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Abstract—In this paper we present an approach for the class
integration test order problem in aspect-oriented programs.
Several approaches have been proposed for aspect-oriented
systems, but the proposed approach is the first, to our best
knowledge, to consider the indirect impact of aspects. This
approach relies on a genetic algorithm and can reduce the
testing efforts when many methods are indirectly impacted
by aspects. We detail the algorithm and then discuss its
parameters. The approach has been implemented for AspectJ
systems, and to validate it, has been applied to a motivating
example.
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I. INTRODUCTION

Integration testing is the step of the testing process where
classes are composed and tested together to find faults
related to interactions between classes [1]. To facilitate fault
localization and to minimize fault interactions, a class should
be tested after the classes on which it depends. If there
are cyclic dependencies between classes, which is common
in large software systems [2], a stub is needed for every
untested class on which the class under test depends. A
stub acts as a surrogate for the actual class by mimicking
its interface and behavior. Once the actual class has been
tested, the stub is no longer needed. Creating a stub is costly,
especially in the case of complex classes or relations, and
techniques for computing a class integration test order aim
to find an order that minimizes the stubbing effort.

In the case of aspect-oriented programming [3], aspects
are tightly coupled with the classes in which they are woven.
As an aspect must be woven to be executed, testing the
aspect first means creating a stub environment into which it
can be woven. This is a difficult and complex task, and it
is thus more reasonable to test the aspect after the classes
where it is woven. This means that the test suites for these
classes must be modified after the aspect has been added.

In most approaches for the integration testing of aspect-
oriented systems, the base program is tested first without
the aspects, and then the woven program (which includes the
aspects) is tested. This approach is simple and permits reuse
of class integration test order techniques for object-oriented

systems. However, it is not optimal when many classes are
indirectly impacted by aspects. A class is indirectly impacted
by an aspect if it relies on classes impacted by this aspect.
When an indirectly impacted class is tested before the aspect,
it is first tested with a test suite that does not account
for the aspect, then, after the aspect has been tested, it is
tested with a test suite that accounts for the modifications
introduced by the aspect. This implies an extra testing effort
that could be avoided using a fine grained approach that
produces an integration order in which classes and aspects
are interspersed.

Class integration test order techniques for object-oriented
systems cannot be reused on aspect-oriented systems without
being adapted. Aspects add a new kind of relationship
between the aspects and the classes where they are woven,
and they can introduce new attributes or methods to existing
classes. The impact of the aspects also needs to be measured
and taken into account to produce an optimal integration
order. Finally, class integration test order techniques for
object-oriented systems are usually graph-based, and cannot
be adapted to account for the problems introduced by the
aspects, because these existing techniques consider only
binary relationships between classes.

In this paper we propose a genetic algorithm which
produces a class integration test orders for aspect-oriented
systems. Specifically, the algorithm produces integration test
orders in which aspects are tested after the classes they
directly impact but before classes they indirectly impact.
Genetic algorithms often perform well for optimization
problems (such as the class integration test order). Further,
a genetic algorithm can use global information, so the result
can take into account all the new implications induced by
the aspects.

The contribution of this paper is a genetic algorithm based
approach to determining a class integration test order in the
context of aspect-oriented systems. Specifically, the fitness
function is responsible for selecting the best solution, and
is thus the key element of the approach. The proposed
approach has been validated using a medium-sized AspectJ
program.

In Section II, we introduce the class integration test



order problem in the context of aspect-oriented systems,
including a motivating example. In Section III, we present
the proposed approach. In Section IV, we describe our
implementation. In Section V, we discuss the parameters of
the genetic algorithm. In Section VI, we present the related
work. Finally, Section VII concludes the paper.

II. INTEGRATION TEST ORDER IN ASPECT-ORIENTED
PROGRAMS

In an object-oriented system, if a class C1 depends on
(i.e., uses) a class C2, then C2 should be tested before C1.
However, if C2 also depends on C1, the hardest class to stub
(which depends on the types of relations, the complexity of
the class, etc.) should be tested first.

In an aspect-oriented system, if an aspect is woven within
a class, they are strongly connected. The aspect needs to
be woven to be tested as it cannot be executed alone. The
behavior of the class is not complete without the aspect.

It is best to test an aspect after the classes where it
is woven. Testing the aspect first means creating a “stub”
environment where the aspect can be woven, which is not
trivial and could be as complex as the stubbed class. Testing
the class first means writing a partial test suites that will
be modified after the aspect has been woven, which is less
complex even though it still requires extra testing effort.

From this conclusion, the most used approach for the
integration testing of aspect-oriented programs, which we
will call the incremental approach, is to test the base
program first and then to test the program with its aspects
woven. Zhou et al. [4] or Ceccato et al.[5] advocate the
use of such an approach, adding a few aspects at a time, to
improve fault localization. Xu et al. [6] present an approach
for generating test cases for integration testing from state
models. Their approach is based on an incremental process
where state models for the base program are first used to
generate test cases. These state models are then modified
to take aspects into account, and new test cases are finally
generated.

The incremental approach has several advantages. First
it is easier to implement; testing the base program is done
using classic techniques and aspect-oriented specific tech-
niques need only to focus on the interactions between the
aspect and the code. It may also improve fault localization,
although aspects can have such significant impacts on the
base program that it is difficult to have a precise fault
localization [7], [8].

The main problem of the incremental approach is that it
may require a lot of unnecessary testing effort if there are
many classes that are impacted indirectly (but not directly)
by an aspect. A class is directly impacted if an aspect is
woven within it. A class is indirectly impacted if no aspect
is woven within it, but it depends on impacted classes (i.e.,
classes directly or indirectly impacted). The indirect impact
of an aspect may require a class to be retested, or test cases

to be partially rewritten. Indeed, the indirect impact of the
aspect can make obsolete existing test cases or require new
test cases. A proper class integration test order for aspect-
oriented programs may reduce this testing effort. In this
section we present an example to illustrate this problem and
to motivate our approach.

A. Bank Example

The Bank example [9] is a system that manages bank
accounts. Three kinds of user can access the system: clients,
employees, and administrators. Clients can access their
accounts to check the balance or to make deposits and with-
drawals. Employees can create different kind of accounts
for clients and manage them. Administrators have access to
maintenance functions as well as the creation of employee
accounts.

Figure 1 shows an excerpt of the UML class diagram of
the Bank example. The system is implemented in Java, and
has 28 classes, 3 interfaces, and 101 methods.

The system is divided in four parts: model, view, con-
troller, and security. The first three parts implement the
Model-View-Controller design pattern [10]. The model
package encapsulates the core concerns of the application.
The view package offers a graphical user interface to interact
with the system. The controller package handles the input
of the user from the views and interact with the model. The
controller package uses the command design pattern [11].
The security package (not displayed on the class diagram)
allows users to authenticate and manages access control.

The access control concern is implemented with an As-
pectJ aspect, which is displayed in Listing 1. There are three
different annotations that are used to control the access on
methods. A method of the class Account (or any of its sub-
classes) annotated with @OwnerOnly can only be executed
if the current user is one of the owners of the account or
an employee. A method annotated with @EmployeesOnly
(respectively @AdminsOnly) can only be executed if the
current user is an employee (respectively an administrator).

The Security aspect has three advices. The first one
(lines 6–11) manages the “owner only” access control and
is only woven in the Account class and its subclasses.
The second one (line 13–18) manages the “employees only”
access control and is only woven in the Bank class. Finally,
the last one (line 20–25) manages the “administrators only”
access control and is woven in the Bank class and in the
User class.

B. Integration Testing of the Bank Example

The Security aspect is only woven in the model
package, and directly impacts only four classes. The aspect
relies on those classes, but as the obliviousness1 property

1The obliviousness property [12] is satisfied if the base program has no
knowledge of the aspect that are woven within it (i.e., the base classes do
not reference the aspect).



Figure 1. Excerpt of the UML class diagram of the Bank example

1 public aspect Security {
2 pointcut ownerOnly(): execution(@OwnerOnly

* Account+.*(..));
3 pointcut employeesOnly(): execution(

@EmployeesOnly * *.*(..));
4 pointcut adminsOnly(): execution(

@AdminsOnly * *.*(..));
5
6 before(): ownerOnly() {
7 User user = Login.instance.

getCurrentUser();
8 Account account = (Account)

thisJoinPoint.getTarget();
9 if(checkAccessOwner(user,account))

10 throw new AccessSecurityException(
user, account);

11 }
12
13 before(): employeesOnly() {
14 User user = Login.instance.

getCurrentUser();
15 Object target = thisJoinPoint.getTarget

();
16 if(checkAccessEmployee(user,target))
17 throw new AccessSecurityException(

user, target);
18 }
19
20 before(): adminsOnly() {
21 User user = Login.instance.

getCurrentUser();
22 Object target = thisJoinPoint.getTarget

();
23 if(checkAccessAdmin(user,target))
24 throw new AccessSecurityException(

user, target);
25 }
26 }

Listing 1. The Security aspect

is satisfied, the impacted classes do not rely on the aspect.
Thus, during integration testing, the aspect should be tested
after the four classes directly impacted.

But the aspect indirectly impacts the whole system. The
controller accesses the model and the methods whose access
is controlled. The views, in turn, access the controller. As
the aspects impacts the control flow of the program, it is
necessary to take into account its changes in the test suites
written for the views and for the controller.

The incremental approach induces an extra testing effort.
Testing the Security aspect after all the classes of the
system means that the test suites for the classes that are
indirectly impacted must take into account this impact at the
end of the integration testing. In the best case scenario, test
cases must be added, but it is possible that some test cases
must be modified or others removed, as they are obsolete.
This implies more testing effort.

This testing effort could be partially reduced by using
a combined approach, where the produced integration test
order mixes classes and aspects. For instance, the controller
and the views could be tested after the Security aspect.
As the aspect does not depend on the controller and the
views, no stubbing and thus no extra effort are required.
When the controller and the views are tested, the test suites
will directly take into account the impact of the Security
aspect.

In other examples, the extra testing effort implied by
testing the aspects at the end can be much more important
than in this example. In the Bank example, only the control
flow is affected by the aspect. Aspects affecting the data flow
or modifying the control flow more drastically will most
likely affect a large number of test cases.



Class integration test order techniques for object-oriented
systems cannot directly be applied on aspect-oriented sys-
tems and need to be adapted. Aspects can be considered
as classes but their weaving introduces a new kind of
relationship, and inter-type definitions – attributes or classes
introduced by an aspect – also add complexity. Techniques
for object-oriented systems do not take into account the
direct and indirect impact of the aspects, which, as we have
discussed in this section, is important to minimize the testing
effort.

A fine-grained approach, that specifically targets aspect-
oriented programs, could lead to more efficient integration
testing. This approach must be able to identify classes that
are indirectly impacted by an aspect and that can be tested
after this aspect. In the following section we present such
an approach, which uses a genetic algorithm.

III. APPROACH

The goal of the proposed approach is, for an aspect-
oriented system, to find a class integration test order in which
aspects are tested after the classes they directly impact, and
before the classes they indirectly impact. As discussed in
Section II, such an order should reduce the testing effort
by avoiding the modification of test suites for indirectly
impacted classes.

Most solutions for the class integration test order in
object-oriented systems are graph-based [13], [14], [2], [15].
They rely on an object relation diagram (ORD)2, which is a
directed multigraph in which the nodes represent classes and
the edges represent relationships between classes. The goal
of these solutions is to reduce the stubbing effort. To mini-
mize stubbing effort in the presence of cyclic dependencies,
a feedback arc set must be computed for the ORD. Because
this problem is NP-complete, graph-based approaches rely
on heuristics in which edges are assigned weights based
on the perceived effort to create the corresponding stub.
Strongly connected components are computed and then
eliminated by iteratively removing edges with the smallest
weights.

As first discussed by Briand et al. [16], graph-based
solutions may not be satisfactory. These solutions try to find
an optimal solution at each strongly connected components,
so each decision is based on local, rather than global,
information.

In the case of aspect-oriented programs it is critical to
reason on global information. As discussed in Section II,
the indirect impact of the aspects needs to be taken into
account for determining a class integration test order. This
is not possible by considering sub-parts of the system, or by
evaluating single relations. Removing an edge representing
the weaving in an aspect may be the best solution for a local
strongly connected component, but may also require a lot of

2Which is also, and more accurately, called a class dependency diagram

extra testing work in other parts of the system because of
the indirect impact of the aspect. Thus, global information
is needed to produce a class integration test order in the
context of aspect-oriented programming.

Genetic algorithms, by allowing the evaluation of a whole
order, can solve this problem. In a genetic algorithm, each
candidate solution is evaluated using a fitness function.
Thus the whole system can be used to evaluate a solution.
Genetic algorithms are often used for global optimization
problems [17], [18], [19], [20].

The solution we propose is based on the genetic algorithm
which we describe in this section.

A. Genetic Algorithm

Genetic algorithms are evolutionary algorithms that mimic
natural evolution. A population of candidate solutions is
created then evolved. At each generation the best solutions
are selected and crossed-over. During a cross-over, parts of
two solutions are mixed to produce a new solution. Hence,
at each new generation, new solutions are produced.

A genetic algorithm requires a genetic representation and
a fitness function. The genetic representation is the way in
which solutions are encoded in chromosomes. The fitness
function evaluates each solution by assigning it a fitness
value. The higher the fitness value, the better the solution.

The algorithm is initialized with a random population.
The population size may vary depending on the problem.
The starting population covers the entire range of possible
solutions.

A new population is generated with selection and repro-
duction. In our approach, chromosomes are selected using
a roulette wheel selection [21], which proportionally gives
chromosomes with higher fitness values a better chance to
be selected. Each time a chromosome is selected there is a
chance that a crossover happens (depending on the crossover
rate). During a crossover, two chromosomes have sub-parts
swapped between each other, creating a new chromosome.
There is also a small chance that a chromosome is mutated
(depending on the mutation rate). During mutation the
chromosome is randomly modified. During reproduction,
elitism can be used to avoid losing the best solutions. In
such a case, the chromosomes with the best fitness value
are automatically selected for the new population.

The genetic algorithm stops when the the termination
condition has been reached. For example, the algorithm may
stop if the optimal solution has been found (the maximal
fitness value has been achieved), if no better solution is
produced, or if a certain number of generations has been
reached. In our problem, determining the maximal fitness
value is as hard as determining the optimal solution, except
in the trivial case where there is no cycle in the graph. Thus,
we have chosen to stop the algorithm after a constant number
of generations.

The parameters of the genetic algorithm are thus:



• the population size
• the crossover rate
• the mutation rate
• the maximal number of generations

These parameters are discussed in Section V.

B. Genetic Representation

In the case of class integration test order, it is best to opt
for a permutation encoding. In a permutation encoding, each
chromosome has the same number of alleles. Each alleles
represents a class, and the rank of this class is the rank of the
allele. So, the first class is the class represented by the first
allele, an so on. Each class is assigned an arbitrary number.
Chromosomes are thus permutations of the list (1, . . . , n)
where n is the number of classes in the system.

In this work we have chosen a single point crossover
operation, which is simpler to implement in the case of a
permutation encoding. A random point is selected: the begin-
ning of the first chromosome is copied up to this crossover
point, the rest is composed by taking the remaining integers
in the same order as in the second chromosome. For instance
if the chromosomes (6, 7, 1, 3, 4, 2, 5) and (2, 1, 7, 5, 4, 6, 3)
are crossed-over, and the random crossover point is 3, the
resulting chromosome is (6, 7, 1, 2, 5, 4, 3).

Depending on the mutation rate, each allele can be mu-
tated. When an allele is mutated, it is permuted with another
allele, randomly chosen. Several mutations can occur in a
single chromosome, though as the mutation rate is low it is
unlikely.

C. Fitness Function

The fitness function must take into account the relations
between classes and the impacted methods. To reduce the
stubbing effort it is necessary to reduce the number of
stubbed relations. As discussed in Section II, aspects can
impact methods and require an extra testing effort. Listing 2
shows the algorithm of the fitness function (in pseudo-code).

In the proposed approach, there are seven types of re-
lations: inheritance, association, composition, dependency,
polymorphic, owned element, and weaving. The first six re-
lations were used in previous work [14], [2]. An inheritance
relation is a relation between a class and one of its super-
classes. An association relation is a relation between a class
and the type of one of its attributes. A composition is an
association where the object referenced by an attribute’s
life cycle depends on the source’s life cycle. A dependency
relation is a relation between a class and one of the classes
it uses (for instance as a parameter of a method). An owned
element relation is a relation between a class and one of
the classes defined inside it. Finally, a weaving relation is
a relation between an aspect and one of the classes where
one of its advices is woven.

The value of each relation is added to the fitness value if
the source of the relation is tested after the target (lines 13–

Figure 2. An object relation diagram illustrating a relation introduced by
an aspect via an inter-type definition

Table I
THE THREE DIFFERENT TYPES OF ORDER FOR AN INTER-TYPE

DEFINITION (CLASS NAMES FROM FIGURE 2)

Case Orders Value added to fitness

1 {C2,A,C1} relation value{A,C2,C1}

2 {C1,C2,A} (relation value)/2{C2,C1,A}

3 {A,C1,C2} 0{C1,A,C2}

14). The goal is to give a better fitness value to solutions that
have an order that requires less stubbing. For each type of
relation, we associate a value which represents the difficulty
to stub the relation. The higher the value, the more difficult
it is to stub this type of relation.

The case of inter-type definitions is more complicated.
Inter-type definitions are methods or attributes that are added
by an aspect. It means that a relation between two classes
can be added in the system by an aspect. In that case there
are six possible orders that we classify into three different
cases. Figures 2 depicts an object relation diagram (ORD)
where a class C1 has a dependency towards C2 because of
an aspect A. The dashed line between the relation and the
aspect symbolizes the fact that the relation is introduced by
the aspect. The three cases are detailed, with the associated
value, on Table I. The best case (case 1) occurs if both A and
C2 are tested before C1. In that case, when C1 is tested, no
stub is required (because both A and C2 have already been
tested). If both C1 and C2 are tested before A (case 2), C2
is still tested before the relation is added, but it is necessary
to go back and retest C2 to take the relation into account.
Finally, if A and C1 are tested before C2 (case 3), it is
necessary to stub C2, which was not required in the two
other cases. In case 1, the value of the relation is added to
the fitness value because it is the best case (lines 7–8). In
case 2, there is no stubbing, but the order is less optimal,
so only half of the value of the relation is added to fitness
value (lines 9–11). Finally in case 3, the worst case, nothing
is added to fitness value.

For each aspect, the number of impacted methods that



1 fitness <= 0
2 previous_types <= []
3 impacted_types // maps aspects to a list of (type,impacted_methods_nb) pairs
4 for t in chromosome:
5 for r in t.outgoing_relations:
6 if r.is_inter-type_definition:
7 if r.declaring_aspect in previous_types and r.target in previous_types:
8 fitness <= fitness + r.type.value
9 else if chromosome.getIndex(t) < chromosome.getIndex(r.declaring_aspect) and

10 chromosome.getIndex(r.target) < chromosome.getIndex(r.declaring_aspect):
11 fitness <= fitness + r.type.value/2
12 else:
13 if r.target in previous_types:
14 fitness <= fitness + r.type.value
15 for p in impacted_methods[t]:
16 if not p.type in previous_types:
17 fitness <= fitness + p.impacted_methods_nb
18 previous_types <- t

Listing 2. Algorithm of the fitness function

AspectJ
Source code

AjMetrics

System Model

Model
Transformation

ORD

Genetic
Algorithm

Class Integration
Test Order

Figure 3. Overview of the implementation

are tested after the aspect is added to the fitness value (lines
14–16). As discussed in Section II, if a method is impacted
by an aspect and if this aspect is tested after the class
containing this method, it may be necessary to modify or
remove existing test cases, or to add new test cases. This
increases the testing effort, so if a solution can avoid it, its
fitness value is increased.

The values associated with each type of relation are
parameters of the fitness function. These values can be
adjusted and modified to reflect different the priorities given
to each type of relation. In Section V we discuss these
parameters of the algorithm.

IV. IMPLEMENTATION

To validate the approach and the selected parameters we
have implemented the algorithm presented in Section III.
This implementation, illustrated on Figure 3, is performed
in three steps, which we describe in this section.

The first step consists in building a detailed model of
the system. This step is done using AjMetrics3, an Eclipse4

plug-in initially developed for measuring metrics on AspectJ
systems. This plug-in produces an EMF5 (Eclipse Modeling
Framework) model that can then be used to measure met-
rics. This model encapsulates all the classes and aspects,
with their attributes, methods, as well as the invocations
and weaving information. The plug-in works for AspectJ
systems, but the produced model is language-independent,
which makes the rest of the implementation reusable for
other languages.

In the second step, the system model is transformed
into object relation diagram (ORD), which represents the
relations between the classes. The transformation from the
system model to the ORD is straightforward: the system
model is visited, and for each element that implies a relation
(e.g., an attribute or an invocation), a relation is created.

In the third step, the genetic algorithm is actually exe-
cuted, using both models. The system model is used for
the encoding of the chromosomes and for computing the
methods impacted by each aspect. The ORD is used to
compute the fitness value of the chromosomes.

Computing the impacted methods: To compute the fitness
value of a chromosome, as described in Section III-C, it is
necessary to know the methods impacted by each aspect.
This is done once at the initialization of the algorithm, using
the system model.

For each advice in the system, the set of all the methods
where it is woven is computed. Then the transitive closure
is computed, to include all the methods that can reach the
points where the advice is woven.

As the set of impacted methods is computed statically,
it is necessary to perform an over-approximation. It is

3http://www.romain-delamare.net/development/AjMetrics.html
4http://www.eclipse.org
5http://www.eclipse.org/modeling/emf/



Table II
RESULT OF THE EXPERIMENTS ON POPULATION SIZE AND MAXIMUM

NUMBER OF GENERATIONS, WITH OTHER PARAMETERS FIXED

Population Number of Average Median Average
size generations fitness fitness time (s)

25 1.000 707.00 706.00 0.8

50 1.000 719.20 720.00 1.1

100 1.000 721.80 719.00 1.8

25 10.000 725.50 727.50 2.9

50 10.000 730.00 729.50 5.9

100 10.000 734.40 733.00 12.7

25 100.000 744.20 745.00 24.6

50 100.000 745.60 746.50 54.3

100 100.000 747.00 746.50 125.7

possible the method actually executed at runtime is a method
overriding the method statically called. To reflect that, when
we look for all the methods that can call a method m,
we also look for all the methods that can call the methods
overridden by m.

For a quick access during the evaluation of the fitness
function, the numbers of impacted methods are stored in
tables. For each aspect a there is a table that matches each
class c of the system with the number of methods of c where
at least one advice of a is woven.

V. DISCUSSION

The proposed genetic algorithm has several parameters
that need to be properly set to obtain satisfactory results.
These parameters have been described in Section III, and
are the population size, the crossover rate, the mutation rate,
the number of generations, and the values for the relation
types.

The crossover rate and mutation rate were set using the
literature. Grefenstette [22] has experimented with different
parameters to optimize a genetic algorithm. Concerning the
crossover rate, the results showed that a mutation rate higher
than 0.05 was harmful, and the optimal mutation rate was
0.01. We thus used 0.01 for the mutation rate. We set the
crossover rate at 0.80, as the best result were shown with a
crossover rate between 0.60 and 0.88.

Population size and number of generations: The popu-
lation size and the number of generations were determined
empirically. The algorithm was run on the Bank example
from Section II, with all other parameters fixed, with differ-
ent combinations of the two parameters, covering the ranges
of good values, according to the literature [22], [23].

Table II shows the results with different combinations of
the population size and number of generations. The values
used for population size were 25, 50, and 100. The values

used for the number of generations were 1.000, 10.000, and
100.000. All nine combinations have been experimented. For
each combination, the algorithm was run 10 times over the
Bank example, and the results show the average and the
median of the fitness values of the best solutions found.
The average execution time (in seconds) is also shown.

The chosen parameters were 25 for population size and
100.000 for the number of generations. Increasing the
number of generations has the most effect on the results.
All the combinations using 100.000 generations give better
results compared to the other combinations. Increasing the
population size also improves the result, but in the case of
100.000 generations the improvement is very small, and the
execution time drastically increases with the population size.

Values for the relation types: Except for the weaving
relation type, the values associated with each type of relation
have been set using previous work [2]. In the context of
a graph-based class integration test order algorithm for
object-oriented systems, several values for the relations
were experimented, using the number of stubs as a metric.
Values are represented as a vector, with the values of
inheritance, association, composition, dependency, polymor-
phic and owned element, in this specific order. The tested
vectors were (40,2,4,2,2,4), (20,2,4,2,2,4), (10,2,4,2,2,4),
(5,2,4,2,2,4), and (2,2,20,5,20,20). The last one showed the
best results, so we used its values for the approach presented
in this paper. As this previous work was considering object-
oriented systems, there were no weaving relation, and we
thus need to determine it empirically.

The weaving value should be high enough to make sure
that an aspect is tested after the classes where it is woven.
If an aspect A is woven in five methods of a class C, the
fitness value would be five if A is tested first (for the five
impacted methods), and it would be the value of the weaving
relation if C is tested first. As we want the class (which is
directly impacted) to be tested first, the value of the weaving
relation, in this example, should be at least five.

To determine the best value for the weaving relation, we
executed the algorithm on the Bank example using different
values, all other parameters being fixed. The tested values
were 2, 5, 10 , 15, and 20. For each value the algorithm was
run ten times. The expected result is that the Security
aspect is ranked after the four classes it directly impacts,
but before the 15 classes it indirectly impacts. With a value
of 2 or 5, only a few solutions showed the expected results.
Starting from a value of 10 or higher, the Security aspect
was ranked approximatively at the same place, and always
after the classes it directly impacts.

We recommend using a high value for the weaving rela-
tion, such as 20. These results show that, on this example, 10
is the minimum value for the weaving relation, but we cannot
know for sure that 10 is a good value for other examples. As
the experiment showed that a higher value does not impact
the rank of the aspect, using a higher value is safer.



This experiment also validates the discussion of Section II.
The proposed algorithm has been able to find a class
integration test order in which the aspect is tested after the
classes where it is woven, but is tested before the other
classes. This finer grained approach allows the reduction of
the testing effort on the classes that are indirectly impacted.

VI. RELATED WORK

We begin this section by reviewing approaches to comput-
ing a class integration test order for object-oriented systems.
As we have discussed previously, these approaches may be
applicable to aspect-oriented systems, but they are unable
to account for aspects and are thus unable to compute an
optimal (or even near-optimal) integration test order. After
reviewing such approaches, we review existing approaches
to testing aspect-oriented systems.

As we discussed in Section III, most approaches to com-
puting a class integration test order for an object-oriented
system are graph-based. In particular, these approaches rely
on an ORD to represent classes (as nodes) and inter-class
dependencies (as edges). Further, some approaches (e.g.,
those by Kraft et al. [2] and Abdurazik and Offutt [15])
use edge weights to represent the cost of creating the stub
that would be needed were the edge removed. In general,
approaches to computing class integration test orders can be
characterized by the kinds of dependencies that they model
(as edges) in the graph and by the strategies that they use
to remove cyclic dependencies from the graph.

Kung et al. [24] present the initial solution to com-
puting a class integration test order. They construct an
ORD that models the following dependencies: aggregation,
association, inheritance, template instantiation, instantiated
template use, nested. They further divide aggregation into
automatic, static, and dynamic. Their template dependen-
cies are specific to C++, and nested corresponds to the
ownedElement relationship from UML class diagrams. Kung
et al. remove the association edges that will “result in the
minimum number of stubs.” Tai and Daniels [25] present
another early solution. They include three edge types in their
ORD. Their solution is most notable in that it relies on node
removal, rather than edge removal, to remove cycles.

Labiche et al. [26] noted that not all dependencies are
static and thus introduced the dynamic edge to their ORD.
This edge type accounts for dependencies introduced by
dynamically dispatched (virtual) method calls. Others [27],
[2] have since termed this edge type polymorphic, as do we
in this paper. More recent work by Abdurazik and Offutt [15]
considers a total of nine edge types, many of which rep-
resent dynamic dependencies. In particular, Abdurazik and
Offutt use coupling measures to identify the following 10
dependencies: association coupling, aggregation coupling,
composition coupling, usage dependency, call coupling,
global coupling, inheritance coupling, interface realization
coupling, external coupling, and exception coupling. They

assign weights of five to edges representing inheritance
coupling and composition coupling, and weights of one to
edges representing any other dependency. Their weighting
model reflects their belief that inheritance and composition
are the dependencies which would require the most costly
stubs should the corresponding edges be removed from the
ORD.

Malloy et al. [27] and Kraft et al. [2] (which sub-
sumes Malloy et al.) use a fully parameterized cost model
for weighting edges in an ORD. They consider six edge
types: association, dependency, inheritance, composition,
ownedElement, and polymorphic. Further, they experiment
with different combinations of edge weights and compare
their edge removal algorithm to that of Briand et al. [14]
(whose work subsumes earlier work by Le Traon et al. [13]
and Briand et al. [28]). Kraft et al. conclude that removal of
inheritance edges can cause the total number of necessary
stubs to drop dramatically. Thus, it may be cost-effective to
create a complex stub for an inheritance edge if it obviates
the need for creating many additional stubs (though those
stubs may be somewhat simple to create).

Similar to Le Traon et al. [13], Hewett and Ki-
jsanayothin [29] use a structure-oriented approach to identi-
fying edges for removal from cycles of dependencies. That
is, rather than consider the type of the edge to be removed,
they focus on the structure of the (cyclic) subgraph in which
the edge is found. Though Hewett and Kijsanayothin are able
to minimize the number of stubs using their approach, they
do not consider the cost of creating each stub.

Genetic algorithms have been used for the class integra-
tion test order problem. Da Veiga Cabral et al. [30] have
proposed a multi-objective optimization approach, where
the algorithm tries to generate solution with a balance
compromise between different metrics (the objectives). The
metrics used are attribute complexity and method complex-
ity that measures the number of attributes (respectively,
methods) that would need to be handled in the stubs for
a given solution. Assuno et al. [31] have investigated the
usage of two multi-objective evolutionary algorithm, using
four metrics: attribute coupling, method coupling, number
of distinct return types, and number of distinct parameter
types. Experiments on different systems showed that both
algorithm are effective for the class integration test order
problem.

In previous work [32], we have proposed an approach
to evaluate the impact of aspects on the test cases. This
approach assumes that a class has been tested before an
aspect is woven and aim to statically find the set of all the
test cases that are impacted by this aspect. The static analysis
is close to the one we use in this paper to find the methods
impacted by an aspect. In our previous work the analysis
starts from a test case and try to find a reachable advice,
whereas in this paper the analysis starts from an advice and
compute the set of the methods that can reach this advice.



As discussed in Section II previous work on integration
testing of aspect-oriented programs have focused on an in-
cremental approach. Zhou et al. [4] present an approach for
testing aspect-oriented programs encompassing unit testing,
integration testing, and system testing. The authors argues
that for integration testing an order is not important in the
case of aspect-oriented programs. In this paper we advocate
the use of a fine grain integration testing order that reduce
the testing effort. Ciccato et al. [5] have discussed the
difficulty of testing aspect-oriented programs, and suggested
using an incremental approach to leverage the separation
of concerns. Xu et al. [6] have proposed an approach for
integration testing of aspect-oriented programs that rely on
state-models. State models are finite state machines that
model the behavior of the system and that are used to
generate test cases. They propose an incremental approach
where the state model first only models the base program.
Then the state model is modified to take into account the
aspects. State models could be used to generate test cases in
a combined approach that uses an order where aspects and
classes are interspersed.

Ré et al. [33] have adapted the algorithm of Briand et
al.[14] by extending the ORD to take aspects into account.
The produced ORD does only describe direct impact of the
aspects and, as discussed in Section III, the algorithm uses
only local information to make a decision in a strongly
connected component. Colanzi et al. [34] have proposed a
multi-objective approach for the class integration test order
problem in the context of aspect-oriented programming. The
two studied algorithm, as well as the four metrics, are the
same used by Assuno et al. [31], whereas the ORD used is
based on the work of Ré et al. [33]. The algorithms were
studied on different projects and showed to be effective.
The approach we present in this paper is close but uses a
fitness function that takes the indirect impact of aspects into
account, which, to our best knowledge, no other work does.

Several works have proposed test criteria for the inte-
gration testing of aspect-oriented programs. Test criteria
are constraints that test suites should satisfy to ensure
a minimal quality. Massicotte et al. [35] have proposed
test criteria based on collaboration diagrams, control flow
graph, and message trees. Lemos et al. [36] have proposed
structural coverage criteria. This approach uses models that
encapsulate both the control flow and the data flow. These
models are used to define several coverage criteria for the
interactions between the advices and the methods. As the
goal is to check that the test cases cover all the possible
interactions, these criteria can be used in an incremental
approach or in a combined approach such as the one we
propose in this paper. Harman et al. have used a search
based optimization technique to generate test data for aspect-
oriented programs. This technique tries to achieve structural
coverage.

VII. CONCLUSION

In this paper we argue that the incremental approach
of integration testing of aspect-oriented systems, where the
system without aspect is tested first and then the system with
the aspects is tested, induces an extra testing effort. We also
argue that this testing effort can be avoided by a combined
approach that intersperses classes and aspects.

We propose a genetic algorithm that uses information
on the relations between classes and aspects, as well as
information on the methods impacted by the aspects, to
produce an integration testing order such that aspects are
tested after the classes that they directly impact and before
the classes that they indirectly impact. Such an integration
order can avoid the modification of test suites for the
indirectly impacted classes.

This genetic algorithm has been implemented in a tool
for AspectJ programs. This implementation allowed the
validation of the approach, as well as the empirical settings
of the parameters of the algorithm. Experiments on the
motivating example have shown that the proposed approach
can produce fine grained integration test orders.

In future work we would like to apply the approach on
several large size systems. Such experiments would further
validate the approach, but could also be more conclusive as
of the value of the weaving relationship. The experiment
on the bank example has shown that a value of 10 was a
minimum, but could not discriminate between the values
greater than 10.

It would also be interesting to extend the fitness func-
tion with different metrics that could refine the produced
integration orders. Currently, different integration orders
can have the same fitness value, but it is likely that they
are not equivalent, even if they are very close. A finer
fitness function could discriminate between these orders and
improve the algorithm.
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