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Today’s Plan

Sparsity in linear regression
Formulation as a convex program — Lasso
Group Lasso

Matrix estimation problems (Collaborative Filtering, Multi-task
Learning, Inverse Covariance, Sparse Coding, etc.)

Structure Sparsity
Dictionary Learning / Sparse Coding

Nonlinear extension



L1-regularization

Least absolute shrinkage and selection operator (LASSO):

1
min -y — Xwl|?
i ol I

d
where [lwl[y = >_;_; |wj]

e equivalent problem: min 1|y — Xwl3 + A||w||;
welR?

e can be rewritten as a QP:

1
min_ Sy — X (w’ — w7 )3+ e (wh +w7)

wt,w=>0



L1-norm regularization encourages sparsity

Consider the case X = I:

|
min =|lw — y||3 + Aw|
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Lemma: Let H)(t) = (|t| — A\)1sgn(t), t € IR. The solution w is given by
UAJi :H)\(yq;), 1= 1,...,d

Proof: First note that the problem decouples: w; = argmin {2(w; — v;)” + Aw;| }.
By symmetry w;y; > 0, thus w.l.o.g. we can assume y; > 0. Now, if w; > 0 the
objective function is differentiable and setting the derivative to zero gives W, = y; — .

Since the minimum is unique we conclude that w; = (y; — \) 4.



Minimal norm interpolation

If the linear system Xw = y of equations admits a solution, when A\ — 0
the L1-regularization problem reduces to:

min {||w|; : Xw =y} (MNI)
which is a linear program (exercise)

e the solution is in general not unique

e suppose that the y = Xw™; under which condition w* is also the unique
solution to (MNI)?



Restricted isometry property

Without further assumptions there is no hope that w = w*

The following condition are sufficient:
e Sparsity: card{j : |w}| # 0} < s, with s < d

e X satisfies the restricted isometry property (RIP): there is a d5 € (0,1)
such that, for every w € IR® with card{; : w; # 0} < s, it holds that

(1= 09)llwllz < IXwllz < (1 + d5)[|wl]3



Optimality conditions
Directional derivative of a function f: RY — IR at w in the direction d:

Dt f(w;d) = lim L0 = f(w)

e—0t €

e when f is convex, the limit is always well defined and finite

Theorem 1: & € arg min f(w) iff D¥ f(d;d) > 0Vd € R
welR

e if f is differentiable at w then D7 f(w;d) = d"V f(w) and Theorem 1
says that w is a solution iff V f(w) =0



Optimality conditions (cont.)

If f is convex its subdifferential at w is defined as
Of (w) ={u: f(v) > f(w) +u"(v—w), Vv e R}

e a set-valued function!
e always a closed convex set
e the elements of 0f(w) are called the subgradients of f at w

e intuition: u € 0f(w) if the affine function f(w) 4+ u'(v —w) is a global
underestimator of f

Theorem 2: w € arg mindf(w), iff 0 € 0f(w) (easy to proof)
welR



Optimality conditions (cont.)

Theorem 2: w € arg mindf(w), iff 0 € Of(w)
welR

e if f is differentiable then Of(w) = {V f(w)} and Theorem 2 says that
w is a solution iff V f(w) =0

Some properties of gradients are still true for subgradients, e.g:
e Jaf)(w) =af(w), foralla >0

e If f and g are convex then O(f + g)(w) = df(w) 4+ dg(w)



Optimality conditions for Lasso

min ||y — Xwl|3 + Afwl);

e by Theorem 2 and the properties of subgradients, w is a optimal

solution iff
X'y — Xw) € N||wl

e to compute O||w||; use the sum rule and the subgradient of the absolute
value: Olt| = {sgn(t)} ift 0 and J|t| ={u: |u| <1} ift=0

Case X = I: w is a solution iff, for every i = 1,...,d, y; — w; = Asgn(w;)
if w; # 0 and |y; — w;| < A otherwise (verify that these formulae yield the
soft thresolding solution on page 4)
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General learning method

In generally we will consider optimization problems of the form

mindF(w), where F(w) = f(w) + g(w)
welR

Often f will be a data term: f(w) =>_", E(w'x;,y;), and g a convex
penalty function (non necessarily smooth, e.g. the L1-norm)

Next week we will discuss a general and efficient method to solve the above problem
under the assumptions that f has some smoothness property and g is “simple”, in the
sense that the following problem is easy to solve

.1 2
min _[jw — gl + g(w)
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Group Lasso

Enforce sparsity across a-priori known groups of variables:

N
min f(w) + A s
WeER —

where Jp, ..., Jn are prescribed subsets of {1,...,d}

e In the original formulation (Yuan and Lin, 2006) the groups form a
partition of the index set {1,...,n}

e Overlapping groups (Zhao et al. 2009; Jennaton et al. 2010):
hierarchical structures such as DAGS

Example: J;1 ={1,2,...,d},Jo =42,3,...,n},...,J, = {n}
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Multi-task learning

Learning multiple linear regression or binary classification tasks
simultaneously

Formulate as a matrix estimation problem (W = [wy, ..., wr])
T m
min E(w' x4, yi) + Ag(W)
Relationships between tasks modeled via sparsity constraints on W

Few common important variables (special case of Group Lasso):

9(W) = ]
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Structured Sparsity

e The above regularizer favors matrices with many zero rows (few
features shared by the tasks)

g(W) = S:\ S_:w?g
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2. Structured Sparsity (cont.)

Compare matrices W favored by different norms (green = 0, blue = 1):

#rows = 13 5 3
g(W) =19 12 8
> lwe| = 29 29 29

tj
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Estimation of a low rank matrix

min {z:(yZ — (W, X;))? : rank(W) < k}

dxT
e Multi-task learning: choose X; = xie;, hence (W, X;) = w;xz

e Collaborative filtering: choose X; = e.e.., hence (W, X;) = W,
where r; € {1,...,d} and ¢; € {1,...,T} (rows / columns indices)

min(d,T)
Relax the rank with the trace (or nuclear) norm: [|[W]l. = > o;(W)
i=1
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Trace norm regularization

m

min (yi — (W, X)) + AW,

dxT
WeR& T “—

e complete data case: min [|[Y — W3, + A[|W]|.
WEIRdXT

e if Y = Udiag(o)V' ' then the solution is (recall H) from page 4):

W = Udiag(Hx(c))V T

Proof uses von Neumann's Theorem: tr(Y ' W) < o(Y) "o (W) and equality holds iff
Y and W have the same ordered system of singular vectors
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Sparse Inverse Covariance Selection

Let x1,...,2y ~ p, where p(x) = (%)d3et(2)6_($_“)T2_1<“_“)

Maximum likelihood estimate for the covariance

1

d d
> = i) = I ¢
arg rggg}:[lp(w) arg glggl:[l og p(:)
— —1 E - E_l
arg max { —log det(X) — (S,377)}
where S = % 4 (s — p) (g — )"

1

e The solution is ¥ = S (show it as an exercise)
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Sparse Inverse Covariance Selection (cont.)

Inverse covariance provides information about the relationship between
variables: Ei_jl = 0 iff 2* and 27 are conditionally independent

A

W = arg Imax {logdet(W) — (S, W)} = arg Inin {(S, W) —logdet(W)}

If we expect many pairs of variables to be conditionally independent we
could solve the problem

min {(S, W) —logdet(W) : W > 0, card{(z,7) : |W,;| > 0} < k}
which can be relaxed to the convex program

min {(S, W) —logdet(W) : W = 0, [|[W]1 < k}
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Dictionary Learning / Sparse Coding

Given x1,...,Z. ~ p find d X k matrix W which minimize the average
reconstruction error: .
: 2
g min ||z; — Wz||5
1 zEL
1=

Can be seen as a constrained matrix factorization problem
min {||X —WZ|z : W eW,Z € Z}

where X = [z1,..., 2] and W C RYF, 2 C RF*™

Interpretation: the columns of W are some basis vectors (could be
linearly dependent) and the columns of Z are the codes / coefficients used
to reconstruct the inputs as a linear combination of the basis vectors
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Examples

PCA: W = R™F, 2z = RF*™
k-means clustering: W = R**, Z ={Z:z € {e1,...,ep}}
Nonnegative matrix factorization

min || X - WZ|3
W,Z>0

Sparse coding: W = R¥* Z = {Z : ||zlo < s}
Can be relaxed to the problem: min [| X — W Z||Z + \||Z||1
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Nonlinear extension

The methods we have seen so far can be extended to a RKHS setting; for
example the Lasso extends to the problem

mmZE (Z fe(xs), > +)\Z [fellre, (%)
1=1 (=1

e minimum is over functions fi,..., fn, with f, € Hg,, with Ky,..., Ky
some prescribed kernels

e feature space formulation (recall Ky(x,t) = (po(x), Pu(t)))

N
manE (Z wy dp(;), > ‘|‘)\Z [well2
=1 (=1
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Connection to Group Lasso

Two important “parametric” versions of the above formulation:

e Lasso: choose f;(z) = w;z;, K;(z,t) = x,t;

m d

> Ewmny) vy |wl

i=1 j=1

e Group Lasso: choose fj(z) =) ;. ; wiz;, Kj(z,t) = (z,,t),),
where {Jy}}_, is a partition of index set {1,...,d}

m N

Y E(w'ziy) +v ) llwg,ll

1=1 /=1
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Representer theorem

Two reformulations of (*) as a finite dimension optimization problem

e Using the representer theorem:

minf}E ZZKe Ty L) 5, Y +)\Z\/angozg

/=1 5=1

e Using the formula ), |t/ = in 0 5 Ze —|— 2z, rewrite the problem as
2>

m

: . A
inf min » E(f(x),y:) + §HfH2Z:z£K£ + Zzﬁ
¢ ¢

z>0 :
1 =1
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