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Principal component analysis (PCA)

We are given data points x1,...,xn € R¢ (training data)

Dimension reduction: we wish to find a lower dimensional rep-
resentation of the data, ie. for visualization purposes, for cluster
analysis, or as a preprocessing step in supervised learning

PCA is an instance of dimension reduction, which finds a k-
dimensional subspace S of the “ambient” space ]Rd, such that
the projection on S retains most of the variance in the data

In PCA, the lower dimensional representation is a linear function
of the input data



PCA optimization problem

For simplicity, we assume that the data points have zero mean:

n
> x; = 0 (otherwise subtract the mean)
i=1

Our goal is to maximize the variance of the projected data,

1 mn
var(P) = = 3" || Pxy||?
n .—
1=1
over the set of k-dimensional orthogonal projections P:

max {var(P) - PcR>X p2—=p pT =P rank(P) = k}



PCA optimization problem (cont.)

We write P = QQ'" where Q = [q1, ..., q;] and the vectors q1, ..., qx

are o.n. (they form a basis for the subspace S we wish to project
to)

We reformulate the above problem as an optimization problem

in Q:

1 n
max {n SN 1QQ zi|? : Q e R* QTQ = Ikxk:} (1)
i—1



1-dimensional projection

When k=1, Q = g (a d-dimensional column vector). We have

S|

n n
S llgq"zi||? = - S (g"z)?=4" ( wi:vz-T> q=q' Cq
1=1 1=1

ni=1

n
where C' is the data covariance: C =% > xm)
i=1

We see that problem (1) is the same as maximizing the Rayleigh
quotient

q'Cq

q'q
whose solution is the leading eigenvector of the data covariance
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Case k£ > 1

In the general case, similarly to the case £k = 1, we derive that

n n

. k k
- SRz P ==Y > (¢fz)(@]q) = Zl q; Cq;
iz

i=1 "i=1j=1
The optimization problem (1) is now more difficult to analyze

We show that q1,...,q; are the k leading eigenvectors of C'. They
are also called the principal components of the data



Diagonal covariance

Suppose C = A =diag(Aq,...,Ag) with Ay >---> ;>0

k kod ik
>4, Ca =3 > aphe= 3 My iy
(=1 j=1

We will show that the maximum is attained at q; = ey,...,qr = e
koo, d k
Proof: We use the fact that }° a5 <land > > q¢;<k(can

you argue these inequalities are true?). These and k < d give the
upper bound
k k

q]2g < Z A
1 /=1

d
>N
=1

which is attained for q1 = e1,...,q. = ey



General case
Let C = VAV and note that
k k
> 4;Caj =Y qVAV'qg,
We can reduce this to the diagonal case by letting ('jj = Vqu

This transformation does not change the problem because V is
orthogonal

We know that the solution is: g1 = eq1,...,q, = e

We conclude that ¢; = Ve; =wv;, g =1,...,k



Connection to linear regression

We proceed to show that the principal components provide a
sequence of best linear approximations to the data

Since

|z]]? = | (I — QQz||? + |1QQ x|

we see that maximizing the variance of the projected data is
equivalent to minimizing

1 - QQ i 2)

=1
le. the variance associated with the complementary projection
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Connection to linear regression (cont.)

The term under the summation in (2) can be interpreted as a
linear regression:

1T — QQNa;l|* = min [|z; — Qui|?

where the minimizing w; = Q' z;

Thus minimizing (2) is the same as minimizing
= 2
> min flz; — Quil (3)
i=1 '

We conclude that PCA provides a sequence of best (over Q)
linear approximations to the data
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Summary

The k principal components represent a generic data point x € R4
by the lower dimensional feature vector

w = VkT:c

where V. = [v1,...,vt] is the matrix formed by the k leading
eigenvectors of the training data covariance

The matrix Vi, minimizes the reconstruction error (3) over all
k x d orthogonal matrices
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PCA as best low rank approximation

Denote by X the nxd matrix whose rows are the points z,...,z,},

Recall the singular value decomposition (SVD) of X,

X=Uxv"'

where U and V are n X n and d x d orthogonal matrices, respec-
tively, and 2 is the n X d diagonal matrix with diagonal entries
01> 00> >0q>0

At last, we show that PCA provides the best low rank matrix
approximation of the data matrix X
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PCA and best low rank approximation (cont.)

Recall the definition of the Frobenius norm and note that

n

Yo llz — Quill? = | XT — QW |2
1=1

where W = [wq,...,wn]. The matrix QW has rank at most k

Hence the PCA problem is equivalent to

min{||X — Z|| : rank(Z) < k}

From the above discussion we conclude that the best rank k
matrix approximation is: Z = XV, V,! =UXV'WV,! = UV
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Least squares

Problem: We wish to find a function f(z) = w'z which best
fits a data set S = {(z1,y1),..., (zn,yn)} CR? xR

Assume that there exists some w« € R? such that y; ~ w) z;

We find w by minimizing the residual sum of squares (RSS) on
the data

n

R(w) = ) (yz — wT%)Q

i=1
To compute the minimum we need to solve the equations

5 \4

VR(w) =0, where V = <—>
(9w] —1

]_
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Normal equations

A direct computation gives the linear system of equations

n n

or, in matrix notation

X' Xw=X"y (4)
where
- 11 Inl Y1
X = : E[ml,---,xn, Yy =
| L1d Lnd | Yn |
(Note: we may also write R(w) = ||y — Xw||? and differentiating over w to

directly obtain equation (4))
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EXistence of solution
There always exists a solution to the normal equations (4)

To see this, we uniquely decompose y as y = y + y, Wwhere
y € range(X), y. € range(X)+ so that

R(w) = ||lyo||* + 1§ — Xw||?
It follows that
min R(w) = |jy.||?

and the set of solutions is formed by the vectors w which inter-
polate y:

Xw =1y
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Overdetermined case (n > d)

If n > d and X is full rank (ie. span{zy,...,zn} = R%) then matrix
X "X is invertible and equation (4) has a unique solution:

w=(X"X)"1xTy

In particular if n =d then w = X1y
(Note: if x1,...,zn are in “generic positions” then rank(X) = d)

Two sub-cases:

o If y € range(X) then y;, = 0 and min R(w) = 0 (perfect fit)

e If y ¢ range(X) then y, # 0 and min R(w) > 0
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Underdetermined case (n < d)

If n < d (or just rank(X) < d) then the solution is not unique.
Again, we have two sub-cases:

e If y € range(X) we can interpolate the data: min R(w) = 0
and any interpolant is a solution

o If y € range(X) (e.g. this could be the case if z1 = zo but
y1 7= yo) we cannot interpolate the data. As we saw above
any vector w which interpolates y is a solution
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Strict convexity of RSS

Another perspective: the function R is a convex quadratic func-
tion. To see this note that the Hessian of R at any vector w is
the positive definite matrix X' X. Since R is lower bounded and
grows at infinity, there is a minimum

e If rank(X) = d then the X'X is strictly positive definite.
In this case the error function R is strictly convex, so the
minimum is unique.

e If rank(X) < d then R is not strictly convex and the minimum
IS not unique

These observations can be extended to a generic error function of the type
R(w) = > " ; L(yi,w'z;), where L is a loss function
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Statistical perspective

Fitting the data with a linear function makes especially sense if
we know that the data has been generated by a linear function

y = Xwx +¢€

where e is some small noise error

We obtain that
min R(w) =¢' (I — P)e >0
where P = X(XTX)~1XT is the orthogonal projection on range(X)
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Ridge regression

In general, the problem of finding (learning) w from the data
is ill-posed, i.e. at least one of the following conditions (which
define a well-posed problem) is violated: (1) a solution exists;
(2) the solution is unique; (3) the solution depends continuously
on the data

We minimize the regularized error function

n d
Ry(w) = Z (y; —w ;)% + A Z w% = (y— Xw) (y—Xw) 4+ w'w
i=1 =1
The positive parameter A\ defines a trade-off between the error on
the data and the norm of the vector w (degree of regularization)

The objective function is now strictly convex. There is a unique
minimum, which depends continuously on the data X and y
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Ridge regression (cont.)

Setting VR)(w) = 0, we obtain the modified normal equations
X'"(Xw—-—y)+ A w=0

whose solution (called regularized solution) is
w=(X"X+ND)"1XTy

It is interesting to analyze how this solution depends on A and
study how to choose this parameter in practice (we come back
to this point later)
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Singular value decomposition

We use the singular value decomposition (SVD) of X,

X=UxVv"

where recall U and V are n x n and d x d orthogonal matrices,
respectively, and 2 is the n x d matrix with leading diagonal
entries o1 > 00> --->20,42>0

We have
(XX +AMN)w=X"y < V(Z°+ AV w=VZU"y
from which we obtain the solution
wy = V(Z2+A)°ZU Ty (5)
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Generalized solution

In vector notations (5) becomes

wy = i 7i v-uTy
= 5 U
i=19; T A

where r = rank(X), U = [u1,...,un], V = [v1,...,v4]

When A\ goes to zero w tends to the generalized solution

.
w(0) = > J,L-_lviu;y = Xy (6)
1=1

! is called the pseudoinverse of X

.
Matrix X+ = '21 az-_luz-v
1=

If n=d and X is full rank then Xt = X1
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Interpretation of w(0)

We saw before than if rank(X) < d then the RSS has not a
unigue Mminimum

The solution set is given by {w : X' Xw = X"y}

The generalized solution w(9) is the vector which, among those
which minimize R(w) has the smallest norm

26



