GI07/COMP012 – Assignment (due: Noon, November 21, 2014)

Please handle your assignment to CS Reception, Room 5.25, Malet Place Engineering Building.

Note: Presentation, clarity, and synthesis of exposition will be taken into account in the assessment of the following exercises.

This document is available at: http://www.cs.ucl.ac.uk/staff/M.Pontil/courses/homeworkgi07.pdf

- 1. [30 pts] (Vector and matrix operations). Please provide a short, yet justified, answer to the following questions.
 - (a) Let a be a real parameter and consider the linear system of equations:

$$\begin{array}{rcl} x+y &=& 1\\ ax+y &=& 0 \end{array}$$

For which value(s) of a is there a solution to the above equations? For which value(s) of a is the solution unique?

(b) Consider the matrix

$$A = \begin{bmatrix} 1 & 2\\ 1 & -1 \end{bmatrix}$$

This matrix is

- []: symmetric
- []: invertible
- []: singular
- (c) The product between an $n\times k$ matrix and a $k\times \ell$ matrix is a
 - []: $n \times \ell$ matrix
 - []: $k \times k$ matrix
 - []: this matrix product is not well defined because in general $n \neq \ell$.
- (d) The identity matrix
 - []: has all of its elements equal to 1
 - []: has determinant equal to -1
 - []: is a diagonal matrix, whose diagonal elements are all equal to 1
- (e) Consider the vector x = (-3, 0, 5). Compute the *p*-norm of x for $p = 1, 2, \infty$. Observe that

 $||x||_{\infty} \le ||x||_2 \le ||x||_1.$

Argue that these inequalities are true for every vector x. Give an example of a vector where these inequalities are all tight.

- 2. **[20 pts]** (*Projections*).
 - (a) Argue that if P is an orthogonal projection, all of its singular values are either 1 or 0.
 - (b) Let I be the identity matrix. Show that if P is an orthogonal projection, then I 2P is an orthogonal matrix.
 - (c) Compute the projection P which maps the point (1,1) to (0,0) and the point (0,1) to (0,1). Is P an orthogonal projection?
- 3. [10 pts] (Graph Laplacian).

Consider a graph with six vertices, consisting of two cliques, $\{v_1, v_2, v_3\}$ and $\{v_4, v_5, v_6\}$, which are connected by a single edge, joining v_3 to v_4 . Compute the corresponding graph Laplacian.

4. [20 pts] (Ridge regression)

Consider the ridge regression problem: $(w_{\lambda}, b_{\lambda}) = \operatorname{argmin}_{w,b} \left\{ \sum_{i=1}^{m} (y_i - b - w^{\top} x_i)^2 + \lambda w^{\top} w \right\}$. Show that this problem is equivalent to the problem

$$(\hat{w}_{\lambda}, \hat{b}_{\lambda}) = \operatorname{argmin}_{w, b} \left\{ \sum_{i=1}^{m} \left(y_i - b - w^{\mathsf{T}} (x_i - \bar{x}) \right)^2 + \lambda w^{\mathsf{T}} w \right\}$$

where \bar{x} is the average of the input data. Give the correspondence between $(\hat{w}_{\lambda}, \hat{b}_{\lambda})$ and $(w_{\lambda}, b_{\lambda})$.

5. [20 pts] (convex functions)

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a *convex* function such that

$$f(w) \ge 0$$
 for every $w \in \mathbb{R}^d$.

Show that the function $g: {\rm I\!R}^d \to {\rm I\!R}$ defined as

$$g(w) = (f(w))^2$$
 for every $w \in \mathbb{R}^d$

is also convex. As a special case deduce that, for every norm $\|\cdot\|$, the function

$$w \mapsto \|w\|^2$$

is convex.