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ABSTRACT
In this paper we introduce TFMCC, an equation-based multicast
congestion control mechanism that extends the TCP-friendly TFRC
protocol from the unicast to the multicast domain. The key chal-
lenges in the design of TFMCC lie in scalable round-trip time mea-
surements, appropriate feedback suppression, and in ensuring that
feedback delays in the control loop do not adversely affect fairness
towards competing flows. A major contribution is the feedback
mechanism, the key component of end-to-end multicast congestion
control schemes. We improve upon the well-known approach of us-
ing exponentially weighted random timers by biasing feedback in
favor of low-rate receivers while still preventing a response implo-
sion. We evaluate the design using simulation, and demonstrate that
TFMCC is both TCP-friendly and scales well to multicast groups
with thousands of receivers. We also investigate TFMCC’s weak-
nesses and scaling limits to provide guidance as to application do-
mains for which it is well suited.

Keywords
congestion control, multicast, single-rate, TCP-friendliness, feed-
back suppression

1. INTRODUCTION
It is widely accepted that one of several factors inhibiting the usage
of IP multicast is the lack of good, deployable, well-tested multicast
congestion control mechanisms. To quote [10]:

The success of the Internet relies on the fact that best-effort
traffic responds to congestion on a link by reducing the load
presented to the network. Congestion collapse in today’s In-
ternet is prevented only by the congestion control mechanisms
in TCP.

We believe that for multicast to be successful, it is crucial that mul-
ticast congestion control mechanisms be deployed that can co-exist
with TCP in the FIFO queues of the current Internet.
The precise requirements for multicast congestion control are per-
haps open to discussion given the efficiency savings of multicast,
but we take the conservative position that a multicast flow is ac-
ceptable if it achieves no greater medium-term throughput to any
receiver in the multicast group than would be achieved by a TCP
flow between the multicast sender and that receiver.
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Such a requirement can be satisfied either by a single multicast
group if the sender transmits at a rate dictated by the slowest re-
ceiver in the group, or by a layered multicast scheme that allows
different receivers to receive different numbers of layers at differ-
ent rates. Much work has been done on the latter class [12, 18, 4],
but the jury is still out on whether any of these mechanisms can be
made safe to deploy.
This paper describes TCP-Friendly Multicast Congestion Control
(TFMCC), which belongs to the class of single rate congestion con-
trol schemes. Such schemes inevitably do not scale as well as lay-
ered schemes. However, they are much simpler, match the require-
ments of some applications well, and we will demonstrate that they
can scale to applications with many thousands of receivers. These
schemes also suffer from degradation in the face of badly broken
links to a few receivers – how to deal with such situations is a pol-
icy decision, but we expect that most applications using a single-
rate scheme will have application-specific thresholds below which
a receiver is compelled to leave the multicast group.
TFMCC is not the only single-rate multicast congestion control
scheme available. In particular, Pragmatic General Multicast Con-
gestion Control (PGMCC) [17] is also a viable solution with some
nice properties and a certain elegant simplicity. However, TFMCC
and PGMCC differ considerably in the smoothness and predictabil-
ity of their transmission. We will argue that both are appropriate
solutions, and that some applications are better suited to one than
the other.

1.1 TFMCC and TFRC
The TCP-friendly Rate Control protocol (TFRC) [5] is a unicast
congestion control mechanism intended for applications that re-
quire a smoother, more predictable transmission rate than TCP can
achieve. TFMCC extends the basic mechanisms of TFRC into the
multicast domain.
TFRC is an equation-based congestion control scheme. It uses a
control equation derived from a model of TCP’s long-term through-
put to directly control the sender’s transmission rate. Basically
TFRC functions as follows:

1. The receiver measures the packet loss rate and feeds this in-
formation back to the sender.

2. The sender uses the feedback messages to measure the round-
trip time to the receiver.

3. The sender uses the control equation to derive an acceptable
transmission rate from the measured loss rate and round-trip
time (RTT).

4. The sender’s transmission rate is then adjusted directly to
match the calculated transmission rate.

For full details of TFRC, we refer the reader to [5].
TFMCC follows a very similar design for multicast congestion con-
trol. The primary differences are that it is the receivers that mea-



sure their RTT to the sender and perform the calculation of the
acceptable rate. This rate is then fed back to the sender, the chal-
lenge being to do this in a manner which ensures that feedback
from the receiver with the lowest calculated rate reaches the sender
whilst avoiding feedback implosions. Moreover, we need to make
sure than any additional delay imposed to avoid feedback implosion
does not adversely affect the fairness towards competing protocols.

2. THE TFMCC PROTOCOL
Building an equation-based multicast congestion control mecha-
nism requires that the following problems be solved:

� A control equation must be chosen that defines the target
throughput in terms of measurable parameters, in this case
loss event rate and RTT.

� Each receiver must measure the loss event rate. Thus a fil-
ter for the packet loss history needs to be chosen that is a
good stable measure of the current network conditions, but is
sufficiently responsive when those conditions change.

� Each receiver must measure or estimate the RTT to the sender.
Devising a way to do this without causing excessive network
traffic is a key challenge.

� Each receiver uses the control equation to calculate an ac-
ceptable sending rate from the sender to itself.

� A feedback scheme must be so devised that feedback from
the receiver calculating the slowest transmission rate always
reaches the sender, but feedback implosions do not occur
when network conditions change.

� A filtering algorithm needs to be devised for the sender to
determine which feedback it should take into account as it
adjusts the transmission rate.

Clearly, all these parts are closely coupled. For example, altering
the feedback suppression mechanisms will impact how the sender
deals with this feedback. Many of our design choices are heavily
influenced by TFRC, as these mechanisms are fairly well under-
stood and tested. In this paper we will expend most of our efforts
focusing on those parts of TFMCC that differ from TFRC.

2.1 Determining an Acceptable Sending Rate
The control equation used by TFRC and TFMCC is derived from a
model for long-term TCP throughput in bytes/sec [15]:
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The expected throughput TTCP of a TCP flow is calculated as a
function of the steady-state loss event rate p, the round-trip time
tRTT , and the packet size s. Each TFMCC receiver measures its
own loss event rate and estimates its RTT to the sender. It then
uses Equation (1) to calculate TTCP , which is an estimate of the
throughput a TCP flow would achieve on the network path to that
receiver under the same network conditions. If the sender does not
exceed this rate for any receiver then it should be TCP-friendly,
in that it does not affect a TCP flow through the same bottlenecks
more than another TCP flow would do.
In the following section we will elaborate on how the necessary
parameters for the model are computed and how to deal with po-
tentially large receiver sets.

2.2 Adjusting the Sending Rate
The sender will continuously receive feedback from the receivers.
If a receiver sends feedback that indicates a rate that is lower than
the sender’s current rate, the sender will immediately reduce its rate
to that in the feedback message.

In order to eliminate a large number of unnecessary messages, re-
ceivers will not send feedback unless their calculated rate is less
than the current sending rate. However, this leaves us with a prob-
lem – how do we increase the transmission rate? We cannot afford
to increase the transmission rate in the absence of feedback, as the
feedback path from the slowest receiver may be congested or lossy.
As a solution we introduce the concept of the current limiting re-
ceiver (CLR). The CLR is the receiver that the sender believes cur-
rently has the lowest expected throughput of the group.1 The CLR
is permitted to send immediate feedback without any form of sup-
pression, so the sender can use the CLR’s feedback to increase the
transmission rate.
The CLR will change if another receiver sends feedback indicating
that a lower transmission rate is required. It will also change if the
CLR leaves the multicast group – this is normally signaled by the
CLR, but an additional timeout mechanism serves as a backup in
case the CLR crashes or becomes unreachable.
Normally the way loss measurement is performed limits the possi-
ble rate increase to roughly 0.3 packets per RTT , as shown in [5].
However, if the CLR leaves the group, the new CLR may have a
significantly higher calculated rate. We cannot afford to increase
directly to this rate, as the loss rate currently measured may not be
a predictor of the loss rate at the new transmission rate. Instead we
then impose a rate increase limit of one packet per RTT , which
is the same as TCP’s additive increase constant, so that the rate
gradually increases to the new CLR’s rate.

2.3 Measuring the Loss Event Rate
The loss event rate can only be scalably measured at the receivers.
The measurement mechanism closely matches that used for TFRC.
A receiver aggregates the packet losses into loss events, defined as
one or more packets lost during a round-trip time. The number of
packets between consecutive loss events is called a loss interval.
The average loss interval size can be computed as the weighted
average of the m most recent loss intervals lk; : : : ; lk�m+1:

lavg(k) =

Pm�1
i=0 wilk�iPm�1
i=0 wi

The weights wi are chosen so that very recent loss intervals receive
the same high weights, while the weights gradually decrease to 0
for older loss intervals. For example, with eight weights we might
use f5, 5, 5, 5, 4, 3, 2, 1g. This allows for smooth changes in lavg as
loss events age. While large values for m improve the smoothness
of the estimate, a very long loss history also reduces the respon-
siveness and thus the fairness of the protocol. Values around 8 to
32 appear to be a good compromise.
The loss event rate p used as an input for the TCP model is defined
as the inverse of lavg. The interval since the most recent loss event
does not end with a loss event and thus may not reflect the loss
event rate. This interval is included in the calculation of the loss
event rate if doing so reduces p:

p =
1

max (lavg(k); lavg(k � 1))

For a more thorough discussion of this loss measurement mecha-
nism see [5].

2.4 Round-trip Time Measurements
A key challenge of TFMCC is for each receiver to be able to mea-
sure its RTT to the sender without causing excessive traffic at the

1In this respect, the CLR is comparable to the representative used
in congestion control schemes such as PGMCC.



sender. In practice the problem is primarily one of getting an ini-
tial RTT measurement as, with the use of timestamps in the data
packets, a receiver can see changes in the delay of the forward path
simply from the packet’s arrival time. We will discuss this further
in Section 2.4.3.

2.4.1 RTT Estimate Initialization
Ideally we would like a receiver to be able to initialize its RTT mea-
surement without having to exchange any feedback packets with
the sender. This is possible if the sender and receiver have syn-
chronized clocks, which might be achieved using GPS receivers.
Less accurately, it can also be done using clocks synchronized with
NTP [13].
In either case, the data packets are timestamped by the sender, and
the receiver can then compute the one-way delay. The RTT is esti-
mated to be twice the one-way delay dS!R. In the case of NTP, the
errors that accumulate between the stratum-1 server and the local
host must be taken into account. An NTP server knows the RTT
and dispersion to the stratum-1 server to which it is synchronized.
The sum of these gives the worst-case error � in synchronization.
To be conservative:

tRTT = 2(dS!R + �sender + �receiver)

In practice NTP provides an average timer accuracy of 20-30 ms
[13], and in most cases this gives us an estimate of RTT that is
accurate at least to the nearest 100 ms. Although not perfect, this is
still useful as a first estimate.
In many cases though, no reliable form of clock synchronization
is available. Each receiver must then initialize its RTT estimate to
a value that should be larger than the highest RTT of any of the
receivers. We assume that for most networks a value of 500 ms is
appropriate [1]. This initial value is used until a real measurement
can be made. In Appendix A we reason why it is safe to also use
this value to aggregate losses to loss events, where a low RTT value
would be the conservative option.

2.4.2 RTT Measurement
A receiver gets to measure the instantaneous RTT tinstRTT by sending
timestamped feedback to the sender, which then echoes the time-
stamp and receiver ID in the header of a data packet. If more feed-
back messages arrive than data packets are sent, we prioritize the
sender’s report echoes in the following order:

1. a receiver whose report causes it to be selected as the new
CLR

2. receivers that have not yet measured their RTT
3. non-CLR receivers with previous RTT measurements
4. the existing CLR.

Ties are broken in favor of the receiver with the lowest reported
rate. Normally the number of data packets is larger than the num-
ber of feedback packets, so the CLR’s last report is echoed in any
remaining data packets.2

To prevent a single spurious RTT value from having an excessive
effect on the sending rate we smooth the values using an exponen-
tially weighted moving average (EWMA)

tRTT = � � tinstRTT + (1� �) � tRTT
For the CLR we set �CLR = 0:05. Given that other receivers will
not get very frequent RTT measurements and thus old measure-
ments are likely to be outdated, a higher value of �non�CLR = 0:5
is used for them.
2To be able to infer an accurate RTT from the timestamps it is nec-
essary to also take into account the offset between receipt of a time-
stamp and echoing it back.

2.4.3 One-way Delay RTT Adjustments
Due to the infrequent RTT measurements, it would also be possi-
ble for large increases in RTT to go unnoticed if the receiver is not
the CLR. To avoid this we adjust the RTT estimate between actual
measurements. Since data packets carry a send timestamp tdata, a
receiver that gets a RTT measurement at time tnow can also com-
pute the one-way delay from sender to receiver (including clock
skew) as

dS!R = tnow � tdata

and the one-way from receiver to sender as

dR!S = tinstRTT � dS!R

Due to clock skew, these values are not directly meaningful, but
dR!S can be used to modify the RTT estimate between real RTT
measurements. When in a later data packet the one-way delay from
sender to receiver is determined as d 0S!R, it is possible to compute
an up-to-date RTT estimate

tinstRTT
0 = dR!S + d 0S!R

Clock skew between sender and receiver cancels out, provided that
clock drift between real RTT measurements is negligible. The mod-
ified RTT estimates are smoothed with an EWMA just like nor-
mal RTT measurements, albeit with a smaller decay factor for the
EWMA since the one-way delay adjustments are possible with each
new data packet. One-way delay adjustments are used as an indi-
cator that the RTT may have changed significantly and thus a real
RTT measurement is necessary. If the receiver is then selected as
CLR, it measures its RTT with the next packet and all interim one-
way delay adjustments are discarded. For this reason it proved to
be unnecessary to filter out flawed one-way delay estimates.

2.4.4 Sender-side RTT Measurements
While a preconfigured initial RTT value can be used at the receiver
for loss aggregation and rate computation, it should not be used to
set the sending rate. Using a high initial RTT would result in a very
low sending rate, followed by a high sending rate when the CLR
gets the first RTT measurement, then a CLR change to a receiver
with no previous RTT measurement, and so on. Such rate oscil-
lations should be avoided. On the other hand, if the sender only
accepted a receiver with a valid RTT as CLR, receivers with a very
high loss rate might never receive their feedback echo, and so never
become CLR.
For these reasons, TFMCC supports additional sender-based RTT
measurements. A receiver report also echoes the timestamp of the
last data packet, and so the sender and receivers are both able to
measure RTT. The sender only computes the RTT when it has to
react to a receiver report without a valid RTT, and it uses this to
adjust the calculated rate in the receiver report.

2.5 Receiver Feedback
As TFMCC is designed to be used with receiver sets of perhaps sev-
eral thousand receivers, it is critical to ensure that the sender gets
feedback from the receivers experiencing the worst network con-
ditions without being overwhelmed by feedback from all the other
receivers. Congestion may occur at any point in the distribution
tree, from the sender’s access link through to a single receiver’s tail
circuit. Thus any mechanism must be able to cope when condi-
tions change from a single receiver being lightly congested to all
the receivers being equally heavily congested, and other similarly
pathological cases. At the same time we would like the feedback
delay to be relatively small in the steady state. The latter can be



achieved through the concept of a CLR, which can send feedback
immediately.
However, a CLR is of no help during a change in network condi-
tions that affect receivers other than the CLR. Thus, we will ignore
the influence of the CLR on the feedback process in this section,
but we note that the CLR generates relatively little feedback traf-
fic and both strictly improves the responsiveness to congestion and
reduces the amount of feedback sent by other receivers.
Various reliable multicast protocols incorporate feedback trees, where
the receivers are organized into a tree hierarchy, and internal nodes
in the tree aggregate feedback. Such trees largely solve the feed-
back implosion problem, but are difficult to build and maintain. If
such a tree exists it should clearly be used, but in this paper we will
assume that is not the case, and examine pure end-to-end suppres-
sion mechanisms.
Several mechanisms using randomized timers for feedback sup-
pression in multicast protocols have been proposed before [6, 7,
9, 14]. Time is divided into feedback rounds, which are either im-
plicitly or explicitly indicated to the receivers. At the start of each
feedback round, each receiver sets a randomized timer. If the re-
ceiver hears feedback from another receiver that makes it unneces-
sary for it to send its own feedback, it cancels its timer. Otherwise
when the timer expires, a feedback message is sent.
For TFMCC, we use such a mechanism based on exponentially
weighted random timers. When the feedback timer expires, the
receiver unicasts its current calculated sending rate to the sender.
If this rate is lower than previous feedback received, the sender
echoes the feedback to all receivers. With respect to the intended
application of finding the correct CLR, we improve upon the orig-
inal concept by biasing feedback in favor of low-rate receivers.
The dynamics of such a mechanism depend both on the way that
the timers are initialized, and on how one receiver’s feedback sup-
presses another’s.

2.5.1 Randomized Timer Values
The basic exponentially weighted random timer mechanism initial-
izes a feedback timer to expire after t seconds, with

t = max (T (1 + logN x); 0) (2)
where
x is a uniformly distributed random variable in (0; 1],
T is an upper limit on the delay before sending feedback,
N is an estimated upper bound on the number of receivers.

T is set to a multiple of the maximum RTT of the receivers; T =
b tmax

RTT . The choice of b determines the number of feedback packets
per round that will be sent in worst-case conditions and the feed-
back delay under normal conditions. In Section 2.5.4 we show
that useful values for b lie between 3 and 6. We use a default value
of 4.
The mechanism is relatively insensitive to overestimation of the
receiver set size N , but underestimation may result in a feedback
implosion. Thus, a sufficiently large value for N should be chosen.
In our simulations we use N = 10; 000, which seems reasonable
given our scaling goals.
Whilst this basic algorithm is sufficient to prevent a feedback im-
plosion, it does not ensure that receivers with low expected rates
will be more likely to respond than receivers with high rates. Even
if a receiver can only respond when its rate is less than the cur-
rent sending rate, this does not ensure that the lowest-rate receiver
will respond quickly when congestion worsens rapidly.3 Thus the
sender would be insufficiently responsive to increased congestion.

3In fact, receivers with lower RTTs are incorrectly favored since
they receive the feedback request earlier.

To avoid this problem, we bias the feedback timers in favor of re-
ceivers with lower rates, while still allowing sufficient randomiza-
tion to avoid implosion when all the receivers calculate the same
low rate. Since a receiver knows the sending rate but not the cal-
culated rate of other receivers, a good measure of the importance
of its feedback is the ratio r of the calculated rate to the current
sending rate.4 There are several ways to use r to bias the timers:

� Modify x: reduce the random value x.
� Modify N: reduce the upper bound on the receiver set.
� Offset: subtract an offset value from the feedback time.

All three cause low-rate receivers to report earlier, but the first two
alternatives may cause a feedback implosion. To have any signif-
icant effect when only one receiver becomes congested, we must
change the values significantly, but when a link close to the sender
becomes congested, the feedback distribution results in too many
short timer values to prevent implosion. Using an offset signifi-
cantly decreases the time for all congested receivers to respond, but
the probability of a very short timer value is not greatly increased
and so suppression still works. A more detailed analysis can be
found in the corresponding technical report [20].
For this reason the feedback timers in TFMCC are biased in favor
of low-rate receivers through an offset:

t0 = rT + (1� )T � (1 + logN x) (3)

where  determines the fraction of T that should be used to spread
out the feedback responses with respect to the reported rate.
We can further optimize the offset method by truncating the range
of r to likely values, and normalizing the resulting interval to [0,1].
In the implementation, instead of r, we use

r0 = (max(min(r; 0:9); 0:5) � 0:5)=0:4)

The effect of this is to start biasing feedback only when a receiver’s
rate is less than 90% of the sender’s rate (this doesn’t significantly
affect fairness), and to saturate the bias if the receiver’s rate is 50%
of the sender’s rate (since receivers with even lower rates will take
several rounds for their loss measures to change anyway).

2.5.2 Canceling Feedback
When a receiver sees echoed feedback from another receiver, it
must decide whether or not to cancel its feedback timer. One pos-
sibility is to rely completely on the feedback timer bias, and cancel
the timer on receipt of the first feedback for this round. Another
possibility is to cancel the timer only if the echoed feedback indi-
cates a rate lower than the rate the receiver wanted to report. The
latter guarantees that the receiver with the lowest rate will always
get to send its feedback, but the former results in significantly less
feedback traffic in the worst case.
A spectrum lies between these two extremes: if the receiver’s cal-
culated rate is Rcalc and the rate from the echoed feedback is Rfb,
then the timer is canceled if Rfb � Rcalc < � Rfb. The former
method discussed above corresponds to � = 1 and the latter to
� = 0. As we change � from zero to one, we reduce the chance of
hearing from the absolute lowest-rate receiver, but also reduce the
increase in the number of feedback messages. As shown in [19],
the expected number of feedback messages increases logarithmi-
cally with n for � = 1. For values of � < 1, this number becomes
approximately constant in the limit for large n.
These results are corroborated by the simulations depicted in Fig-
ure 1. The graph shows the number of feedback messages in the
first round of the worst-case scenario, where n receivers (except

4Note that 0 < r < 1 since only receivers with lower rates than
the current rate send reports.
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the CLR) suddenly experience congestion. The effects of � be-
ing 0.0, 0.1, and 1.0 are shown. Values of � around 0.1 result in
the desired behavior of only a marginally higher number of feed-
back messages, while the resulting transient transmission rate is no
worse than 10% higher than it should be.

2.5.3 Feedback at Low Sending Rates
At very low sending rates and high loss rates (which usually go
together), it is still possible to get a feedback implosion. The feed-
back echo from the sender that suppresses other feedback is sent
with the next data packet. Thus, when the delay before the next
data packet is sent is close to the feedback delay, it will arrive too
late for suppression to work.
This problem can be prevented by increasing the feedback delay T
in proportion to the time interval between data packets when the
sending rate Rsend is low:

T = bmax

�
tmax
RTT ; (c+ 1)

s

Rsend

�

c being the number of consecutive data packets that can be lost
without running the risk of implosion, and s the packet size. We
recommend using values of c between 2 and 4.

2.5.4 Expected Number of Feedback Messages, Feed-
back Delay, and Feedback Quality

The expected number of duplicate feedback messages E[f ] for ex-
ponential feedback suppression is given in [7] as

E[f ] = N�=T 0

�
n

N
+

�
1� 1

N

�n
�
�
1� 1

N�=T 0

�n�

where
n is the actual number of receivers,
� is the network delay (for unicast feedback channels � = tmax

RTT ),
T 0 is the maximum feedback delay used for suppression.

Assuming the worst case of r = 0 for all receivers, T 0 = (1�)T .
Whilst our primary concern is to avoid implosion, a very low num-
ber of responses (say 1 or 2) is also undesirable. Some additional
responses greatly increase the probability of not having a low-rate
but the lowest-rate receiver respond and also provide RTT measure-
ments to a larger number of receivers.
Figure 2 shows a plot of E[f ] for different values of T 0 and n, with
N = 10; 000. Values of T 0 in the range of roughly 3 to 4 RTTs re-
sult in the desired number of feedback messages, particularly in the
common range for n of one to two orders of magnitude below N .
For this reason, the values chosen for  and T in the TFMCC im-
plementation are 1=4 and 4 tmax

RTT respectively. Given those choices
for  and T , we now examine how well the feedback biasing meth-
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ods achieve the additional goal of low response time and how close
the reported rate is to that of the true lowest-rate receiver.
Figure 3 compares the feedback delay for unbiased exponential
timers with the basic offset bias and the modified offset that uses r0

instead of r. All three show the logarithmic decrease in response
time with the number of receivers typical for feedback suppression
based on exponential timers. The difference between the methods
is not great, with the modified offset algorithm having a slight edge
over the regular offset.
When examining the rates that are reported in the feedback mes-
sages, the advantage of the offset methods becomes apparent. Fig-
ure 4 compares the lowest reported rate of the feedback messages of
a single feedback round to the actual lowest rate of the receiver set.
For example, a value of 0.1 indicates that the lowest reported rate
is on average 10% higher after one feedback round than it should
be in the ideal case. Rates reported with the offset methods are
considerably closer to the real minimum than those reported with
unmodified exponential timers. Particularly when r is adjusted ap-
propriately by the modified offset method, feedback will normally
be within a few percent of the minimum rate. Plain exponential
feedback shows average deviations of nearly 20% above the mini-
mum rate.
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2.6 Slowstart
TFMCC uses a slowstart mechanism to more quickly approach its
fair bandwidth share at the start of a session. During slowstart, the
sending rate increases exponentially, whereas normal congestion
control allows only a linear increase. An exponential increase can
easily lead to heavy congestion, so great care has to be taken to
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design a safe increase mechanism. A simple measure to this end
is to limit the increase to a multiple d of the minimum rate Rmin

recv

received by any of the receivers. Since a receiver can never receive
at a rate higher than its link bandwidth, this effectively limits the
overshoot to d times that bandwidth. The target sending rate is
calculated as

Rtarget
send = dRmin

recv

and the current sending rate is gradually adjusted to the target rate
over the course of a RTT. In our implementation we use a value of
d = 2. Slowstart is terminated as soon as any one of the receivers
experiences its first packet loss.
It is necessary to use a different feedback bias for slowstart since
receivers cannot calculate a TCP-friendly rate. For this reason we
use:

r = Rrecv=Rsend

A report from the receiver that experiences the first loss event can
only be suppressed by other reports also indicating packet loss, but
not by reports from receivers that did not yet experience loss. Thus,
slowstart will be terminated no later than one feedback delay after
the loss was detected.
In practice, TFMCC will seldomly reach the theoretical maximum
of a doubling of the sending rate per RTT for two reasons:

� The target sending rate is increased only when feedback from
a new feedback round is received. Thus, doubling is not pos-
sible every RTT, but every feedback delay, which is usually
much larger than a RTT.

� Measuring the receive rate over several RTTs and gradually
increasing Rsend to Rtarget

send gives a minimum receive rate at
the end of a feedback interval that is lower than the sending
rate during that interval. Thus, setting Rtarget

send to twice the
minimum receive rate does not double the current sending
rate.

As is desirable for a multicast protocol, TFMCC slowstart behaves
more conservatively than comparable unicast slowstart mechanisms.

3. PROTOCOL BEHAVIOR WITH VERY
LARGE RECEIVER SETS

The loss path multiplicity problem is a well-known characteristic
of multicast congestion control mechanisms that react to single loss
indications from receivers on different network paths. It prevents
the scaling of those mechanisms to large receiver sets. In [3], the
authors propose as a possible solution tracking the most congested
path and taking only loss indications from that path into account.
Since the reports of a TFMCC receiver contain the expected rate
based on the loss event rate and RTT on the single path from sender

to that receiver, the protocol implicitly avoids the loss path multi-
plicity problem. Yet TFMCC (and all other single-rate congestion
control schemes) may be confined to a rate below the fair rate if,
rather than there being a single most congested path, there is a path
that changes over time. The faster a multicast congestion control
protocol responds to transient congestion, the more pronounced is
the effect of tracking the minimum of stochastic variations in the
calculated rate at the different receivers. For example, if loss to
several receivers independently varies fairly quickly between 0%
and 10% with the average being 5%, a congestion control protocol
may always track the worst receiver, giving a loss estimate that is
twice what it should be.
A worst-case scenario in this respect is a high number of receivers
with independent loss and a calculated rate in the range of the
lowest-rate receiver. If n receivers experience independent packet
loss with the same loss probability, the loss intervals will have an
exponential distribution. The expected value of the minimum of n
exponentially distributed random variables is proportional to 1=n.
Thus, if TFMCC based its rate calculations on a single loss inter-
val, the average sending rate would scale proportionally to 1=

p
n

(in the case of moderate loss rates, otherwise even worse). The rate
calculation in TFMCC is based on a weighted average of m loss
intervals. Since the average of exponentially distributed random
variables is gamma distributed, the expected loss rate in TFMCC is
inversely proportional to the expected value for the minimum of n
gamma distributed random variables.5
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Figure 5: Scaling

This effect is shown in Figure 5 for different numbers of receivers
n with a constant loss probability. For uncorrelated loss at a rate
of 10% and a RTT of 50 ms, the fair rate for the TFMCC transmis-
sion is around 300 KBit/s. This sending rate is reached when the
receiver set consists of only a single receiver but it quickly drops to
a value of only a fraction of the fair rate for larger n. For example,
for 10,000 receivers, only 1/6 of the fair rate is achieved.
Fortunately, such a loss distribution is extremely unlikely in real
networks. Multicast data is transmitted along the paths of the dis-
tribution tree of the underlying multicast routing protocol. A lossy
link high up in the tree may affect a large number of receivers but
the losses are correlated and so the above effect does not occur.
When some of those receivers have additional lossy links, the loss
rates are no longer correlated, rather the values are spread out over
a larger interval, thus decreasing the number of receivers with sim-
ilar loss rates. To demonstrate this effect, we choose a distribution
of loss rates that is closer to actual loss distributions in multicast

5For first order statistics of the gamma distribution, no simple
closed form expressions exists. Details about the distribution of
the minimum of gamma distributed random variables can be found
in [8].



trees in that there are only a limited number of high loss receivers
while the majority of receivers will have moderate loss rates.6 Here,
a small number of receivers (proportional to a log(n), where a
is a constant) is in the high loss range of 5-10%, some more are
in the range of 2%-5%, and the vast majority have loss rates be-
tween 0.5% and 2%. Under such network conditions the through-
put degradation with 10,000 receivers is merely 30%. Thus, the
throughput degradation plays a significant role only when the vast
majority of packet loss occurs on the last hop to the receivers and
those losses amount to the same loss rates.
It is impossible to distinguish between a “stochastic” decrease in
the sending rate and a “real” decrease caused by an increased con-
gestion level (otherwise it would be possible to estimate the effect
and adjust the sending rate accordingly). The degradation effect
can be alleviated by increasing the number of loss intervals used
for the loss history, albeit at the expense of less responsiveness.

4. PROTOCOL SIMULATIONS
We implemented TFMCC in the ns2 network simulator [2] to in-
vestigate its behavior under controlled conditions. In this paper,
we can only report a small fraction of the simulations that were
carried out. In all simulations below, drop-tail queues were used
at the routers to ensure acceptable behavior in the current Internet.
Generally, both fairness towards TCP and intra-protocol fairness
improve when active queuing (e.g. RED) is used instead.

4.1 Fairness
Fairness towards competing TCP flows was analyzed using the well-
known single-bottleneck topology (Figure 6) where a number of
sending nodes are connected to as many receiving nodes through a
common bottleneck. Figure 7 shows the throughput of a TFMCC
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Figure 6: Topology

flow and two sample TCP flows (out of 15) from a typical ex-
ample of such simulations. The average throughput of TFMCC
closely matches the average TCP throughput but TFMCC achieves
a smoother rate. Similar results can be obtained for many other
combinations of flows. In general, the higher the level of statis-
tical multiplexing, the better the fairness among competing flows.
Only in scenarios where the number of TFMCC flows greatly ex-
ceeds the number of TCP flows is TFMCC more aggressive than
TCP. The reason for this lies in the spacing of the data packets and
buffer requirements: TFMCC spaces out data packets, while TCP
sends them back-to-back if it can send multiple packets, making
TCP more sensitive to nearly-full queues typical of drop-tail queue
management.
If instead of one bottleneck the topology has separate bottlenecks
on the last hops to the receivers, then we observe the throughput

6By no means do we claim that the chosen distribution exactly re-
flects network conditions in multicast distribution trees.
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degradation predicted in Section 3. When the scenario above is
modified such that TFMCC competes with single TCP flows on
sixteen identical 1 MBit/s tail circuits, then TFMCC achieves only
70% of TCP’s throughput.

4.2 Responsiveness to Changes in the Loss Rate
An important concern in the design of congestion control protocols
is their responsiveness to changes in network conditions. Further-
more, when receivers join and leave the session it is important that
TFMCC react sufficiently fast should a change of CLR be required.
This behavior is investigated using a star topology with four links
having a RTT of 60 ms and loss rates of 0.1%, 0.5%, 2.5%, and
12.5% respectively. At the beginning of the simulation the receiver
set consists only of the receiver with the lowest loss rate. Other re-
ceivers join the session after 100 seconds at 50 second intervals in
the order of their loss rates (lower-loss-rate receivers join first). Af-
ter 250 seconds, receivers leave the transmission in reverse order,
again with 50 second intervals in between. To verify that TFMCC
throughput is similar to TCP throughput, an additional TCP con-
nection to each receiver is set up for the duration of the whole ex-
periment.
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Figure 8: Responsiveness to changes in the loss rate

As show in Figure 8, TFMCC matches closely the TCP throughput
at all four loss levels. Adaption of the sending rate when a new
higher-loss receiver joins is fast. The receiver needs 500-1000 ms
after the join to get enough packets to compute a meaningful loss
rate. The major part of the delay is caused by the exponential timer
for the feedback suppression, which increases the overall delay be-
fore a new CLR is chosen to roughly one to three seconds.7 The

7Note that this high delay is caused by the use of the initial RTT
in the feedback suppression mechanism. Once all receivers have
a valid RTT estimate, the delay caused by feedback suppression is
much shorter.



experiment demonstrates TFMCC’s very good reactivity to changes
in congestion level.
The same simulation setting can be used to investigate responsive-
ness to changes in the RTT. The results (not shown here) are similar
to those above, since all four receivers have measured their RTT by
the time the RTT changes, and the one-way RTT adjustments im-
mediately indicate this change.
With larger receiver sets, the amount of time that expires until a
high RTT receiver is found may be greater. This effect is investi-
gated in the next section.

4.3 Initial RTT Measurements and Respon-
siveness to Changes in the RTT

The number of receivers that measure their RTT each feedback
round depends on the number of feedback messages and thus on
the parameters used for feedback suppression. Figure 9 shows how
the number of receivers with a valid RTT estimate evolves over
time for a large receiver set and a high initial RTT value. The link
RTTs for the 1000 receivers vary between 60 ms and 140 ms and
the initial RTT value is set to 500 ms. A single bottleneck is used
to produce highly correlated loss for all receivers. This is the worst
case, since if loss estimates at the receivers vary, it is often un-
necessary to measure the RTT to the low-loss receivers. Since the
calculated rate of the receivers still using the initial RTT is below
the current sending rate, at least one receiver will get its first RTT
measurement per feedback round until all receivers have measured
their RTT.
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Figure 9: Rate of initial RTT measurements

At the beginning of the simulation, the number of receivers ob-
taining initial RTT measurements is close to the expected number
of feedback messages per feedback round. Over time, as more
and more receivers have a valid RTT, the number of receivers that
want to give feedback decreases, and the rate of initial RTT mea-
surements gradually drops to one new measurement per feedback
round. While a delay of 200 seconds until 700 of the 1000 receivers
have measured their RTT seems rather large, one should keep in
mind that this results from having the same congestion level for all
receivers. If some receivers experience higher loss rates, those re-
ceivers will measure their RTT first and TFMCC can adapt to their
calculated rate. Under most real network conditions it will not be
necessary to measure the RTT to all receivers.
In scenarios with 40, 200 and 1000 receivers respectively, we inves-
tigate how long it takes until a high RTT receiver is found among
receivers with a low RTT when all receiver experience independent
loss with the same loss probability. The x-axis of the graph in Fig-
ure 10 denotes the point of time when the RTT is increased during
the experiment and the y-axis shows the amount of time after which
this change in RTT is reacted upon by choosing the correct CLR.

The later the increase in RTT, the greater the number of receivers
already having valid RTT estimates, and the expected time until the
high-RTT receiver is selected as CLR decreases.
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4.4 Slowstart
The highest sending rate achieved during slowstart is largely de-
termined by the level of statistical multiplexing. On an otherwise
empty link, TFMCC will reach roughly twice the bottleneck band-
width before leaving slowstart, as depicted in Figure 11. When
TFMCC competes with a single TCP flow, slowstart is terminated
at a rate below the fair rate8 of the TFMCC flow and this rate is rel-
atively independent of the number of TFMCC receivers. Already
in the case of two competing TCP flows, and even more so when
the level of statistical multiplexing is higher, the slowstart rate de-
creases considerably when the number of receivers increases. Most
of the increase to the fair rate takes place after slowstart in normal
congestion control mode.
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We do not include an extra graph of the exact increase behavior
of TFMCC compared to TCP, since it can be seen for example in
Figures 12 and 13. TFMCC and TCP are started at the same time.
TCP’s increase to the fair rate is very rapid, while it takes TFMCC
roughly 20 seconds to reach that level of bandwidth.

4.5 Late-join of Low-rate Receiver
In the previous experiments we investigated congestion control with
moderate loss rates, expected to be prevalent in the applications
domains for which TFMCC is well suited. Under some circum-
stances, the loss rate at a receiver can initially be much higher.
Consider an example where TFMCC operates at a fair rate of sev-
eral MBit/s and a receiver with a low-bandwidth connection joins.
8The fair rate for TFMCC in all three simulations is 1 MBit/s.



Immediately after joining, this receiver may experience loss rates
close to 100%. While such conditions are difficult to avoid, TFMCC
should ensure that they exist only for a limited amount of time and
quickly choose the new receiver as CLR.
The initial setup for this simulation is a eight-member TFMCC ses-
sion competing with seven TCP connections on a 8 MBit/s link,
giving a fair rate of 1 MBit/s. During the simulation, a new receiver
joins the session behind a separate 200 KBit/s bottleneck from the
sender from time 50 to 100 seconds.
TFMCC does not have any problems coping with this scenario,
choosing the joining receiver as CLR within a very few seconds.
Although the loss rate for the joining receiver is initially very high,
the TFMCC rate does not drop to zero. As soon as the buffer of
the 200 KBit/s connection is full, the receiver experiences the first
loss event and the loss history is initialized. Details about the loss
history initialization process can be found in Appendix B. When
the first loss occurs, the receiver gets data at a rate of exactly the
bottleneck bandwidth. Thus, the loss rate will be initialized to a
value below the 80% value and from there adapt to the appropriate
loss event rate such that the available bandwidth of 200 KBit/s is
used.
When an additional TCP flow is set up using the 200 KBit/s link
for the duration of the experiment, this flow inevitably experiences
a timeout when the new receiver joins the multicast group and the
link is flooded with packets. However, shortly afterwards, TFMCC
adapts to the available capacity and TCP recovers with bandwidth
shared fairly between TFMCC and TCP.
We conclude that TFMCC shows good performance and fairness,
even under unfavorable network conditions.
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Figure 12: Late-join of low-rate receiver
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5. RELATED WORK
To date, a number of single-rate multicast congestion control schemes
have been proposed. A prominent recent example is PGMCC [17].
It selects the receiver with the worst network conditions as a group
representative, called the acker. The selection process for the acker
mainly determines the fairness of the protocol, and is based on a

simplified version of the TCP throughput model in Equation (4).
Similar to TFMCC, each receiver tracks the RTT and the smoothed
loss rate, and feeds these values into the model. The results are
communicated to the sender using normal randomized feedback
timers to avoid an implosion. If available, PGMCC also makes
use of network elements to aggregate feedback.
Once an acker is selected, a TCP-style window-based congestion
control algorithm is run between the sender and the acker. Minor
modifications compared to TCP concern the separation of conges-
tion control and reliability to be able to use PGMCC for reliable as
well as unreliable data transport and the handling of out of order
packets and RTT changes when a different receiver is selected as
the acker.
As evidenced by the simulations in [17], PGMCC competes fairly
with TCP for many different network conditions. The basic con-
gestion control mechanism is simple and its dynamics are well un-
derstood from the analysis of TCP congestion control. This close
mimicking of TCP’s window behavior produces rate variations that
resemble TCP’s sawtooth-like rate. This makes PGMCC suited for
applications that can cope with larger variations in the sending rate.
In contrast, the rate produced by TFMCC is generally smoother
and more predictable, making TFMCC well suited to applications
with more constraints on acceptable rate changes. Since the acker
selection process is critical for PGMCC’s performance, PGMCC
might benefit from using a feedback mechanism similar to that of
TFMCC, based on biased exponentially weighted timers. To sum-
marize, we believe that both PGMCC and TFMCC present viable
solutions for single-rate multicast congestion control, targeted at
somewhat different application domains.
While PGMCC relies on a congestion window, TCP-Emulation at
Receivers (TEAR) [16] is a combination of window- and rate-based
congestion control. It features a TCP-like window emulation algo-
rithm at the receivers, but the window is not used to directly con-
trol transmission. Instead, the average window size is calculated
and transformed into a smoothed sending rate, which is used by
the sender to space out data packets. So far, only a unicast ver-
sion of TEAR exists, but the mechanism can be made multicast-
capable by implementing a TFMCC-like scalable feedback sup-
pression scheme to communicate the calculated rate to the sender
as well as scalable RTT measurements. The advantage of TEAR
lies in the fact that it does not require a model of TCP with all the
necessary assumptions to compute a rate. However, for low levels
of statistical multiplexing, TEAR’s emulation assumptions about
the independence of loss timing from transmit rate and of timeout
emulation mean that it shares many of the limitations of the TCP
models we use. Thus we do not expect a multicast variant of TEAR
to behave significantly better or worse than TFMCC.

6. CONCLUSIONS
We have described TFMCC, a single-rate multicast congestion con-
trol mechanism intended to scale to groups of several thousand re-
ceivers. Performing multicast congestion control whilst remaining
TCP-friendly is difficult, in particular because TCP’s transmission
rate depends on the RTT, and measuring RTT in a scalable manner
is a hard problem. Given the limitations of end-to-end protocols,
we believe that TFMCC represents a significant improvement over
previous work in this area.
We have extensively evaluated TFMCC through analysis and sim-
ulation, and believe we have a good understanding of its behavior
in a wide range of network conditions. To summarize, we believe
that under the sort of conditions TFMCC will experience in the
real-world it will behave rather well. However we have also ex-
amined certain pathological cases; in these cases the failure mode



is for TFMCC to achieve a slower than desired transmission rate.
Given that all protocols have bounds to their good behavior, this
is the failure mode we would desire, as it ensures the safety of the
Internet.
An important part of any research is to identify the limitations of a
new design. TFMCC’s main weakness is in the startup phase – it
can take a long time for sufficiently many receivers to measure their
RTT (assuming we cannot use NTP to provide approximate default
values). In addition, with large receiver sets, TCP-style slowstart
is not really an appropriate mechanism, and a linear increase can
take some time to reach the correct operating point. However these
weaknesses are not specific to TFMCC – any safe single-rate multi-
cast congestion control mechanism will have these same limitations
if it is TCP-compatible. The implication is therefore that single-rate
multicast congestion control mechanisms like TFMCC are only re-
ally well-suited to relatively long-lived data streams. Fortunately it
also appears that most current multicast applications such as stock-
price tickers or video streaming involve just such long-lived data-
streams.

6.1 Future Work
We plan to pursue this work further on several fronts. While large-
scale multicast experiments are hard to perform in the real world,
we plan to deploy TFMCC in a multicast filesystem synchroniza-
tion application (e.g. rdist) to gain small-scale experience with a
real application.
Some reliable multicast protocols build an application-level tree for
acknowledgment aggregation. We have devised a hybrid rate/window-
based variant of TFMCC that uses implicit RTT measurement com-
bined with suppression within the aggregation nodes. This variant
does not need to perform explicit RTT measurements or end-to-end
feedback suppression. Whilst at first glance this would seem to be a
big improvement over the variant in this paper, in truth it moves the
complex initialization problem from RTT measurement to scalable
ack-tree construction, which shares many of the problems posed by
RTT measurement. Still, this seems to be a promising additional
line of research.
Finally, the basic equation-based rate controller in TFMCC would
also appear to be suitable for use in receiver-driven layered multi-
cast, especially if combined with dynamic layering [4] to eliminate
problems with unpredictable multicast leave latency.
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APPENDIX

A. USING THE INITIAL RTT FOR THE AG-
GREGATION OF LOSS EVENTS

Using the initial RTT for the rate computation before a valid RTT
measurement is obtained is safe since it leads to a lower calculated
rate. In contrast, using the initial RTT for the aggregation of lost
packets to loss events results in more aggressive protocol behavior.
In this section we argue that these two effects cancel each other out
in most cases and the initial RTT can be used for both purposes.
The initial RTT only has an impact on the loss event rate when sep-
arate loss intervals are merged into a single loss interval (i.e. more
than one packet is lost per RTT). From Equation (1), the number of
loss events per RTT is

lRTT =
1q

2

3p
+ 12

q
3p
8
(1 + 32p2)

The corresponding curve is plotted in Figure 14. The maximum
value is approximately 0.13 loss events per RTT. Thus, when mul-
tiple losses are aggregated to form a loss event and a loss event
occurs during each RTT, the condition is unstable. TFMCC will
reduce the sending rate due to the high loss event rate until the
number of loss events per RTT is smaller than 0.13.
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Figure 14: Loss Events per RTT

Even during the transition time, a TFMCC flow with an RTT esti-
mate that is too high will behave more conservatively than a similar
flow with a correct RTT estimate. The size of the loss intervals can
only increase in proportion to the ratio of the initial RTT to the true
RTT. Using Equation (4), an initial RTT that is too high by a factor
of c will allow for a loss rate that is too low by a factor of c2 re-
sulting in the same throughput. The rate calculated at the receiver
will therefore still be conservative. Numerical analysis indicates
that this also holds for the complex TCP model (1) when loss event
rates are less than approximately 10%.
If there are many receivers with a high loss rate, then throughput
will be very low (see Section 3). If there are few such receivers,
these receivers can measure their RTT soon after startup. For these
reasons, it is safe to use a high initial RTT to both aggregate losses
to loss events as well as to compute the rate.
The loss history must be remodeled after the first valid RTT mea-
surement is obtained, otherwise the rate calculated by the receiver
will be too high. When the lost packets and their timestamps are
known, the correct loss intervals can easily be determined based
on the measured RTT rather than of the initial RTT. This process
can be optimized by storing information about some of the more
recently lost packets and approximating the correct distribution of
loss intervals.

B. INITIALIZING THE LOSS HISTORY
When a receiver registers its first loss event, the number of pack-
ets received thus far usually does not reflect the current loss rate.
For example, when the sending rate is constrained by a lower-rate
CLR, a receiver may not experience packet loss for a long period of
time. Instead of the number of packets received before the first loss
event, the sending rate at which the first packet loss is experienced
can be used as an indicator of the bottleneck bandwidth. Slowstart
results in an overshoot to a maximum of at most twice the bottle-
neck bandwidth. Thus, a more meaningful initial loss interval l0
can be obtained by using the inverse of Equation (1) with half the
sending rate when the first loss event occurred.
The mechanism can be facilitated by using the inverse of a simpli-
fied TCP Equation (4) presented in [11], which is easier to compute
than the inverse of Equation (1) and results in a slightly more con-
servative estimate:

TTCP =
cs

tRTT
p
p

p =

�
cs

TTCP � tRTT

�2
;with l0 = 1=p

where c is a constant usually set to
p

3=2.
However, if a receiver is still using the initial RTT when the first
loss event occurs, it will underestimate the loss event rate and the
initial loss interval will be too large. When the correct RTT is de-
termined later, the receiver will consequently overestimate the fair
rate. The initial loss interval must be adjusted if it is still in the loss
history when the first RTT measurement is obtained. The adjusted
first loss interval l00 can be calculated as

l00 = l0 �
�

tRTT
tinitialRTT

�2

using the simplified TCP equation.

C. STORING THE PREVIOUS CLR
As an option, the sender can keep information about the previous
CLR after switching to a new CLR. In case the switch-over is only
temporary, it is possible to immediately switch back to the old CLR
without the need of further feedback. Possible causes for transient
switching of the CLR include short-term congestion or inaccurate
one-way delay RTT adjustments. Here, the new expected rate may
quickly increases above the expected rate of the previous CLR.
Storing this additional information will always result in more con-
servative TFMCC behavior. In particular, when network conditions
for the new CLR as well as the old CLR improve simultaneously,
TFMCC will switch back to the old CLR before increasing the
sending rate. Since this results in a delayed reaction to improved
network conditions, the information about the old CLR should be
timed out after a short amount of time (on the order of a few RTTs).


