GI07/COMPM012:
 Mathematical Programming and Research Methods (Part 2)

2. Least Squares and Principal Components Analysis

Massimiliano Pontil

Today's plan

- SVD and principal component analysis (PCA)
- Connection between PCA and linear regression
- Low rank matrix approximation
- Application of SVD to least squares and ridge regression
- Generalized solution and pseudoinverse
- Role of the regularization parameter

Principal component analysis (PCA)

We are given data points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ (training data)

Dimension reduction: we wish to find a lower dimensional representation of the data, ie. for visualization purposes, for cluster analysis, or as a preprocessing step in supervised learning

PCA is an instance of dimension reduction, which finds a k dimensional subspace S of the "ambient" space \mathbb{R}^{d}, such that the projection on S retains most of the variance in the data

In PCA, the lower dimensional representation is a linear function of the input data

PCA optimization problem

For simplicity, we assume that the data points have zero mean: $\sum_{i=1}^{n} x_{i}=0$ (otherwise subtract the mean)

Our goal is to maximize the variance of the projected data,

$$
\operatorname{var}(P)=\frac{1}{n} \sum_{i=1}^{n}\left\|P x_{i}\right\|^{2}
$$

over the set of k-dimensional orthogonal projections P :

$$
\max \left\{\operatorname{var}(P): P \in \mathbb{R}^{d \times d}, P^{2}=P, P^{\top}=P, \operatorname{rank}(P)=k\right\}
$$

PCA optimization problem (cont.)

We write $P=Q Q^{\top}$ where $Q=\left[q_{1}, \ldots, q_{k}\right]$ and the vectors q_{1}, \ldots, q_{k} are o.n. (they form a basis for the subspace S we wish to project to)

We reformulate the above problem as an optimization problem in Q :

$$
\begin{equation*}
\max \left\{\frac{1}{n} \sum_{i=1}^{n}\left\|Q Q^{\top} x_{i}\right\|^{2}: Q \in \mathbb{R}^{d \times k}, Q^{\top} Q=I_{k \times k}\right\} \tag{1}
\end{equation*}
$$

1-dimensional projection

When $k=1, Q=q$ (a d-dimensional column vector). We have

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|q q^{\top} x_{i}\right\|^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(q^{\top} x_{i}\right)^{2}=q^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}\right) q=q^{\top} C q
$$

where C is the data covariance: $C=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}$
We see that problem (1) is the same as maximizing the Rayleigh quotient

$$
\frac{q^{\top} C q}{q^{\top} q}
$$

whose solution is the leading eigenvector of the data covariance

Case $k>1$

In the general case, similarly to the case $k=1$, we derive that

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|Q^{\top} x_{i}\right\|^{2}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k}\left(q_{j}^{\top} x_{i}\right)\left(x_{i}^{\top} q_{j}\right)=\sum_{j=1}^{k} q_{j}^{\top} C q_{j}
$$

The optimization problem (1) is now more difficult to analyze

We show that q_{1}, \ldots, q_{k} are the k leading eigenvectors of C. They are also called the principal components of the data

Diagonal covariance

Suppose $C=\wedge=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{d} \geq 0$

$$
\sum_{j=1}^{k} q_{j}^{\top} C q_{j}=\sum_{j=1}^{k} \sum_{\ell=1}^{d} q_{j \ell}^{2} \lambda_{\ell}=\sum_{\ell=1}^{d} \lambda_{\ell} \sum_{j=1}^{k} q_{j \ell}^{2}
$$

We will show that the maximum is attained at $q_{1}=e_{1}, \ldots, q_{k}=e_{k}$ Proof: We use the fact that $\sum_{j=1}^{k} q_{j \ell}^{2} \leq 1$ and $\sum_{\ell=1}^{d} \sum_{j=1}^{k} q_{j \ell}^{2} \leq k$ (can you argue these inequalities are true?). These and $k \leq d$ give the upper bound

$$
\sum_{\ell=1}^{d} \lambda_{\ell} \sum_{j=1}^{k} q_{j \ell}^{2} \leq \sum_{\ell=1}^{k} \lambda_{\ell}
$$

which is attained for $q_{1}=e_{1}, \ldots, q_{k}=e_{k}$

General case

Let $C=V \wedge V^{\top}$ and note that

$$
\sum_{j=1}^{k} q_{j}^{\top} C q_{j}=\sum_{j=1}^{k} q_{j}^{\top} V \wedge V^{\top} q_{j}
$$

We can reduce this to the diagonal case by letting $\tilde{q}_{j}=V^{\top} q_{j}$
This transformation does not change the problem because V is orthogonal

We know that the solution is: $\tilde{q}_{1}=e_{1}, \ldots, \tilde{q}_{k}=e_{k}$

We conclude that $q_{j}=V e_{j}=v_{j}, j=1, \ldots, k$

Connection to linear regression

We proceed to show that the principal components provide a sequence of best linear approximations to the data

Since

$$
\|x\|^{2}=\left\|\left(I-Q Q^{\top}\right) x\right\|^{2}+\left\|Q Q^{\top} x\right\|^{2}
$$

we see that maximizing the variance of the projected data is equivalent to minimizing

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|\left(I-Q Q^{\top}\right) x_{i}\right\|^{2} \tag{2}
\end{equation*}
$$

ie. the variance associated with the complementary projection

Connection to linear regression (cont.)

The term under the summation in (2) can be interpreted as a linear regression:

$$
\left\|\left(I-Q Q^{\top}\right) x_{i}\right\|^{2}=\min _{w_{i}}\left\|x_{i}-Q w_{i}\right\|^{2}
$$

where the minimizing $w_{i}=Q^{\top} x_{i}$

Thus minimizing (2) is the same as minimizing

$$
\begin{equation*}
\sum_{i=1}^{n} \min _{w_{i}}\left\|x_{i}-Q w_{i}\right\|^{2} \tag{3}
\end{equation*}
$$

We conclude that PCA provides a sequence of best (over Q) linear approximations to the data

Summary

The k principal components represent a generic data point $x \in \mathbb{R}^{d}$ by the lower dimensional feature vector

$$
w=V_{k}^{\top} x
$$

where $V_{k}=\left[v_{1}, \ldots, v_{k}\right]$ is the matrix formed by the k leading eigenvectors of the training data covariance

The matrix V_{k} minimizes the reconstruction error (3) over all $k \times d$ orthogonal matrices

PCA as best low rank approximation

Denote by X the $n \times d$ matrix whose rows are the points $x_{1}^{\top}, \ldots, x_{n}^{\top}$

Recall the singular value decomposition (SVD) of X,

$$
X=U \Sigma V^{\top}
$$

where U and V are $n \times n$ and $d \times d$ orthogonal matrices, respectively, and Σ is the $n \times d$ diagonal matrix with diagonal entries $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{d} \geq 0$

At last, we show that PCA provides the best low rank matrix approximation of the data matrix X

PCA and best low rank approximation (cont.)

Recall the definition of the Frobenius norm and note that

$$
\sum_{i=1}^{n}\left\|x_{i}-Q w_{i}\right\|^{2}=\left\|X^{\top}-Q W\right\|_{F}^{2}
$$

where $W=\left[w_{1}, \ldots, w_{n}\right]$. The matrix $Q W$ has rank at most k

Hence the PCA problem is equivalent to

$$
\min \{\|X-Z\|: \operatorname{rank}(Z) \leq k\}
$$

From the above discussion we conclude that the best rank k matrix approximation is: $Z=X V_{k} V_{k}^{\top}=U \Sigma V^{\top} V_{k} V_{k}^{\top}=U \Sigma V_{k}^{\top}$

Least squares

Problem: We wish to find a function $f(x)=w^{\top} x$ which best fits a data set $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \subseteq \mathbb{R}^{d} \times \mathbb{R}$

Assume that there exists some $w_{*} \in \mathbb{R}^{d}$ such that $y_{i} \approx w_{*}^{\top} x_{i}$
We find w by minimizing the residual sum of squares (RSS) on the data

$$
R(w)=\sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}
$$

To compute the minimum we need to solve the equations

$$
\nabla R(w)=0, \quad \text { where } \nabla=\left(\frac{\partial}{\partial w_{j}}\right)_{j=1}^{d}
$$

Normal equations

A direct computation gives the linear system of equations

$$
\sum_{i=1}^{n} x_{i} x_{i}^{\top} w=\sum_{i=1}^{n} x_{i} y_{i}
$$

or, in matrix notation

$$
\begin{equation*}
X^{\top} X w=X^{\top} y \tag{4}
\end{equation*}
$$

where

$$
X^{\top}=\left[\begin{array}{ccc}
x_{11} & \cdots & x_{n 1} \\
\vdots & \ddots & \vdots \\
x_{1 d} & \cdots & x_{n d}
\end{array}\right] \equiv\left[x_{1}, \cdots, x_{n}\right], \quad y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

(Note: we may also write $R(w)=\|y-X w\|^{2}$ and differentiating over w to directly obtain equation (4))

Existence of solution

There always exists a solution to the normal equations (4)

To see this, we uniquely decompose y as $y=\bar{y}+y_{\perp}$ where $\bar{y} \in \operatorname{range}(X), y_{\perp} \in \operatorname{range}(X)^{\perp}$ so that

$$
R(w)=\left\|y_{\perp}\right\|^{2}+\|\bar{y}-X w\|^{2}
$$

It follows that

$$
\min R(w)=\left\|y_{\perp}\right\|^{2}
$$

and the set of solutions is formed by the vectors w which interpolate \bar{y} :

$$
X w=\bar{y}
$$

Overdetermined case ($n \geq d$)

If $n \geq d$ and X is full rank (ie. $\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}=\mathbb{R}^{d}$) then matrix $X^{\top} X$ is invertible and equation (4) has a unique solution:

$$
w=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

In particular if $n=d$ then $w=X^{-1} y$
(Note: if x_{1}, \ldots, x_{n} are in "generic positions" then $\operatorname{rank}(X)=d$)
Two sub-cases:

- If $y \in \operatorname{range}(X)$ then $y_{\perp}=0$ and $\min R(w)=0$ (perfect fit)
- If $y \notin \operatorname{range}(X)$ then $y_{\perp} \neq 0$ and $\min R(w)>0$

Underdetermined case ($n<d$)

If $n<d$ (or just rank $(X)<d$) then the solution is not unique. Again, we have two sub-cases:

- If $y \in \operatorname{range}(X)$ we can interpolate the data: $\min R(w)=0$ and any interpolant is a solution
- If $y \notin \operatorname{range}(X)$ (e.g. this could be the case if $x_{1}=x_{2}$ but $y_{1} \neq y_{2}$) we cannot interpolate the data. As we saw above any vector w which interpolates \bar{y} is a solution

Strict convexity of RSS

Another perspective: the function R is a convex quadratic function. To see this note that the Hessian of R at any vector w is the positive definite matrix $X^{\top} X$. Since R is lower bounded and grows at infinity, there is a minimum

- If $\operatorname{rank}(X)=d$ then the $X^{\top} X$ is strictly positive definite. In this case the error function R is strictly convex, so the minimum is unique.
- If $\operatorname{rank}(X)<d$ then R is not strictly convex and the minimum is not unique

These observations can be extended to a generic error function of the type $R(w)=\sum_{i=1}^{n} L\left(y_{i}, w^{\top} x_{i}\right)$, where L is a loss function

Statistical perspective

Fitting the data with a linear function makes especially sense if we know that the data has been generated by a linear function

$$
y=X w_{*}+\epsilon
$$

where ϵ is some small noise error

We obtain that

$$
\min R(w)=\epsilon^{\top}(I-P) \epsilon>0
$$

where $P=X\left(X^{\top} X\right)^{-1} X^{\top}$ is the orthogonal projection on range (X)

Ridge regression

In general, the problem of finding (learning) w from the data is ill-posed, i.e. at least one of the following conditions (which define a well-posed problem) is violated: (1) a solution exists; (2) the solution is unique; (3) the solution depends continuously on the data

We minimize the regularized error function

$$
R_{\lambda}(w):=\sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}+\lambda \sum_{\ell=1}^{d} w_{\ell}^{2} \equiv(y-X w)^{\top}(y-X w)+\lambda w^{\top} w
$$

The positive parameter λ defines a trade-off between the error on the data and the norm of the vector w (degree of regularization)

The objective function is now strictly convex. There is a unique minimum, which depends continuously on the data X and y

Ridge regression (cont.)

Setting $\nabla R_{\lambda}(w)=0$, we obtain the modified normal equations

$$
X^{\top}(X w-y)+\lambda w=0
$$

whose solution (called regularized solution) is

$$
w=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y
$$

It is interesting to analyze how this solution depends on λ and study how to choose this parameter in practice (we come back to this point later)

Singular value decomposition

We use the singular value decomposition (SVD) of X,

$$
X=U \Sigma V^{\top}
$$

where recall U and V are $n \times n$ and $d \times d$ orthogonal matrices, respectively, and Σ is the $n \times d$ matrix with leading diagonal entries $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{d} \geq 0$

We have

$$
\left(X^{\top} X+\lambda I\right) w=X^{\top} y \Longleftrightarrow V\left(\Sigma^{2}+\lambda I\right) V^{\top} w=V \Sigma U^{\top} y
$$

from which we obtain the solution

$$
\begin{equation*}
w_{\lambda}=V\left(\Sigma^{2}+\lambda I\right)^{-2} \Sigma U^{\top} y \tag{5}
\end{equation*}
$$

Generalized solution

In vector notations (5) becomes

$$
w_{\lambda}=\sum_{i=1}^{r} \frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda} v_{i} u_{i}^{\top} y
$$

where $r=\operatorname{rank}(X), U=\left[u_{1}, \ldots, u_{n}\right], V=\left[v_{1}, \ldots, v_{d}\right]$

When λ goes to zero w tends to the generalized solution

$$
\begin{equation*}
w^{(0)}:=\sum_{i=1}^{r} \sigma_{i}^{-1} v_{i} u_{i}^{\top} y=X^{+} y \tag{6}
\end{equation*}
$$

Matrix $X^{+}=\sum_{i=1}^{r} \sigma_{i}^{-1} u_{i} v_{i}^{\top}$ is called the pseudoinverse of X
If $n=d$ and X is full rank then $X^{+}=X^{-1}$

Interpretation of $w^{(0)}$

We saw before than if $\operatorname{rank}(X)<d$ then the RSS has not a unique minimum

The solution set is given by $\left\{w: X^{\top} X w=X^{\top} y\right\}$
The generalized solution $w^{(0)}$ is the vector which, among those which minimize $R(w)$ has the smallest norm

