GI07/COMP012 - Assignment (due: Noon, November 21, 2014)

Please handle your assignment to CS Reception, Room 5.25, Malet Place Engineering Building.
Note: Presentation, clarity, and synthesis of exposition will be taken into account in the assessment of the following exercises.

This document is available at: http://www.cs.ucl.ac.uk/staff/M.Pontil/courses/homeworkgi07.pdf

1. [30 pts] (Vector and matrix operations). Please provide a short, yet justified, answer to the following questions.
(a) Let a be a real parameter and consider the linear system of equations:

$$
\begin{array}{r}
x+y=1 \\
a x+y=0
\end{array}
$$

For which value(s) of a is there a solution to the above equations?
For which value(s) of a is the solution unique?
(b) Consider the matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right]
$$

This matrix is
[]: symmetric
[]: invertible
[]: singular
(c) The product between an $n \times k$ matrix and a $k \times \ell$ matrix is a
[]: $n \times \ell$ matrix
[]: $\quad k \times k$ matrix
[]: this matrix product is not well defined because in general $n \neq \ell$.
(d) The identity matrix
[]: has all of its elements equal to 1
[]: has determinant equal to -1
[]: is a diagonal matrix, whose diagonal elements are all equal to 1
(e) Consider the vector $x=(-3,0,5)$. Compute the p-norm of x for $p=1,2, \infty$. Observe that

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1}
$$

Argue that these inequalities are true for every vector x. Give an example of a vector where these inequalities are all tight.
2. [20 pts] (Projections).
(a) Argue that if P is an orthogonal projection, all of its singular values are either 1 or 0 .
(b) Let I be the identity matrix. Show that if P is an orthogonal projection, then $I-2 P$ is an orthogonal matrix.
(c) Compute the projection P which maps the point $(1,1)$ to $(0,0)$ and the point $(0,1)$ to $(0,1)$. Is P an orthogonal projection?
3. [10 pts] (Graph Laplacian).

Consider a graph with six vertices, consisting of two cliques, $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{v_{4}, v_{5}, v_{6}\right\}$, which are connected by a single edge, joining v_{3} to v_{4}. Compute the corresponding graph Laplacian.

4. $[\mathbf{2 0} \mathbf{~ p t s}]$ (Ridge regression)

Consider the ridge regression problem: $\left(w_{\lambda}, b_{\lambda}\right)=\operatorname{argmin}_{w, b}\left\{\sum_{i=1}^{m}\left(y_{i}-b-w^{\top} x_{i}\right)^{2}+\lambda w^{\top} w\right\}$. Show that this problem is equivalent to the problem

$$
\left(\hat{w}_{\lambda}, \hat{b}_{\lambda}\right)=\operatorname{argmin}_{w, b}\left\{\sum_{i=1}^{m}\left(y_{i}-b-w^{\top}\left(x_{i}-\bar{x}\right)\right)^{2}+\lambda w^{\top} w\right\}
$$

where \bar{x} is the average of the input data. Give the correspondence between $\left(\hat{w}_{\lambda}, \hat{b}_{\lambda}\right)$ and $\left(w_{\lambda}, b_{\lambda}\right)$.
5. [20 pts] (convex functions)

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function such that

$$
f(w) \geq 0 \quad \text { for every } w \in \mathbb{R}^{d}
$$

Show that the function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined as

$$
g(w)=(f(w))^{2} \quad \text { for every } w \in \mathbb{R}^{d}
$$

is also convex. As a special case deduce that, for every norm $\|\cdot\|$, the function

$$
w \mapsto\|w\|^{2}
$$

is convex.

