GI07/COMPM012: Mathematical Programming and Research Methods (Part 2)

1. Linear Algebra Review

Massimiliano Pontil

Prerequisites & assessment

- Calculus (real-valued functions, limits, derivatives, etc.)
- Fundamentals of linear algebra (vectors, angles, matrices, eigenvectors/eigenvalues,...)
- 1 long homework assignment near the end of the course (35%) – deliver it on-time, penalty otherwise

Material

- Lecture notes
 - http://www.cs.ucl.ac.uk/staff/M.Pontil/courses/index-GI07.htm
- Reference book
 - This and next lecture: Trefethen and Bau. Numerical linear algebra.
 SIAM.
- Additional material (see web-page for more info)

Course outline

- (Weeks 1,2) Elements of linear algebra and singular value decomposition (SVD)
- (Week 3) Applications of SVD in ML and data analysis
- (Week 4) Elements of graph theory. Applications in ML and data analysis
- (Week 5) Kernel methods

Today's plan

- Linear algebra review
 - vector and matrix operations
 - orthogonality
 - norms
- singular value decomposition

Vectors

- denoted by lower case letters, x, y, b etc.
- they form a *linear space*: 1) x + y is still a vector; 2) If $\lambda \in \mathbb{R}$, λx is still a vector; 3) there is a zero vector, called 0, such that x + 0 = x, etc.
- a vector can be represented by its coefficients relative to a fixed set (basis) of linearly independent vectors e_1, \ldots, e_n . The number n is uniquely defined as the dimension of the space, which we call \mathbb{R}^n
- The coordinate vectors $e_1 = (1, 0, ..., 0)$, $e_2 = (0, 1, 0, ..., 0)$, $\ldots e_n = (0, 0, ..., 0, 1)$ form a basis of \mathbb{R}^n called the standard basis
- x is identified by $(x_1, x_2, ..., x_n)$ since: $(x_1, x_2, ..., x_n) = x_1e_1 + x_2e_2 + ... x_ne_n$

Matrices

- denoted by upper case letters (A, B etc.). An $m \times n$ matrix is denoted as $A = (A_{ij} : 1 \le i \le m, 1 \le j \le n)$
- think of a matrix as a *linear transformation* from \mathbb{R}^n to \mathbb{R}^m
- they form a linear space (can be viewed as mn-dim vectors)
- denote by a_i the columns of A. Also use the notation $A = [a_1, \ldots, a_n]$
- $Ax = \sum_{i=1}^{n} x_i a_i$ (linear combination of column vectors)

Matrices (cont.)

- transpose: given $A \in \mathbb{R}^{m \times n}$ its transpose $A^{\top} \in \mathbb{R}^{n \times m}$ is defined as $A_{ji}^{\top} = A_{ij}$
- an $n \times n$ matrix is said: symmetric if $A_{ij} = A_{ji}$
- skew symmetric (or antisymmetric) if $A_{ij} = -A_{ji}$
- positive semi-definite (psd) if $x^{\top}Ax = \sum_{i,j=1}^{n} x_i A_{ij} x_j \ge 0$ for every $x \in \mathbb{R}^n$ (example: the empirical covariance is symmetric and psd)

Range and null space

• the range space of A is the set of vectors that can be expressed as Ax for some x:

range(A) = {
$$b : b = Ax$$
, for some $x \in \mathbb{R}^n$ }

namely, the set of vectors spanned by the columns of A (so the range of A is also called the column space of A)

• the null space of A is the set of vectors x which satisfy Ax = 0:

$$\mathsf{null}(A) = \{x : Ax = 0\}$$

Rank

The column rank of A is the dimension of its columns space

The row rank of A is the dimension of its row space

Theorem: the column rank equals the row rank (we thus refer to this number simply as the rank)

An $m \times n$ matrix A, is said to have full rank if rank(A) = min(m, n)

A full rank matrix defines a one-to-one map:

Theorem: An $m \times n$ matrix A, with $m \ge n$ has full rank iff it maps no two distinct vectors to the same vector

Rank one matrices

If A has rank one then $range(A) = span\{b\}$, that is

$$Ax = \lambda(x)b$$

by linearity $\lambda(x) = c^{\top}x$. We arrive to the expression

$$A = bc^{\mathsf{T}}$$

Two particular cases are

- If $c = e_j$ then all columns of A are zero except the jth column which is c
- If $b = e_i$ then all rows of A are zero except the ith row which equal c^{\top}

Inverse

A square and full rank matrix A is called nonsingular or *invertible*

Since the columns are a basis of \mathbb{R}^m , we can write any vector as a *unique* linear combination of them. In particular

$$e_j = \sum_{i=1}^m z_{ij} a_i \quad \text{or } I = AZ$$

Matrix Z is uniquely defined by the above equation. It is called the inverse of A and is denoted as A^{-1} .

Product of invertible matrices: $(AB)^{-1} = B^{-1}A^{-1}$ (analogous to $(AB)^{\top} = B^{\top}A^{\top}$)

Inverse (cont.)

Since $AA^{-1} = A^{-1}A = I$, the equation Ax = b has always a unique solution, given by $A^{-1}b$. Interpretation: think of $A^{-1}b$ as the vector of coefficients of the expansion of b in the basis of columns of A

$$Ax = b \iff Ax = AA^{-1}b \iff x = A^{-1}AA^{-1}b = A^{-1}b$$

Orthogonal vectors

Recall the notion of inner product: $x^{\top}y = \sum_{i=1}^{n} x_i y_i$

and Euclidean norm: $||x|| = \sqrt{x^{\top}x}$

A pair of vectors x and y are called orthogonal if $x^{\top}y = 0$

The set $S = \{u_1, \ldots, u_k\}$ is called orthogonal if its elements are pairwise orthogonal; if, in addition, $||u_i|| = 1$ for $i = 1, \ldots, k$ then S is said orthonormal

Theorem: the vectors in an orthogonal set $\{u_1, \ldots, u_k\}$ are linearly independent

Proof (hint) assume by contradiction that u_1 is a linear combination of u_2, \ldots, u_m and conclude that $u_1 = 0$

Orthogonal vectors (cont.)

If $S = \{u_1, \ldots, u_k\}$ is an orthonormal (o.n.) set and x an arbitrary vector in \mathbb{R}^m , the vector

$$r = x - \sum_{i=1}^{k} (u_i^{\top} x) u_i$$

is orthogonal to S.

In particular, if k = m, then S is a basis and r must be zero

The linear space $\{y: u_i^\top y=0, i=1,\ldots,k\}$ is called the orthogonal complement to S

Orthogonal matrices

If $\{u_1, \ldots, u_k\}$ is an o.n. set then the $m \times k$ matrix $U = [u_1, \ldots, u_k]$ has the property that $U^\top U = I_{k \times k}$

When k = m the matrix U is said orthogonal. In this case we have that $U^{-1} = U^{\top}$, that is

$$U^{\top}U = I_{m \times m}$$
 (or equivalently $UU^{\top} = I_{m \times m}$)

Orthogonal matrices (cont.)

Interpretation:

Note that the transformation U preserves the inner product (so the angles and lengths of vectors are preserved)

$$(Ux)^{\top}(Uy) = x^{\top}y$$

If det(U) = 1 then U is a rotation; if det(U) = -1 then U is a reflection

Norms

A norm is a function $\|\cdot\|$: $\mathbb{R}^m \to [0,\infty)$ which measures the length of a vector. It satisfies the conditions

- $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- $\|\alpha x\| = |\alpha| \|x\|$

for all $x, y \in \mathbb{R}^m$ and $\alpha \in \mathbb{R}$

Norms (cont.)

Norms are convex: for all $\lambda \in [0,1], \; x,y \in {\rm I\!R}^m$ we have

$$\|\lambda x + (1-\lambda)y\| \le \lambda \|x\| + (1-\lambda)\|y\|$$

An important class of norms are the *p*-norms:

$$\|x\|_p = \left(\sum_{i=1}^m |x_i|^p\right)^{1/p}, \quad \text{for } p \ge 1$$

and

$$\|x\|_{\infty} = \max_{i=1}^{m} |x_i|$$

Induced matrix norms

The space of $m \times n$ matrices is an mn-dimensional space. Any norm on this space can be used to define the size of such matrices

An induced matrix norm is a special type of norm associated with matrices, which is induced by the norms in the domain and codomain of A:

$$||A||_{(m,n)} = \sup_{x \in \mathbb{R}^n} \frac{||Ax||_{(m)}}{||x||_{(n)}}$$

(can you argue this is a norm?)

Induced matrix norms (cont.)

For example if $||x||_{(n)}$ and $||Ax||_{(m)}$ are the standard Euclidean norms

$$||A|| = \sup_{x \in \mathbb{R}^n} \sqrt{\frac{x^\top A^\top A x}{x^\top x}} = \sqrt{\lambda_{\max}(A^\top A)}$$

An important property of induced matrix norms is:

 $\|AB\| \le \|A\| \|B\|$

This follows by $||Ax||_{(m)} \le ||A|| ||x||_{(n)}$

Frobenius norm

An important example of matrix norms which is not induced by vector norms is the Frobenius norm

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2}$$

This is the standard Euclidean norm when matrix A is viewed as an mn-dimensional vector. It may also be written as

$$||A||_F = \left(\sum_{j=1}^n ||a_j||_2^2\right)^{1/2}$$

or as

$$||A||_F = \sqrt{\operatorname{trace}(A^{\top}A)} = \sqrt{\operatorname{trace}(AA^{\top})}$$

(the trace of a matrix is the sum of the diagonal elements)

Singular value decomposition (SVD)

- SVD is a matrix factorization whose computation is key in many algorithms
- many ML and statistical methods are based on SVD:
 - least squares, regularization
 - principal component analysis
 - spectral clustering
 - matrix factorization, etc.
- being familiar with SVD is essential in order to understand and implement ML/statistical methods

What is it?

Observation: the image of the unit hypersphere under any $m \times n$ matrix A is an hyperellipse

Hyperellipse: surface in \mathbb{R}^m obtained by stretching the unit sphere in \mathbb{R}^m by some nonnegative factors $\sigma_1, \ldots, \sigma_m$ in some orthogonal directions (unit vectors) u_1, \ldots, u_m

The vectors $\{\sigma_i u_i\}$ are the principal axes of the hyperellipse, with lengths $\sigma_1, \ldots, \sigma_m$ (use the convention that $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$)

What is it? (cont.)

- we call the singular values of A the lengths of the n principal axis of AS,
- the left singular vectors of A, u_1, \ldots, u_n , are the principal semiaxes of AS
- the right singular vectors of A, v_1, \ldots, v_n , are the preimages of the principal semiaxis of AS
- if $m \ge n$ at most n of the σ_i are nonzero
- if A has rank r, exactly r of the σ_i are nonzero

Reduced SVD

Assume for simplicity that rank(A) = n. We have seen that

$$Av_j = \sigma_j u_j, \quad j \in \{1, \dots, n\}$$

or, $AV = \hat{U}\hat{\Sigma}$, with $\hat{\Sigma} = \text{diag}(\sigma_1, \dots, \sigma_n)$, $\hat{U} = [u_1, \dots, u_n]$ and V is an $n \times n$ orthogonal matrix. We may then write

$$A = \hat{U}\hat{\Sigma}V^{\mathsf{T}}$$

Full SVD

Recall that we assumed $m \ge n$. If m > n, we can complete the set $\{u_1, \ldots, u_n\}$ to a basis of \mathbb{R}^m by adding to it m - n additional onthonormal vectors u_{n+1}, \ldots, u_m .

We replace \hat{U} by the orthogonal matrix $U = [u_1, \ldots, u_m]$ and $\hat{\Sigma}$ by the $m \times n$ matrix Σ having $\hat{\Sigma}$ in the upper $n \times n$ block and m-n zero rows below it. This gives us a new factorization of A

 $A = U \Sigma V^{\top}$

$$A \qquad U \qquad \Sigma \qquad V^*$$

Formal definition

Given an $m \times n$ real matrix A, a singular value decomposition (SVD) of A is a factorization

$$A = U \mathbf{\Sigma} V^{\top}$$

where: U is an $m \times m$ orthogonal matrix, V is an $n \times n$ orthogonal matrix and Σ is diagonal

Also use the convention that the diagonal entries of Σ are nonnegative and nonincreasing:

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p \ge 0, \quad p = \min(n, m)$$

Existence and uniqueness

Theorem: every $m \times n$ matrix A has an SVD, whose singular values σ_j are uniquely determined. Moreover, if m = n and the singular values are distinct, the left and right singular vectors are uniquely determined up to a sign change

Proof idea is to isolate the direction of the largest action of A and then proceed by induction

Change of basis

Another interpretation of SVD: every matrix is diagonal if one uses the proper bases for the domain and range spaces

 $b = Ax \iff U^\top b = U^\top Ax = U^\top U \Sigma V^\top x \iff b' = \Sigma x'$ where $b' = U^\top b$ and $x' = V^\top x$

- \bullet range space is expressed in the basis of columns of U
- domain space is expressed in the basis of columns of V

Properties of SVD

- if A is a rank one matrix, $A = bc^{\top}$, we have $\sigma_1 = \|b\| \|c\|$ and $u_1 = \frac{b}{\|b\|}$, $v_1 = \frac{c}{\|c\|}$ (up to a sign change)
- the rank r of a matrix A equals the number of nonzero singular values

Proof: $A = U\Sigma V^{\top}$. Now the rank of Σ is r. Since U and V are full rank, it follows that rank $(A) = \operatorname{rank}(\Sigma)$

• range(A) = span{ u_1, \ldots, u_r }; null(A) = span{ v_{r+1}, \ldots, v_n }

Properties of SVD (cont.)

- $\sigma_1 = ||A||_{(2,2)}$
- The nonzero singular values of A are the square root of the nonzero eigenvalues of $A^\top A$ or AA^\top
- If A is a square symmetric matrix, then the nonzero singular values of A are the absolute value of the eigenvalues of A

Low rank approximation

Another way to explain the SVD is to see A as a sum of rank one matrices

$$A = \sum_{j=1}^{r} \sigma_j u_j v_j^{\top} \qquad (*)$$

There are many ways to express A as sum or rank matrices (can you think of any?). Formula (*) has however a special property (which, as we will see later is important e.g. in PCA).

Let $k \leq r$. We will see that the k-th partial sum, $A_k = \sum_{j=1}^k \sigma_j u_j v_j^{\top}$, captures much of the "energy" of A as possible:

$$||A - A_k||_{2,2} = \min\{||A - B||_{2,2} : B \in \mathbb{R}^{m \times n}, \operatorname{rank}(B) \le k\}$$

Projection

A projection is a square matrix P such that $P^2 = P$

For every v we have that Pv - v is in the null space of P because $P(Pv - v) = (P^2 - P)v = 0$

Complementary projection

If P is a projection, I - P is also a projection:

$$(I - P)^2 = I^2 + P^2 - 2IP = I + P - 2P = I - P$$

Moreover, range(I - P) = null(P) because P((I - P)v) = 0. Likewise, range(P) = null(I - P)

Since range(P) \cap null(P) = {0} we see that a projection separates \mathbb{R}^n into two spaces

Orthogonal projections

An orthogonal projection is one such that range(P) is orthogonal to null(P).

Theorem: A projection *P* is orthogonal iff *P* is symmetric

Orthogonal projections (cont.)

An orthogonal projection is expressed as

$$P = \hat{U}\hat{U}^{\top} = \sum_{i=1}^{k} u_i u_i^{\top}$$

where $\hat{U} = [u_1, \ldots, u_k]$ and the u_i are o.n. vectors

If u_{k+1}, \ldots, u_n complete the set $\{u_1, \ldots, u_k\}$ to an o.n. basis, the orthogonal projection I - P can be written as

$$\sum_{i=k+1}^{n} u_i u_i^{\top}$$

3	7
\mathbf{J}	1