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Today’s plan

• SVD and principal component analysis (PCA)

• Connection between PCA and linear regression

• Low rank matrix approximation

• Application of SVD to least squares and ridge regression

• Generalized solution and pseudoinverse

• Role of the regularization parameter
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Principal component analysis (PCA)

We are given data points x1, . . . , xn ∈ IRd (training data)

Dimension reduction: we wish to find a lower dimensional rep-

resentation of the data, ie. for visualization purposes, for cluster

analysis, or as a preprocessing step in supervised learning

PCA is an instance of dimension reduction, which finds a k-

dimensional subspace S of the “ambient” space IRd, such that

the projection on S retains most of the variance in the data

In PCA, the lower dimensional representation is a linear function

of the input data
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PCA optimization problem

For simplicity, we assume that the data points have zero mean:
n∑
i=1

xi = 0 (otherwise subtract the mean)

Our goal is to maximize the variance of the projected data,

var(P ) =
1

n

n∑
i=1

‖Pxi‖2

over the set of k-dimensional orthogonal projections P :

max
{

var(P ) : P ∈ IRd×d, P2 = P, P> = P, rank(P ) = k
}
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PCA optimization problem (cont.)

We write P = QQ> where Q = [q1, . . . , qk] and the vectors q1, . . . , qk
are o.n. (they form a basis for the subspace S we wish to project

to)

We reformulate the above problem as an optimization problem

in Q:

max

1

n

n∑
i=1

‖QQ>xi‖2 : Q ∈ IRd×k, Q>Q = Ik×k

 (1)
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1-dimensional projection

When k = 1, Q = q (a d-dimensional column vector). We have

1

n

n∑
i=1

‖qq>xi‖2 =
1

n

n∑
i=1

(q>xi)
2 = q>

1

n

n∑
i=1

xix
>
i

 q = q>Cq

where C is the data covariance: C = 1
n

n∑
i=1

xix
>
i

We see that problem (1) is the same as maximizing the Rayleigh

quotient

q>Cq

q>q

whose solution is the leading eigenvector of the data covariance
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Case k > 1

In the general case, similarly to the case k = 1, we derive that

1

n

n∑
i=1

‖Q>xi‖2 =
1

n

n∑
i=1

k∑
j=1

(q>j xi)(x>i qj) =
k∑

j=1

q>j Cqj

The optimization problem (1) is now more difficult to analyze

We show that q1, . . . , qk are the k leading eigenvectors of C. They

are also called the principal components of the data
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Diagonal covariance

Suppose C = Λ = diag(λ1, . . . , λd) with λ1 ≥ · · · ≥ λd ≥ 0

k∑
j=1

q>j Cqj =
k∑

j=1

d∑
`=1

q2
j`λ` =

d∑
`=1

λ`

k∑
j=1

q2
j`

We will show that the maximum is attained at q1 = e1, . . . , qk = ek

Proof: We use the fact that
k∑

j=1
q2
j` ≤ 1 and

d∑
`=1

k∑
j=1

q2
j` ≤ k (can

you argue these inequalities are true?). These and k ≤ d give the
upper bound

d∑
`=1

λ`

k∑
j=1

q2
j` ≤

k∑
`=1

λ`

which is attained for q1 = e1, . . . , qk = ek
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General case

Let C = V ΛV > and note that

k∑
j=1

q>j Cqj =
k∑

j=1

q>j V ΛV >qj

We can reduce this to the diagonal case by letting q̃j = V >qj

This transformation does not change the problem because V is

orthogonal

We know that the solution is: q̃1 = e1, . . . , q̃k = ek

We conclude that qj = V ej = vj, j = 1, . . . , k
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Connection to linear regression

We proceed to show that the principal components provide a

sequence of best linear approximations to the data

Since

‖x‖2 = ‖(I −QQ>)x‖2 + ‖QQ>x‖2

we see that maximizing the variance of the projected data is

equivalent to minimizing

n∑
i=1

‖(I −QQ>)xi‖2 (2)

ie. the variance associated with the complementary projection
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Connection to linear regression (cont.)

The term under the summation in (2) can be interpreted as a

linear regression:

‖(I −QQ>)xi‖2 = min
wi
‖xi −Qwi‖2

where the minimizing wi = Q>xi

Thus minimizing (2) is the same as minimizing

n∑
i=1

min
wi
‖xi −Qwi‖2 (3)

We conclude that PCA provides a sequence of best (over Q)

linear approximations to the data
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Summary

The k principal components represent a generic data point x ∈ IRd

by the lower dimensional feature vector

w = V >k x

where Vk = [v1, . . . , vk] is the matrix formed by the k leading

eigenvectors of the training data covariance

The matrix Vk minimizes the reconstruction error (3) over all

k × d orthogonal matrices
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PCA as best low rank approximation

Denote by X the n×d matrix whose rows are the points x>1, . . . , x
>
n

Recall the singular value decomposition (SVD) of X,

X = UΣV >

where U and V are n× n and d× d orthogonal matrices, respec-

tively, and Σ is the n × d diagonal matrix with diagonal entries

σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0

At last, we show that PCA provides the best low rank matrix

approximation of the data matrix X
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PCA and best low rank approximation (cont.)

Recall the definition of the Frobenius norm and note that
n∑
i=1

‖xi −Qwi‖2 = ‖X> −QW‖2F

where W = [w1, . . . , wn]. The matrix QW has rank at most k

Hence the PCA problem is equivalent to

min{‖X − Z‖ : rank(Z) ≤ k}

From the above discussion we conclude that the best rank k

matrix approximation is: Z = XVkV
>
k = UΣV >VkV

>
k = UΣV >k
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Least squares

Problem: We wish to find a function f(x) = w>x which best
fits a data set S = {(x1, y1), . . . , (xn, yn)} ⊆ IRd × IR

Assume that there exists some w∗ ∈ IRd such that yi ≈ w>∗ xi

We find w by minimizing the residual sum of squares (RSS) on
the data

R(w) =
n∑
i=1

(
yi − w>xi

)2

To compute the minimum we need to solve the equations

∇R(w) = 0, where ∇ =

(
∂

∂wj

)d
j=1
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Normal equations

A direct computation gives the linear system of equations

n∑
i=1

xix
>
i w =

n∑
i=1

xiyi

or, in matrix notation

X>Xw = X>y (4)

where

X> =

x11 · · · xn1
... . . . ...
x1d · · · xnd

 ≡ [x1, · · · , xn
]
, y =

y1
...
yn


(Note: we may also write R(w) = ‖y − Xw‖2 and differentiating over w to

directly obtain equation (4))
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Existence of solution

There always exists a solution to the normal equations (4)

To see this, we uniquely decompose y as y = ȳ + y⊥ where

ȳ ∈ range(X), y⊥ ∈ range(X)⊥ so that

R(w) = ‖y⊥‖2 + ‖ȳ −Xw‖2

It follows that

minR(w) = ‖y⊥‖2

and the set of solutions is formed by the vectors w which inter-

polate ȳ:

Xw = ȳ

17



Overdetermined case (n ≥ d)

If n ≥ d and X is full rank (ie. span{x1, . . . , xn} = IRd) then matrix

X>X is invertible and equation (4) has a unique solution:

w = (X>X)−1X>y

In particular if n = d then w = X−1y

(Note: if x1, . . . , xn are in “generic positions” then rank(X) = d)

Two sub-cases:

• If y ∈ range(X) then y⊥ = 0 and minR(w) = 0 (perfect fit)

• If y /∈ range(X) then y⊥ 6= 0 and minR(w) > 0
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Underdetermined case (n < d)

If n < d (or just rank(X) < d) then the solution is not unique.

Again, we have two sub-cases:

• If y ∈ range(X) we can interpolate the data: minR(w) = 0

and any interpolant is a solution

• If y /∈ range(X) (e.g. this could be the case if x1 = x2 but

y1 6= y2) we cannot interpolate the data. As we saw above

any vector w which interpolates ȳ is a solution

19



Strict convexity of RSS

Another perspective: the function R is a convex quadratic func-
tion. To see this note that the Hessian of R at any vector w is
the positive definite matrix X>X. Since R is lower bounded and
grows at infinity, there is a minimum

• If rank(X) = d then the X>X is strictly positive definite.
In this case the error function R is strictly convex, so the
minimum is unique.

• If rank(X) < d then R is not strictly convex and the minimum
is not unique

These observations can be extended to a generic error function of the type

R(w) =
∑n

i=1L(yi, w>xi), where L is a loss function
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Statistical perspective

Fitting the data with a linear function makes especially sense if

we know that the data has been generated by a linear function

y = Xw∗+ ε

where ε is some small noise error

We obtain that

minR(w) = ε>(I − P )ε > 0

where P = X(X>X)−1X> is the orthogonal projection on range(X)
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Ridge regression

In general, the problem of finding (learning) w from the data
is ill-posed, i.e. at least one of the following conditions (which
define a well-posed problem) is violated: (1) a solution exists;
(2) the solution is unique; (3) the solution depends continuously
on the data

We minimize the regularized error function

Rλ(w) :=
n∑
i=1

(yi−w>xi)2 +λ
d∑

`=1

w2
` ≡ (y−Xw)>(y−Xw) +λw>w

The positive parameter λ defines a trade-off between the error on
the data and the norm of the vector w (degree of regularization)

The objective function is now strictly convex. There is a unique
minimum, which depends continuously on the data X and y
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Ridge regression (cont.)

Setting ∇Rλ(w) = 0, we obtain the modified normal equations

X>(Xw − y) + λw = 0

whose solution (called regularized solution) is

w = (X>X + λI)−1X>y

It is interesting to analyze how this solution depends on λ and

study how to choose this parameter in practice (we come back

to this point later)
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Singular value decomposition

We use the singular value decomposition (SVD) of X,

X = UΣV >

where recall U and V are n × n and d × d orthogonal matrices,

respectively, and Σ is the n × d matrix with leading diagonal

entries σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0

We have

(X>X + λI)w = X>y ⇐⇒ V (Σ2 + λI)V >w = VΣU>y

from which we obtain the solution

wλ = V (Σ2 + λI)−2ΣU>y (5)
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Generalized solution

In vector notations (5) becomes

wλ =
r∑

i=1

σi

σ2
i + λ

viu
>
i y

where r = rank(X), U = [u1, . . . , un], V = [v1, . . . , vd]

When λ goes to zero w tends to the generalized solution

w(0) :=
r∑

i=1

σ−1
i viu

>
i y = X+y (6)

Matrix X+ =
r∑

i=1
σ−1
i uiv

>
i is called the pseudoinverse of X

If n = d and X is full rank then X+ = X−1
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Interpretation of w(0)

We saw before than if rank(X) < d then the RSS has not a

unique minimum

The solution set is given by {w : X>Xw = X>y}

The generalized solution w(0) is the vector which, among those

which minimize R(w) has the smallest norm
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