtering: choose $X_{i}=e_{r_{i}} e_{c_{i}}^{\top}$, hence $\left\langle W, X_{i}\right\rangle=W_{r_{i} c_{i}}$, where $r_{i} \in\{1, \ldots, d\}$ and $c_{i} \in\{1, \ldots, T\}$ (rows / columns indices)

Relax the rank with the trace (or nuclear) norm: $\|W\|_{*}=\sum_{i=1}^{\min (d, T)} \sigma_{i}(W)$

## Trace norm regularization

$$
\min _{W \in \mathbb{R}^{d \times T}} \sum_{i=1}^{m}\left(y_{i}-\left\langle W, X_{i}\right\rangle\right)^{2}+\lambda\|W\|_{*}
$$

- complete data case: $\min _{W \in \mathbb{R}^{d \times T}}\|Y-W\|_{\mathrm{Fr}}^{2}+\lambda\|W\|_{*}$
- if $Y=U \operatorname{diag}(\sigma) V^{\top}$ then the solution is (recall $H_{\lambda}$ from page 4):

$$
\hat{W}=U \operatorname{diag}\left(H_{\lambda}(\sigma)\right) V^{\top}
$$

Proof uses von Neumann's Theorem: $\operatorname{tr}\left(Y^{\top} W\right) \leq \sigma(Y)^{\top} \sigma(W)$ and equality holds iff $Y$ and $W$ have the same ordered system of singular vectors

## Sparse Inverse Covariance Selection

Let $x_{1}, \ldots, x_{m} \sim p$, where $p(x)=\frac{1}{(2 \pi)^{d} \operatorname{det}(\Sigma)} e^{-(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}$
Maximum likelihood estimate for the covariance

$$
\begin{aligned}
\hat{\Sigma} & =\arg \max _{\Sigma \succ 0} \prod_{i=1}^{d} p\left(x_{i}\right)=\arg \max _{\Sigma \succ 0} \prod_{i=1}^{d} \log p\left(x_{i}\right) \\
& =\arg \max _{\Sigma \succ 0}\left\{-\log \operatorname{det}(\Sigma)-\left\langle S, \Sigma^{-1}\right\rangle\right\}
\end{aligned}
$$

where $S=\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)^{\top}$

- The solution is $\hat{\Sigma}=S$ (show it as an exercise)


## Sparse Inverse Covariance Selection (cont.)

Inverse covariance provides information about the relationship between variables: $\Sigma_{i j}^{-1}=0$ iff $x^{i}$ and $x^{j}$ are conditionally independent

$$
\hat{W}=\arg \max _{W \succ 0}\{\log \operatorname{det}(W)-\langle S, W\rangle\}=\arg \min _{W \succ 0}\{\langle S, W\rangle-\log \operatorname{det}(W)\}
$$

If we expect many pairs of variables to be conditionally independent we could solve the problem

$$
\min \left\{\langle S, W\rangle-\log \operatorname{det}(W): W \succ 0, \operatorname{card}\left\{(i, j):\left|W_{i j}\right|>0\right\} \leq k\right\}
$$

which can be relaxed to the convex program

$$
\min \left\{\langle S, W\rangle-\log \operatorname{det}(W): W \succ 0,\|W\|_{1} \leq k\right\}
$$

## Dictionary Learning / Sparse Coding

Given $x_{1}, \ldots, x_{m} \sim p$ find $d \times k$ matrix $W$ which minimize the average reconstruction error:

$$
\sum_{i=1}^{m} \min _{z \in Z}\left\|x_{i}-W z\right\|_{2}^{2}
$$

Can be seen as a constrained matrix factorization problem

$$
\min \left\{\|X-W Z\|_{\mathrm{F}}^{2}: W \in \mathcal{W}, Z \in \mathcal{Z}\right\}
$$

where $X=\left[x_{1}, \ldots, x_{m}\right]$ and $\mathcal{W} \subseteq \mathbb{R}^{d \times k}, \mathcal{Z} \subseteq \mathbb{R}^{k \times m}$
Interpretation: the columns of $W$ are some basis vectors (could be linearly dependent) and the columns of $Z$ are the codes / coefficients used to reconstruct the inputs as a linear combination of the basis vectors

## Examples

- PCA: $\mathcal{W}=\mathbb{R}^{d \times k}, \mathcal{Z}=\mathbb{R}^{k \times m}$
- $k$-means clustering: $\mathcal{W}=\mathbb{R}^{d \times k}, \mathcal{Z}=\left\{Z: z_{i} \in\left\{e_{1}, \ldots, e_{k}\right\}\right\}$
- Nonnegative matrix factorization

$$
\min _{W, Z \geq 0}\|X-W Z\|_{\mathrm{F}}^{2}
$$

- Sparse coding: $\mathcal{W}=\mathbb{R}^{d \times k}, \mathcal{Z}=\left\{Z:\left\|z_{i}\right\|_{0} \leq s\right\}$

Can be relaxed to the problem: $\min \|X-W Z\|_{\mathrm{Fr}}^{2}+\lambda\|Z\|_{1}$

## Nonlinear extension

The methods we have seen so far can be extended to a RKHS setting; for example the Lasso extends to the problem

$$
\begin{equation*}
\min \sum_{i=1}^{m} E\left(\sum_{\ell=1}^{N} f_{\ell}\left(x_{i}\right), y_{i}\right)+\lambda \sum_{\ell=1}^{N}\left\|f_{\ell}\right\|_{K_{\ell}} \tag{*}
\end{equation*}
$$

- minimum is over functions $f_{1}, \ldots, f_{N}$, with $f_{\ell} \in H_{K_{\ell}}$, with $K_{1}, \ldots, K_{N}$ some prescribed kernels
- feature space formulation (recall $\left.K_{\ell}(x, t)=\left\langle\phi_{\ell}(x), \phi_{\ell}(t)\right\rangle\right)$

$$
\min \sum_{i=1}^{m} E\left(\sum_{\ell=1}^{N} w_{\ell}^{\top} \phi_{\ell}\left(x_{i}\right), y_{i}\right)+\lambda \sum_{\ell=1}^{N}\left\|w_{\ell}\right\|_{2}
$$

## Connection to Group Lasso

Two important "parametric" versions of the above formulation:

- Lasso: choose $f_{j}(x)=w_{j} x_{j}, K_{j}(x, t)=x_{j} t_{j}$

$$
\sum_{i=1}^{m} E\left(w^{\top} x_{i}, y_{i}\right)+\gamma \sum_{j=1}^{d}\left|w_{j}\right|
$$

- Group Lasso: choose $f_{j}(x)=\sum_{j \in J_{\ell}} w_{j} x_{j}, K_{j}(x, t)=\left\langle x_{\mid J_{\ell}}, t_{\mid J_{\ell}}\right\rangle$, where $\left\{J_{\ell}\right\}_{\ell=1}^{n}$ is a partition of index set $\{1, \ldots, d\}$

$$
\sum_{i=1}^{m} E\left(w^{\top} x_{i}, y_{i}\right)+\gamma \sum_{\ell=1}^{N}\left\|w_{\mid J_{\ell}}\right\|_{2}
$$

## Representer theorem

Two reformulations of $\left({ }^{*}\right)$ as a finite dimension optimization problem

- Using the representer theorem:

$$
\min \sum_{i=1}^{m} E\left(\sum_{\ell=1}^{N} \sum_{j=1}^{m} K_{\ell}\left(x_{i}, x_{j}\right) \alpha_{\ell, j}, y_{i}\right)+\lambda \sum_{\ell=1}^{N} \sqrt{\alpha_{\ell}^{\top} K_{\ell} \alpha_{\ell}}
$$

- Using the formula $\sum_{\ell}\left|t_{\ell}\right|=\inf _{z>0} \frac{1}{2} \sum_{\ell} \frac{t_{\ell}^{2}}{z_{\ell}}+z_{\ell}$, rewrite the problem as

$$
\inf _{z>0} \min \sum_{i=1}^{m} E\left(f\left(x_{i}\right), y_{i}\right)+\frac{\lambda}{2}\|f\|_{\ell}^{2} z_{\ell} K_{\ell}+\sum_{\ell} z_{\ell}
$$

## Some references

- L1-regularization / L1-MNI:
- P.J. Bickel, Y. Ritov, and A.B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 37:1705-1732, 2009.
- E. J. Candès. The restricted isometry property and its implications for compressed sensing. Compte Rendus de l'Academie des Sciences, Paris, Serie I, 346 589-592.
- E. J. Candès, J. Romberg and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math., 59 1207-1223.
- R. Tibshirani. Regression Shrinkage and Selection via the Lasso, J. Royal Statistical Society B, 58(1):267-288, 1996.
- Group Lasso:
- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables Journal of the Royal Statistical Society, Series B, 68(1):49-67, 2006.
- P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics, 37(6A):3468-3497, 2009.
- R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. arXiv:0904.3523v2, 2009.
- Multi-task learning:
- A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
- G. Obozinski, B. Taskar, and M.I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 20(2):1-22, 2010.
- Low rank matrix estimation:
- V. Koltchinskii, A.B. Tsybakov, K. Lounici. Nuclear norm penalization and optimal rates for noisy low rank matrix completion. arXiv:1011.6256, 2011.
- N. Srebro, J.D.M. Rennie, T.S. Jaakkola. Maximum-Margin Matrix Factorization. Advances in Neural Information Processing Systems 17, pages 1329-1336, 2005.
- E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Found. of Comput. Math., 9 717-772.
- Nonlinear Group Lasso / Multiple kernel learning:
- A. Argyriou, C. A. Micchelli and M. Pontil. Learning convex combinations of continuously parameterized basic kernels. COLT 2005
- F. R. Bach, G. R. G. Lanckriet and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. ICML 2004
- G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui and M. I. Jordan. Learning the kernel matrix with semidefinite programming. JMLR 2004
- C.A. Micchelli and M. Pontil. Learning the kernel function via regularization. JMLR 2005
- A. Rakotomamonjy, F. R. Bach, S. Canu, Y. Grandvalet, SimpleMKL, JMLR, 2008.
- Sparse Coding:
- B.A. Olshausen and D.J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607-609, 1996.
- D. Lee and H. Seung, Algorithms for non-negative matrix factorization. Advances in Neural Information Processing Systems, 13, pages 556-562, 2001.

