GI07/COMPM012:
 Mathematical Programming and Research Methods (Part 2)

\author{

1. Linear Algebra Review
}

Massimiliano Pontil

Prerequisites \& assessment

- Calculus (real-valued functions, limits, derivatives, etc.)
- Fundamentals of linear algebra (vectors, angles, matrices, eigenvectors/eigenvalues,...)
- 1 long homework assignment near the end of the course (35\%) - deliver it on-time, penalty otherwise

Material

- Lecture notes
- http://www.cs.ucl.ac.uk/staff/M.Pontil/courses/index-GIO7.htm
- Reference book
- This and next lecture: Trefethen and Bau. Numerical linear algebra. SIAM.
- Additional material (see web-page for more info)

Course outline

- (Weeks 1,2) Elements of linear algebra and singular value decomposition (SVD)
- (Week 3) Applications of SVD in ML and data analysis
- (Week 4) Elements of graph theory. Applications in ML and data analysis
- (Week 5) Kernel methods

Today's plan

- Linear algebra review
- vector and matrix operations
- orthogonality
- norms
- singular value decomposition

Vectors

- denoted by lower case letters, x, y, b etc.
- they form a linear space: 1) $x+y$ is still a vector; 2) If $\lambda \in \mathbb{R}, \lambda x$ is still a vector; 3) there is a zero vector, called 0 , such that $x+0=x$, etc.
- a vector can be represented by its coefficients relative to a fixed set (basis) of linearly independent vectors e_{1}, \ldots, e_{n}. The number n is uniquely defined as the dimension of the space, which we call \mathbb{R}^{n}
- The coordinate vectors $e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots e_{n}=$ ($0,0, \ldots, 0,1$) form a basis of \mathbb{R}^{n} called the standard basis
- x is identified by $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ since: $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} e_{1}+x_{2} e_{2}+\ldots x_{n} e_{n}$

Matrices

- denoted by upper case letters (A, B etc.). An $m \times n$ matrix is denoted as $A=\left(A_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right)$
- think of a matrix as a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}
- they form a linear space (can be viewed as mn-dim vectors)
- denote by a_{i} the columns of A. Also use the notation $A=$ $\left[a_{1}, \ldots, a_{n}\right.$]
- $A x=\sum_{i=1}^{n} x_{i} a_{i} \quad$ (linear combination of column vectors)

Matrices (cont.)

- transpose: given $A \in \mathbb{R}^{m \times n}$ its transpose $A^{\top} \in \mathbb{R}^{n \times m}$ is defined as $A_{j i}^{\top}=A_{i j}$
- an $n \times n$ matrix is said: symmetric if $A_{i j}=A_{j i}$
- skew symmetric (or antisymmetric) if $A_{i j}=-A_{j i}$
- positive semi-definite (psd) if $x^{\top} A x=\sum_{i, j=1}^{n} x_{i} A_{i j} x_{j} \geq 0$ for every $x \in \mathbb{R}^{n}$ (example: the empirical covariance is symmetric and psd)

Range and null space

- the range space of A is the set of vectors that can be expressed as $A x$ for some x :

$$
\operatorname{range}(A)=\left\{b: b=A x, \text { for some } x \in \mathbb{R}^{n}\right\}
$$

namely, the set of vectors spanned by the columns of A (so the range of A is also called the column space of A)

- the null space of A is the set of vectors x which satisfy $A x=0$:

$$
\operatorname{null}(A)=\{x: A x=0\}
$$

Rank

The column rank of A is the dimension of its columns space
The row rank of A is the dimension of its row space
Theorem: the column rank equals the row rank (we thus refer to this number simply as the rank)

An $m \times n$ matrix A, is said to have full rank if $\operatorname{rank}(\mathrm{A})=\min (m, n)$
A full rank matrix defines a one-to-one map:
Theorem: An $m \times n$ matrix A, with $m \geq n$ has full rank iff it maps no two distinct vectors to the same vector

Rank one matrices

If A has rank one then $\operatorname{range}(A)=\operatorname{span}\{b\}$, that is

$$
A x=\lambda(x) b
$$

by linearity $\lambda(x)=c^{\top} x$. We arrive to the expression

$$
A=b c^{\top}
$$

Two particular cases are

- If $c=e_{j}$ then all columns of A are zero except the j th column which is c
- If $b=e_{i}$ then all rows of A are zero except the i th row which equal c^{\top}

Inverse

A square and full rank matrix A is called nonsingular or invertible

Since the columns are a basis of \mathbb{R}^{m}, we can write any vector as a unique linear combination of them. In particular

$$
e_{j}=\sum_{i=1}^{m} z_{i j} a_{i} \quad \text { or } I=A Z
$$

Matrix Z is uniquely defined by the above equation. It is called the inverse of A and is denoted as A^{-1}.

Product of invertible matrices: $(A B)^{-1}=B^{-1} A^{-1}$ (analogous to $\left.(A B)^{\top}=B^{\top} A^{\top}\right)$

Inverse (cont.)

Since $A A^{-1}=A^{-1} A=I$, the equation $A x=b$ has always a unique solution, given by $A^{-1} b$. Interpretation: think of $A^{-1} b$ as the vector of coefficients of the expansion of b in the basis of columns of A

$$
A x=b \Longleftrightarrow A x=A A^{-1} b \Longleftrightarrow x=A^{-1} A A^{-1} b=A^{-1} b
$$

Orthogonal vectors

Recall the notion of inner product: $x^{\top} y=\sum_{i=1}^{n} x_{i} y_{i}$
and Euclidean norm: $\|x\|=\sqrt{x^{\top} x}$
A pair of vectors x and y are called orthogonal if $x^{\top} y=0$
The set $S=\left\{u_{1}, \ldots, u_{k}\right\}$ is called orthogonal if its elements are pairwise orthogonal; if, in addition, $\left\|u_{i}\right\|=1$ for $i=1, \ldots, k$ then S is said orthonormal

Theorem: the vectors in an orthogonal set $\left\{u_{1}, \ldots, u_{k}\right\}$ are linearly independent
Proof (hint) assume by contradiction that u_{1} is a linear combination of u_{2}, \ldots, u_{m} and conclude that $u_{1}=0$

Orthogonal vectors (cont.)

If $S=\left\{u_{1}, \ldots, u_{k}\right\}$ is an orthonormal (o.n.) set and x an arbitrary vector in \mathbb{R}^{m}, the vector

$$
r=x-\sum_{i=1}^{k}\left(u_{i}^{\top} x\right) u_{i}
$$

is orthogonal to S.
In particular, if $k=m$, then S is a basis and r must be zero
The linear space $\left\{y: u_{i}^{\top} y=0, i=1, \ldots, k\right\}$ is called the orthogonal complement to S

Orthogonal matrices

If $\left\{u_{1}, \ldots, u_{k}\right\}$ is an o.n. set then the $m \times k$ matrix $U=\left[u_{1}, \ldots, u_{k}\right]$ has the property that $U^{\top} U=I_{k \times k}$

When $k=m$ the matrix U is said orthogonal. In this case we have that $U^{-1}=U^{\top}$, that is

$$
U^{\top} U=I_{m \times m} \quad \text { (or equivalently } U U^{\top}=I_{m \times m} \text {) }
$$

Orthogonal matrices (cont.)

Interpretation:

Note that the transformation U preserves the inner product (so the angles and lengths of vectors are preserved)

$$
(U x)^{\top}(U y)=x^{\top} y
$$

If $\operatorname{det}(U)=1$ then U is a rotation; if $\operatorname{det}(U)=-1$ then U is a reflection

Norms

A norm is a function $\|\cdot\|: \mathbb{R}^{m} \rightarrow[0, \infty)$ which measures the length of a vector. It satisfies the conditions

- $\|x\| \geq 0$ and $\|x\|=0 \Longleftrightarrow x=0$
- $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality)
- $\|\alpha x\|=|\alpha|\|x\|$
for all $x, y \in \mathbb{R}^{m}$ and $\alpha \in \mathbb{R}$

Norms (cont.)

Norms are convex: for all $\lambda \in[0,1], x, y \in \mathbb{R}^{m}$ we have

$$
\|\lambda x+(1-\lambda) y\| \leq \lambda\|x\|+(1-\lambda)\|y\|
$$

An important class of norms are the p-norms:

$$
\|x\|_{p}=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{p}\right)^{1 / p}, \quad \text { for } p \geq 1
$$

and

$$
\|x\|_{\infty}=\max _{i=1}^{m}\left|x_{i}\right|
$$

Induced matrix norms

The space of $m \times n$ matrices is an $m n$-dimensional space. Any norm on this space can be used to define the size of such matrices

An induced matrix norm is a special type of norm associated with matrices, which is induced by the norms in the domain and codomain of A :

$$
\|A\|_{(m, n)}=\sup _{x \in \mathbb{R}^{n}} \frac{\|A x\|_{(m)}}{\|x\|_{(n)}}
$$

(can you argue this is a norm?)

Induced matrix norms (cont.)

For example if $\|x\|_{(n)}$ and $\|A x\|_{(m)}$ are the standard Euclidean norms

$$
\|A\|=\sup _{x \in \mathbb{R}^{n}} \sqrt{\frac{x^{\top} A^{\top} A x}{x^{\top} x}}=\sqrt{\lambda \max \left(A^{\top} A\right)}
$$

An important property of induced matrix norms is:

$$
\|A B\| \leq\|A\|\|B\|
$$

This follows by $\|A x\|_{(m)} \leq\|A\|\|x\|_{(n)}$

Frobenius norm

An important example of matrix norms which is not induced by vector norms is the Frobenius norm

$$
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}\right)^{1 / 2}
$$

This is the standard Euclidean norm when matrix A is viewed as an $m n$-dimensional vector. It may also be written as

$$
\|A\|_{F}=\left(\sum_{j=1}^{n}\left\|a_{j}\right\|_{2}^{2}\right)^{1 / 2}
$$

or as

$$
\|A\|_{F}=\sqrt{\operatorname{trace}\left(A^{\top} A\right)}=\sqrt{\operatorname{trace}\left(A A^{\top}\right)}
$$

(the trace of a matrix is the sum of the diagonal elements)

Singular value decomposition (SVD)

- SVD is a matrix factorization whose computation is key in many algorithms
- many ML and statistical methods are based on SVD:
- least squares, regularization
- principal component analysis
- spectral clustering
- matrix factorization, etc.
- being familiar with SVD is essential in order to understand and implement ML/statistical methods

What is it?

Observation: the image of the unit hypersphere under any $m \times n$ matrix A is an hyperellipse

Hyperellipse: surface in \mathbb{R}^{m} obtained by stretching the unit sphere in \mathbb{R}^{m} by some nonnegative factors $\sigma_{1}, \ldots, \sigma_{m}$ in some orthogonal directions (unit vectors) u_{1}, \ldots, u_{m}

The vectors $\left\{\sigma_{i} u_{i}\right\}$ are the principal axes of the hyperellipse, with lengths $\sigma_{1}, \ldots, \sigma_{m}$ (use the convention that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq$ 0)

What is it? (cont.)

- we call the singular values of A the lengths of the n principal axis of $A S$,
- the left singular vectors of A, u_{1}, \ldots, u_{n}, are the principal semiaxes of $A S$
- the right singular vectors of A, v_{1}, \ldots, v_{n}, are the preimages of the principal semiaxis of $A S$
- if $m \geq n$ at most n of the σ_{i} are nonzero
- if A has rank r, exactly r of the σ_{i} are nonzero

Reduced SVD

Assume for simplicity that $\operatorname{rank}(A)=n$. We have seen that

$$
A v_{j}=\sigma_{j} u_{j}, \quad j \in\{1, \ldots, n\}
$$

or, $A V=\hat{U} \hat{\Sigma}$, with $\hat{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \hat{U}=\left[u_{1}, \ldots, u_{n}\right]$ and V is an $n \times n$ orthogonal matrix. We may then write

$$
A=\hat{U} \hat{\Sigma} V^{\top}
$$

Full SVD

Recall that we assumed $m \geq n$. If $m>n$, we can complete the set $\left\{u_{1}, \ldots, u_{n}\right\}$ to a basis of \mathbb{R}^{m} by adding to it $m-n$ additional onthonormal vectors u_{n+1}, \ldots, u_{m}.

We replace \hat{U} by the orthogonal matrix $U=\left[u_{1}, \ldots, u_{m}\right]$ and $\hat{\Sigma}$ by the $m \times n$ matrix Σ having $\hat{\Sigma}$ in the upper $n \times n$ block and $m-n$ zero rows below it. This gives us a new factorization of A

$$
A=U \Sigma V^{\top}
$$

Formal definition

Given an $m \times n$ real matrix A, a singular value decomposition (SVD) of A is a factorization

$$
A=U \Sigma V^{\top}
$$

where: U is an $m \times m$ orthogonal matrix, V is an $n \times n$ orthogonal matrix and Σ is diagonal

Also use the convention that the diagonal entries of Σ are nonnegative and nonincreasing:

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0, \quad p=\min (n, m)
$$

Existence and uniqueness

Theorem: every $m \times n$ matrix A has an SVD, whose singular values σ_{j} are uniquely determined. Moreover, if $m=n$ and the singular values are distinct, the left and right singular vectors are uniquely determined up to a sign change

Proof idea is to isolate the direction of the largest action of A and then proceed by induction

Change of basis

Another interpretation of SVD: every matrix is diagonal if one uses the proper bases for the domain and range spaces

$$
b=A x \Longleftrightarrow U^{\top} b=U^{\top} A x=U^{\top} U \Sigma V^{\top} x \Longleftrightarrow b^{\prime}=\Sigma x^{\prime}
$$

where $b^{\prime}=U^{\top} b$ and $x^{\prime}=V^{\top} x$

- range space is expressed in the basis of columns of U
- domain space is expressed in the basis of columns of V

Properties of SVD

- if A is a rank one matrix, $A=b c^{\top}$, we have $\sigma_{1}=\|b\|\|c\|$ and $u_{1}=\frac{b}{\|b\|}, v_{1}=\frac{c}{\|c\|}$ (up to a sign change)
- the rank r of a matrix A equals the number of nonzero singular values

Proof: $A=U \Sigma V^{\top}$. Now the rank of Σ is r. Since U and V are full rank, it follows that $\operatorname{rank}(A)=\operatorname{rank}(\Sigma)$

- $\operatorname{range}(\mathrm{A})=\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\} ; \operatorname{null}(A)=\operatorname{span}\left\{v_{r+1}, \ldots, v_{n}\right\}$

Properties of SVD (cont.)

- $\sigma_{1}=\|A\|_{(2,2)}$
- The nonzero singular values of A are the square root of the nonzero eigenvalues of $A^{\top} A$ or $A A^{\top}$
- If A is a square symmetric matrix, then the nonzero singular values of A are the absolute value of the eigenvalues of A

Low rank approximation

Another way to explain the SVD is to see A as a sum of rank one matrices

$$
\begin{equation*}
A=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{\top} \tag{*}
\end{equation*}
$$

There are many ways to express A as sum or rank matrices (can you think of any?). Formula (*) has however a special property (which, as we will see later is important e.g. in PCA).

Let $k \leq r$. We will see that the k-th partial sum, $A_{k}=\sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{\top}$, captures much of the "energy" of A as possible:

$$
\left\|A-A_{k}\right\|_{2,2}=\min \left\{\|A-B\|_{2,2}: B \in \mathbb{R}^{m \times n}, \operatorname{rank}(B) \leq k\right\}
$$

Projection

A projection is a square matrix P such that $P^{2}=P$

For every v we have that $P v-v$ is in the null space of P because $P(P v-v)=\left(P^{2}-P\right) v=0$

Complementary projection

If P is a projection, $I-P$ is also a projection:

$$
(I-P)^{2}=I^{2}+P^{2}-2 I P=I+P-2 P=I-P
$$

Moreover, range $(I-P)=\operatorname{null}(P)$ because $P((I-P) v)=0$. Likewise, $\operatorname{range}(P)=\operatorname{null}(I-P)$

Since range $(P) \cap \operatorname{null}(P)=\{0\}$ we see that a projection separates \mathbb{R}^{n} into two spaces

Orthogonal projections

An orthogonal projection is one such that range (P) is orthogonal to null(P).

Theorem: A projection P is orthogonal iff P is symmetric

Orthogonal projections (cont.)

An orthogonal projection is expressed as

$$
P=\hat{U} \hat{U}^{\top}=\sum_{i=1}^{k} u_{i} u_{i}^{\top}
$$

where $\hat{U}=\left[u_{1}, \ldots, u_{k}\right]$ and the u_{i} are o.n. vectors

If u_{k+1}, \ldots, u_{n} complete the set $\left\{u_{1}, \ldots, u_{k}\right\}$ to an o.n. basis, the orthogonal projection $I-P$ can be written as

$$
\sum_{i=k+1}^{n} u_{i} u_{i}^{\top}
$$

