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Graph

An undirected graph is an ordered pair G := (V,E), where V =

{1, . . . , n} is a set of vertices (nodes) and E ⊆ V × V is a set of

edges

Adjacency matrix A ∈ IRn×n: Aij = 1 if vertices i and j are

connected and Aij = 0 otherwise

Degree of vertex i: di =
∑n
j=1Aij

Degree matrix: D = diag(d1, . . . , dn)
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Graph Laplacian

The matrix A induces a natural quadratic form on G:

1

2

n∑
i,j=1

Aij(xi − xj)2

We have the important identity:

1

2

n∑
i,j=1

Aij(xi − xj)2 =
1

2

n∑
i,j=1

Aij(x
2
i + x2

j − 2xixj)

=
n∑
i=1

x2
i di −

n∑
ij=1

Aijxixj

=
n∑

i,j=1

xi(Dij −Aij)xj = x>Lx

The matrix L = D −A is called the graph Laplacian
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Graph Laplacian (cont.)

L is positive semidefinite because x>Lx =
n∑

i,j=1
Aij(xi − xj)2 ≥ 0

Let λi be the eigenvalues of L and let ui be the corresponding
eigenvectors:

Lui = λiui

Here we use the convention that 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn

Note that if x is a constant vector (ie. all components are equal)
then Lx = 0

Thus λ1 = 0 and u1 = 1√
n
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Interpretation of eigenvectors

Lx = λx ⇐⇒ xi =
1

di − λ

n∑
j=1

Aijxj

If λ is small then each component of the corresponding eigen-

vector is close to the average of the “neighbor components”

The smaller λ the smoother the corresponding eigenvector (ie.

higher eigenvectors tend to be more irregular)

Do eigenvalues and eigenvectors of L help us understanding the

structure of the graph?
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Connected graphs

A graph G is called connected if there is a path between any two

vertices

The number of connected components of G is the smallest par-

tition of G in connected subgraphs

Theorem: G in connected if and only if λ2 > 0. Moreover,

the number of non-zero eigenvalues of G equal the number of

connected components of G
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Building the graph from data

Given data points t1, . . . , tn ∈ IRd we may build a graph as follows:

Let Nk(ti) be the set of k nearest neighbors of point ti

Then set Aij = 1 if either j ∈ Nk(ti) or i ∈ Nk(tj) (that is, at

least one the two points is one of the k nearest neighbors of the

other)

Graph construction may be extended to give weighted graphs:

Aij is a non-negative number (weight) indicating the similarity

between “objects” i and j
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Graph embedding

Linear embedding: map V into the line:

Consider the problem

min


n∑

i,j=1

Aij(xi − xj)2 : x ∈ IRn,
n∑
i=1

xi = 0.
n∑
i=1

x2
i = 1


The constraints say that the embedded points have zero mean
and unit variance

The solution is x = u2

The line embedding maps vertex the i-th vertex to the point u2i
on the line
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Planar embedding

Map V into the plane:

min


n∑

i,j=1

Aij‖xi − xj‖2 : x1, . . . , xn ∈ IR2


We require that x1 = (x11, . . . , xn1) and x2 = (x12, . . . , xn2) ⊥ 1

(i.e. sum to zero) and that (x1)>x2 = 0. We also require that

‖x1‖ = ‖x2‖ = 1

We get the solution x1 = u2, x2 = u3

The planar embedding maps the i-th vertex to the point (u2i, u3i)

in the plane
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Data

The above embeddings give a representation of the data which

reflects the similarity between the underlying datapoint/vertices

The embedding is non-linear

Very different from PCA!
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Spectral clustering

Goal: to find a partition of the vertices of a graph into different

groups, such that there are as few edges as possible between

nodes in different groups and as many nodes as possible within

each group

We discuss the case of two groups, but these ideas can be ex-

tended to more groups with no much further difficulty
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Ratio Cut

cut(J) =
∑
i∈J

∑
j∈Jc

Aij

An optimal partition of the graph into two groups should mini-
mize the quantity

ρ(J) = cut(J)

(
1

|J |
+

1

|Jc|

)
over all subsets J ⊆ {1, . . . , n}

The term 1/|J |+ 1/|Jc| encourages balanced cuts (eg. it avoids
that we simply disconnect only one vertex of small degree)

The above problem is known to be NP-hard
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Optimization formulation

Let γ =
√
|Jc|
|J | and define the vector f(J) as f(J)i =

{
γ if i ∈ J
−1/γ if i ∈ Jc

We see that
∑n
i=1 fi = 0 and ‖f‖2 =

∑n
i=1 f

2
i = n. Moreover:

f>Lf =
1

2

n∑
i,j=1

Aij(fi − fj)2

=
1

2

∑
i∈J

∑
j∈Jc

Aij(γ + 1/γ)2 +
1

2

∑
j∈J

∑
i∈Jc

Aij(−1/γ − γ)2

= cut(J)
(
γ2 + 1/γ2 + 2

)
= cut(J)

(
|Jc|
|J |

+
|J |
|Jc|

+ 2

)
= nρ(J)
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Optimization formulation

The above observations imply that our problem can be formu-

lated as the problem of minimizing the function

f>Lf, f ∈ IRn

subject to the constraints

1>f = 0

‖f‖2 = n

f = f(J), J ⊆ {1, . . . , n}

The problem is difficult due to the last (combinatorial) constraint
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Convex relaxation

A simple relaxation to the above problem is obtained by dropping

the combinatorial constraint:

min{f>Lf : f ∈ IRn,1>f = 0, ‖f‖2 = n}

The solution is second eigenvector of the Laplacian

There is no guarantee on the quality of the solution relative to

the optimal (combinatorial) solution
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