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Prerequisites & assessment

• Calculus (real-valued functions, limits, derivatives, etc.)

• Fundamentals of linear algebra (vectors, angles, matrices,

eigenvectors/eigenvalues,...)

• 1 long homework assignment near the end of the course

(35%) – deliver it on-time, penalty otherwise
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Material

• Lecture notes

– http://www.cs.ucl.ac.uk/staff/M.Pontil/courses/index-GI07.htm

• Reference book

– This and next lecture: Trefethen and Bau. Numerical linear algebra.

SIAM.

• Additional material (see web-page for more info)
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Course outline

• (Weeks 1,2) Elements of linear algebra and singular value

decomposition (SVD)

• (Week 3) Applications of SVD in ML and data analysis

• (Week 4) Elements of graph theory. Applications in ML and

data analysis

• (Week 5) Kernel methods
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Today’s plan

• Linear algebra review

– vector and matrix operations

– orthogonality

– norms

• singular value decomposition
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Vectors

• denoted by lower case letters, x, y, b etc.

• they form a linear space: 1) x+ y is still a vector; 2) If λ ∈ IR, λx is still
a vector; 3) there is a zero vector, called 0, such that x+ 0 = x, etc.

• a vector can be represented by its coefficients relative to a fixed set (ba-
sis) of linearly independent vectors e1, . . . , en. The number n is uniquely
defined as the dimension of the space, which we call IRn

• The coordinate vectors e1 = (1,0, ...,0), e2 = (0,1,0, ...,0), . . . en =
(0,0, ...,0,1) form a basis of IRn called the standard basis

• x is identified by (x1, x2, ..., xn) since: (x1, x2, ..., xn) = x1e1 +x2e2 + . . . xnen
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Matrices

• denoted by upper case letters (A, B etc.). An m× n matrix

is denoted as A = (Aij : 1 ≤ i ≤ m,1 ≤ j ≤ n)

• think of a matrix as a linear transformation from IRn to IRm

• they form a linear space (can be viewed as mn-dim vectors)

• denote by ai the columns of A. Also use the notation A =

[a1, . . . , an]

• Ax =
∑n
i=1 xiai (linear combination of column vectors)
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Matrices (cont.)

• transpose: given A ∈ IRm×n its transpose A> ∈ IRn×m is

defined as A>ji = Aij

• an n× n matrix is said: symmetric if Aij = Aji

• skew symmetric (or antisymmetric) if Aij = −Aji

• positive semi-definite (psd) if x>Ax =
∑n
i,j=1 xiAijxj ≥ 0 for

every x ∈ IRn (example: the empirical covariance is symmetric

and psd)
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Range and null space

• the range space of A is the set of vectors that can be ex-

pressed as Ax for some x:

range(A) = {b : b = Ax, for some x ∈ IRn}

namely, the set of vectors spanned by the columns of A (so

the range of A is also called the column space of A)

• the null space of A is the set of vectors x which satisfy

Ax = 0:

null(A) = {x : Ax = 0}
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Rank

The column rank of A is the dimension of its columns space

The row rank of A is the dimension of its row space

Theorem: the column rank equals the row rank (we thus refer
to this number simply as the rank)

An m×n matrix A, is said to have full rank if rank(A) = min(m,n)

A full rank matrix defines a one-to-one map:

Theorem: An m × n matrix A, with m ≥ n has full rank iff it
maps no two distinct vectors to the same vector
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Rank one matrices

If A has rank one then range(A) = span{b}, that is

Ax = λ(x)b

by linearity λ(x) = c>x. We arrive to the expression

A = bc>

Two particular cases are

• If c = ej then all columns of A are zero except the jth column
which is c

• If b = ei then all rows of A are zero except the ith row which
equal c>
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Inverse

A square and full rank matrix A is called nonsingular or invertible

Since the columns are a basis of IRm, we can write any vector as

a unique linear combination of them. In particular

ej =
m∑
i=1

zijai or I = AZ

Matrix Z is uniquely defined by the above equation. It is called

the inverse of A and is denoted as A−1.

Product of invertible matrices: (AB)−1 = B−1A−1 (analogous

to (AB)> = B>A>)
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Inverse (cont.)

Since AA−1 = A−1A = I, the equation Ax = b has always a

unique solution, given by A−1b. Interpretation: think of A−1b as

the vector of coefficients of the expansion of b in the basis of

columns of A

Ax = b ⇐⇒ Ax = AA−1b ⇐⇒ x = A−1AA−1b = A−1b
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Orthogonal vectors

Recall the notion of inner product: x>y =
∑n
i=1 xiyi

and Euclidean norm: ‖x‖ =
√
x>x

A pair of vectors x and y are called orthogonal if x>y = 0

The set S = {u1, . . . , uk} is called orthogonal if its elements are
pairwise orthogonal; if, in addition, ‖ui‖ = 1 for i = 1, . . . , k then
S is said orthonormal

Theorem: the vectors in an orthogonal set {u1, . . . , uk} are lin-
early independent

Proof (hint) assume by contradiction that u1 is a linear combination of

u2, . . . , um and conclude that u1 = 0
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Orthogonal vectors (cont.)

If S = {u1, . . . , uk} is an orthonormal (o.n.) set and x an arbitrary

vector in IRm, the vector

r = x−
k∑
i=1

(u>i x)ui

is orthogonal to S.

In particular, if k = m, then S is a basis and r must be zero

The linear space {y : u>i y = 0, i = 1, . . . , k} is called the orthogo-

nal complement to S
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Orthogonal matrices

If {u1, . . . , uk} is an o.n. set then the m×k matrix U = [u1, . . . , uk]

has the property that U>U = Ik×k

When k = m the matrix U is said orthogonal. In this case we

have that U−1 = U>, that is

U>U = Im×m (or equivalently UU> = Im×m)
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Orthogonal matrices (cont.)

Interpretation:

Note that the transformation U preserves the inner product (so
the angles and lengths of vectors are preserved)

(Ux)>(Uy) = x>y

If det(U) = 1 then U is a rotation; if det(U) = −1 then U is a
reflection
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Norms

A norm is a function ‖ · ‖ : IRm → [0,∞) which measures the

length of a vector. It satisfies the conditions

• ‖x‖ ≥ 0 and ‖x‖ = 0 ⇐⇒ x = 0

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

• ‖αx‖ = |α|‖x‖

for all x, y ∈ IRm and α ∈ IR

18



Norms (cont.)

Norms are convex: for all λ ∈ [0,1], x, y ∈ IRm we have

‖λx+ (1− λ)y‖ ≤ λ‖x‖+ (1− λ)‖y‖

An important class of norms are the p-norms:

‖x‖p =

 m∑
i=1

|xi|p
1/p

, for p ≥ 1

and

‖x‖∞ =
m

max
i=1
|xi|
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Induced matrix norms

The space of m × n matrices is an mn-dimensional space. Any

norm on this space can be used to define the size of such matrices

An induced matrix norm is a special type of norm associated

with matrices, which is induced by the norms in the domain and

codomain of A:

‖A‖(m,n) = sup
x∈IRn

‖Ax‖(m)

‖x‖(n)

(can you argue this is a norm?)
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Induced matrix norms (cont.)

For example if ‖x‖(n) and ‖Ax‖(m) are the standard Euclidean

norms

‖A‖ = sup
x∈IRn

√
x>A>Ax

x>x
=

√
λmax(A>A)

An important property of induced matrix norms is:

‖AB‖ ≤ ‖A‖‖B‖

This follows by ‖Ax‖(m) ≤ ‖A‖‖x‖(n)
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Frobenius norm

An important example of matrix norms which is not induced by
vector norms is the Frobenius norm

‖A‖F =

 m∑
i=1

n∑
j=1

a2
ij

1/2

This is the standard Euclidean norm when matrix A is viewed as
an mn-dimensional vector. It may also be written as

‖A‖F =

 n∑
j=1

‖aj‖22

1/2

or as

‖A‖F =
√

trace(A>A) =
√

trace(AA>)

(the trace of a matrix is the sum of the diagonal elements)
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Singular value decomposition (SVD)

• SVD is a matrix factorization whose computation is key in
many algorithms

• many ML and statistical methods are based on SVD:

– least squares, regularization

– principal component analysis

– spectral clustering

– matrix factorization, etc.

• being familiar with SVD is essential in order to understand
and implement ML/statistical methods
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What is it?

Observation: the image of the unit hypersphere under any m×n
matrix A is an hyperellipse

Hyperellipse: surface in IRm obtained by stretching the unit
sphere in IRm by some nonnegative factors σ1, . . . , σm in some
orthogonal directions (unit vectors) u1, . . . , um

The vectors {σiui} are the principal axes of the hyperellipse, with
lengths σ1, . . . , σm (use the convention that σ1 ≥ σ2 ≥ · · · ≥ σn ≥
0)
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What is it? (cont.)

• we call the singular values of A the lengths of the n principal

axis of AS,

• the left singular vectors of A, u1, . . . , un, are the principal

semiaxes of AS

• the right singular vectors of A, v1, . . . , vn, are the preimages

of the principal semiaxis of AS

• if m ≥ n at most n of the σi are nonzero

• if A has rank r, exactly r of the σi are nonzero
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Reduced SVD

Assume for simplicity that rank(A) = n. We have seen that

Avj = σjuj, j ∈ {1, . . . , n}

or, AV = ÛΣ̂, with Σ̂ = diag(σ1, . . . , σn), Û = [u1, . . . , un] and V

is an n× n orthogonal matrix. We may then write

A = ÛΣ̂V >
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Full SVD

Recall that we assumed m ≥ n. If m > n, we can complete the
set {u1, . . . , un} to a basis of IRm by adding to it m−n additional
onthonormal vectors un+1, . . . , um.

We replace Û by the orthogonal matrix U = [u1, . . . , um] and Σ̂
by the m × n matrix Σ having Σ̂ in the upper n × n block and
m−n zero rows below it. This gives us a new factorization of A

A = UΣV >
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Formal definition

Given an m × n real matrix A, a singular value decomposition

(SVD) of A is a factorization

A = UΣV >

where: U is an m×m orthogonal matrix, V is an n×n orthogonal

matrix and Σ is diagonal

Also use the convention that the diagonal entries of Σ are non-

negative and nonincreasing:

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, p = min(n,m)
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Existence and uniqueness

Theorem: every m × n matrix A has an SVD, whose singular

values σj are uniquely determined. Moreover, if m = n and the

singular values are distinct, the left and right singular vectors are

uniquely determined up to a sign change

Proof idea is to isolate the direction of the largest action of A

and then proceed by induction
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Change of basis

Another interpretation of SVD: every matrix is diagonal if one

uses the proper bases for the domain and range spaces

b = Ax ⇐⇒ U>b = U>Ax = U>UΣV >x ⇐⇒ b′ = Σx′

where b′ = U>b and x′ = V >x

• range space is expressed in the basis of columns of U

• domain space is expressed in the basis of columns of V
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Properties of SVD

• if A is a rank one matrix, A = bc>, we have σ1 = ‖b‖‖c‖ and

u1 = b
‖b‖, v1 = c

‖c‖ (up to a sign change)

• the rank r of a matrix A equals the number of nonzero sin-

gular values

Proof: A = UΣV >. Now the rank of Σ is r. Since U and V

are full rank, it follows that rank(A) = rank(Σ)

• range(A) = span{u1, . . . , ur}; null(A) = span{vr+1, . . . , vn}
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Properties of SVD (cont.)

• σ1 = ‖A‖(2,2)

• The nonzero singular values of A are the square root of the

nonzero eigenvalues of A>A or AA>

• If A is a square symmetric matrix, then the nonzero singular

values of A are the absolute value of the eigenvalues of A
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Low rank approximation

Another way to explain the SVD is to see A as a sum of rank
one matrices

A =
r∑

j=1

σjujv
>
j (∗)

There are many ways to express A as sum or rank matrices (can
you think of any?). Formula (∗) has however a special property
(which, as we will see later is important e.g. in PCA).

Let k ≤ r. We will see that the k-th partial sum, Ak =
∑k
j=1 σjujv

>
j ,

captures much of the “energy” of A as possible:

‖A−Ak‖2,2 = min{‖A−B‖2,2 : B ∈ IRm×n, rank(B) ≤ k}

33



Projection

A projection is a square matrix P such that P2 = P

For every v we have that Pv−v is in the null space of P because

P (Pv − v) = (P2 − P )v = 0
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Complementary projection

If P is a projection, I − P is also a projection:

(I − P )2 = I2 + P2 − 2IP = I + P − 2P = I − P

Moreover, range(I − P ) = null(P ) because P ((I − P )v) = 0.

Likewise, range(P ) = null(I − P )

Since range(P )∩null(P ) = {0} we see that a projection separates

IRn into two spaces
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Orthogonal projections

An orthogonal projection is one such that range(P ) is orthogonal

to null(P ).

Theorem: A projection P is orthogonal iff P is symmetric

36



Orthogonal projections (cont.)

An orthogonal projection is expressed as

P = ÛÛ> =
k∑
i=1

uiu
>
i

where Û = [u1, . . . , uk] and the ui are o.n. vectors

If uk+1, . . . , un complete the set {u1, . . . , uk} to an o.n. basis, the

orthogonal projection I − P can be written as

n∑
i=k+1

uiu
>
i
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