GIO1/4Cb55: Supervised Learning

9. Projection Pursuit and Neural Networks

December 5, 2005

Massimiliano Pontil

Today’s plan

Projection pursuit regression (PPR)

Neural networks

Relation to PPR

e Back-propagation algorithm

e Example: optical character recognition

Bibliography: These lecture notes are available at:
http://www.cs.ucl.ac.uk/staff/M.Pontil/courses/index-SL05.htm
Lecture notes are based on Hastie, Tibshirani & Friedman, Chapter 11.
See also Bishop, Chapter 4

PPR (I)

Projection pursuit regression (PPR) learns functions of the form

N
f(x) = > gn(Wn-x) (1)
n=1
e W iS a unit vector

e the function gn(Wn-x) from R? to R is called ridge function
(it varies only along the direction wy,)

e the scalar variable v, := wn, - x is the linear projection of x
onto the unit vector wy,

PPR builds a function as in (1) by iteratively learning the uni-
variate functions g, and the projection vectors wy,

PPR (II)

e Can approximate continuous functions arbitrarily well (uni-
versal approximator) in a parsimonious way e.g.

T1T = %{(f’;l +22)? — (v1 — 22)?}

Higher order products can be represented similarly

e Interpretation of the fitted model is difficult (unlike CART
which produces an easy to understand model of the data)

We will first discuss the PPR algorithm with N = 1 and then
extend it to the general case

PPR (III)

If N = 1, we wish to minimize > ; (y; — g(W - xi))2 over g and w.
To this end, we choose an initial unit vector for w and alternately

compute w and g until the error does not decrease more than a
threshold

e Given the vector w compute g by e.g. kernel ridge regression
(say use a Gaussian kernel or polynomial kernel)

e Given g approximate g(w -x) by g(W,q-x) + ¢’ (W iq - x)(W —
W,iq) -X; and compute w by weighted least squares regression:

m

m R A - X 2
Z (i — 9(% - x:))* Z (' (Wold - Xi))2 [(Wold x; + 2 9(Waid Z)> - W Xi:|
i=1

P 9 (Woid - X;)

5

PPR (IV)

m N 2
> (yi_ > gn(VAVn-Xz'))

=1 n=1

With more that one term in PPR model, the model is built by
iteratively adding a pair (gn,wn) €ach time:

m n—1 2
min ¢ > (yz — 2. 9e(Wg-x;) — gn(Wn 'Xi))

wmgn |i=1 (=1

The algorithm stops when the next term does not appreciably
improve the fit of the model. However, this may lead to overfit-
ting and cross validation can be used to effectively choose N

6

Neural networks

Neural networks (NNets) (aka multi-layer perceptrons) imple-
ment a form of nonlinear function approximation schemes

A perceptron is a NNet with no hidden layers: f(x) = h(w - x)

A 1-hidden layer NNet is a linear combination of perceptrons:

N
Z unph(wo, + Wn - X) + ug

n=1
This function depends nonlinearly on the parameters ug, un, woy, Wn.-
We now describe a general one-hidden layer NNet with vectorial
output (y € RX)

One-hidden layer NNet

NNets are typically represented by a network diagram

e Input features:
z;, t=1,...,d

e Inner layer features:
zn = h(wg,, + Wn - X)
n=1,...,N

e Outputs layer:
fr(x) = gr(t)
tr =u0k—i—uk-z,
k=1,...,K

Parameters wy,, woy,, Uy, ugr (Often called weights) are learned
Functions h and g;, are prescribed (on page above K =1 and gx(t) = t)

8

Sigmoid function

The function h is called activation function and could be for ex-
ample h(v) = (1 +e7¥)~1, used in logistic regression

Each perceptron (or unit) &~ 2
represents a neuron and o
the links (connections) the ;
synapses in the brain. This =
iS @ mere speculation, how-
ever it has motivated early
work on NNets -10 -5 0 5 10

0.5

0.0

Note: Below we forget about the thresholds won,, uor (We can use the standard
trick of adding one dimension to x and z, e.g. x — (1,x), and w,, — (won, Wn))

9

Regression vs. classification

The output is computed as fi(x) := gr(t(x))

e Classification: we choose g; to be the softmax function

and use Hamming coding

So if e.g. K = 3 we code the output as (1,0,0), (0,1,0), and (0,0,1)
For binary classification, K = 2, we can use one binary output only rather
than (0,1) and (1,0)

e Regression: we choose the identity function g, (t) = ¢, (when
K > 1 this is called multiple output regression)

10

Relation to PPR

A 1-hidden layer NNet with g; being the identity function is the
same as PPR if we choose
gn(Wn - x) = uph(wgy, + || W || W - X)

The ridge function g, depends on three parameters uy, wq, and
||lwn||, so often 20/100 hidden units are used (as opposed to just
5 or so in PPR)

If the activation function h is replaced by a linear function the
entire model collapses into a linear function of the input

11

Relation to kernel methods

e \We can think of the hidden features z, as a basis expansion
of the inputs. Hence the NNets is essentially a linear function
of these hidden features

e However, unline in kernel methods here the basis functions
are learned from data (they are not prescribed in advance!)

We could also be tempted to think of 277:1 uph(wn - X) as a
kernel expansion with N = m and wy, = x;, however the function
h(x;-x) is not a valid kernel (it is not positive definite)!

Another popular choice for the activation function is a Gaussian,
exp(B||lw — x||2), leading to radial basis function networks

12

Fitting NNets

The weight vectors w, € Rl n =1,... N and u, ¢ RV+1,
k=1,...,K can be learned by minimizing the empirical error

E(f) =) V(yi, f(x;))
=1

where y: = (yi17 s 7yiK)r f(X) — (fl(x)7 SR fK(X))
and fi(x) = g (S3_1 unh(wy - x))

We also use the notation E; = V(y;, f(x;))

13

Loss functions

E(f) = Z E; = Z V(yi, £(x;))

=1 1=1
e Classification:

K
V(yi, f(x)) = — > yir 109 fr(x;)
k=1

With the softmax activation function this is similar to a lo-
gistic regression model

e Regression:

K
V(yo, fx)) = Y (i — fr(x:))?
k=1
14

Learning algorithm

The parameters wj,, and u;, are computed with a gradient method

OE

W7(1t+1) — Wr(Lt)_n(t)aT (%)
OE

T = w5

or the online version in which E is replaced by E;y where i(t) is
the example selected at time t (typically i(t) =t mod m). See
also the discussion in Lecture Notes 3

Typically we do not want a global minimizer of E as it may
overfit the data. We'll see later how to control overfitting

15

Computing the gradient

We analyze the updating rule for the square loss and K = 1

Recall that
f() g(u-z(-))
z(x) = (h(wy-x),...,h(Wy X))

Using the chain rule for differentiation, we have that

OF;
5 L= =2(y; — F(x))d' (- 7))z = 6z
u
8Eli — . . / . I . . — . .
5 = _2(% - f(xz))g (u : Zz)unh (Wn : Xz)xz = SniX;
Wi,

where we used the notation z; = z(x;). Note that
$ni = B (Wn - X;)und; (back — propagation equation)

16

Back-propagation algorithm

The update rules (*) and (**) can be implemented with a two-
pass algorithm

e forward pass: compute the predicted values f(x;) using the
current value of the weights:

O = (hol? x)) L) =g (o)

e backward pass: the error §; is computed and then back-
propagated to give the errors s,;

Note the simplicity of the algorithm: each hidden unit passes
and receives information only to and from units that share a
connection with it (amenable to a parallel implementation)

17

Practical issues: initialization and preprocessing

e T he error function E is not convex, hence the final solution

depends on the starting value of the weights, w<®’ and u(®

— A starting weight near zero implies that initially the net-
work behaves linearly (all sigmoid functions collapse into
linear ones). The model then becomes nonlinear as weights
increase (individual units introduce non-linearity when needed)

— Starting with large weights leads to poor solutions

e It is good procedure to normalize (scale) the inputs to have
zero mean and standard deviation one and choose the start-
ing weights near zero (say in the range [-0.5,0.5])

18

Practical issues: overfitting

To avoid overfitting there are two standard procedures

e Early stopping: train the model for a while and stop before
you reach a minimum (use a validation set to determine when
to stop, e.g. compute validation error after each epoch of
the network)

e Weight decay: add a penalty term to the error function
which penalizes large values of the weights (similar to regu-
larized least squares):

N K
E(w,u) 4+ A (Z Iwall® + > ||U—k||2) , A>0
=1

n=1 k=

19

More complex networks

More layers can be added recursively, e.g. we can go from a
1-hidden layer to a 2-hidden layer network by replacing each
perceptron wy, -x by a 1-hidden layer network

N
Z u'n,h(Wn * X)
n=1

to

N Q
> unh (Z vngh(Wnq - x))

n=1 qg=1

20

Practical issues: number of hidden unit/layers

e Better to have too many hidden units N than too few (ap-
propriate regularization takes care of overfitting anyway)

e Typically N increases with the number of examples m and
their dimension d

e Use of multiple hidden layers allows construction of hierarchi-
cal features at ‘“different levels of resolution” (we illustrate

this in the next example)

e for complex networks it may be advantageous to run the
network multiple times and average the prediction over the

multiple obtained networks (not average the weights!)

21

Example: handwritten digit classification

O

3

7

8

=

>

0

b,

o

>

o

| (A [F] [NV [

=

() (A s

7
7
-
7

&
§
8
8

Examples of digits from U.S. Postal Service dataset (16 x 16

grayscale images)

22

Different NNets

e Net-1: No hidden layer 10
(equivalent to multino- F7— \

mial logistic regression) E

e Net-2: 1 hidden layer, [
N = 12, fully connected uy f:

e Net-3: 2 hidden layers
locally connected

) Net-2 Net-3

Local Connectivity
Local connectivity: each hidden unit is connected to only a sub-

set of the units below it (specifically, in Net-3 in the 1st hidden
layer, each unit connects to a 3x3 patch of the input layer; in
the second layer inputs are 5x5 patches

23

Different NNets (cont.)

T 10 /:Ii\l
e Net-4: 2 hidden layers

[o] [o]] 1xdxd
locally connected with //ﬁ”\\ \/?J
weight sharing

e Net-5: 2 hidden layers m\\1?ﬂ m\\//

locally connected, two W W
levels of weight sharing o

Net-4 Shared Weights Net.5
Net-5 is motivated by the fact that features of handwriting style
should appear in more than one part of a digit. The weight
sharing implement a form hard constraint on the weights

24

Number of parameters

\ Network architecture

| Links | Weights | Performance |

Net-1: Single layer

Net-2: 2-Layers

Net-3: Locally connected
Net-4: Constrained NNet 1
Net-5: Constrained NNet 2

2570
3214
1226
2266
5194

2570 80.0%
3214 87.0%
1226 88.5%
1132 94.0%
1060 98.4%

Note that Net-4 and Net-5 have more links but fewer weights

than Net-3 but better test performance

25

