
Finding the Optimal Balance between Over and
Under Approximation of Models Inferred from

Execution Logs
Paolo Tonella, Alessandro Marchetto, Cu Duy Nguyen

Fondazione Bruno Kessler, Trento, Italy
{tonella, marchetto, cunduy}@fbk.eu

Yue Jia, Kiran Lakhotia, Mark Harman
University College London, UK

{yue.jia, k.lakhotia, mark.harman}@ucl.ac.uk

Abstract—Models inferred from execution traces (logs) may
admit more behaviours than those possible in the real system
(over-approximation) or may exclude behaviours that can indeed
occur in the real system (under-approximation). Both problems
negatively affect model based testing. In fact, over-approximation
results in infeasible test cases, i.e., test cases that cannot be
activated by any input data. Under-approximation results in
missing test cases, i.e., system behaviours that are not represented
in the model are also never tested. In this paper we balance
over- and under-approximation of inferred models by resorting
to multi-objective optimization achieved by means of two search-
based algorithms: A multi-objective Genetic Algorithm (GA) and
the NSGA-II.

We report the results on two open-source web applications
and compare the multi-objective optimization to the state-of-the-
art KLFA tool. We show that it is possible to identify regions
in the Pareto front that contain models which violate fewer
application constraints and have a higher bug detection ratio.
The Pareto fronts generated by the multi-objective GA contain
a region where models violate on average 2% of an application’s
constraints, compared to 2.8% for NSGA-II and 28.3% for the
KLFA models. Similarly, it is possible to identify a region on
the Pareto front where the multi-objective GA inferred models
have an average bug detection ratio of 110 : 3 and the NSGA-II
inferred models have an average bug detection ratio of 101 : 6.
This compares to a bug detection ratio of 310928 : 13 for the
KLFA tool.

Keywords-Model inference; Model-based testing; Search-based
software engineering.

I. INTRODUCTION

Model inference has been successfully employed in many
areas, including program comprehension, software testing and
evolution [5], [15], [14]. Models can be inferred by means
of state abstraction or event sequence abstraction. In state-
based abstraction, abstraction functions are defined to map
concrete states into abstract states, so as to control the size
of the inferred model and to allow for generalization from the
actually observed states [5].

Event sequence abstraction takes advantage of regular lan-
guage inference algorithms, such as k-tail [2], or its vari-
ants [11], [13]. A finite state machine is obtained which
recognizes the language of the event sequences observed
in execution logs. Such finite state machines are actually a
generalization of the observed sequences and not just their

union. However, these generalizations are usually unsound,
which means:
• they might introduce infeasible behaviours (paths allowed

in the model that are impossible in the real application),
hence over-generalizing;

• they might exclude some possible behaviours (paths
allowed in the real application that do not exist in the
model), hence under-generalizing.

The aim of this paper is to infer models from execution
traces for the purpose of software testing. The inferred models
will be used to generate abstract test cases1. These test cases
need to obey certain properties, thus placing the following
requirements on inferred models: Test cases generated from a
model must be valid, meaning that they represent a feasible
execution sequence for an application. Second, it should be
possible to generate test cases from the model that exercise
parts of an application for which no execution traces exist.
Conversely, an inferred model should also accept new, previ-
ously unseen execution traces, without having to be updated
first. Finally, test cases generated from a model should have
the potential to reveal bugs in an application.

In order for a model to fulfill these requirements, it has to
successfully balance the over- and under-approximation of an
applications’ behaviour. In one extreme, under-approximation
may be a problem for testing because the model does not
contain important behaviours of an application. It simply rep-
resents observed execution traces without any generalization.

In the other extreme, over-approximation may also be
troublesome for testing, since it can result in invalid test cases.
Too much over-approximation gives rise to the generation of
event sequences (i.e., test cases) that represent infeasible paths
through an application. This is due to models abstracting too
much from the observed behaviours.

Over and under-approximation are contrasting properties of
inferred models. Therefore, we propose to use multi-objective
algorithms to find a good trade-off between models that over-
and models that under-approximate the behaviour of a system.

The primary contributions of this paper are:
• We define three metrics that can be used to characterize

1An abstract test case is an event sequence defined on the model. To turn
it into a concrete test case, input data must be provided.



TABLE I
EXAMPLE EXECUTION TRACES.

T1 T2 T3
println println println
Formatter Formatter Formatter
format format close
close format println
println format

close
println

T1,T2: Execution traces used to
infer the model shown in Figure 1.

T3: Newly added
execution trace.

Fig. 1. Model inferred from the execution traces T1,T2 from Table I.

the level of over- and under-approximation in model
inference.

• We introduce two multi-objective algorithms, a Genetic
Algorithm and the NSGA-II [6], to infer models from
execution traces.

• We analyse the inferred models with respect to
– the trade-off between over- and under-

approximation;
– their validity with respect to obeying application

constraints;
– their potential bug finding ability;

• We evaluate our inferred models against a state-of-the-art
benchmark technique (KLFA [16]).

The rest of this paper is organized as follows: The next
section provides background information on the problem of
balancing over- and under-approximation and introduces three
metrics that capture these properties. In Section III we intro-
duce two multi-objective algorithms for model inference, along
with a fitness function that operates on the metrics defined in
Section II. Section IV presents an evaluation of our proposed
inference algorithms, and Section V describes related work.
Finally, Section VI draws conclusions and presents future
work.

II. OVER AND UNDER APPROXIMATION

Let us consider the model shown in Figure 1 and let us
assume it has been inferred from the execution traces T1
and T2 from Table I. Now we consider a new execution
trace, T3, obtained from the same application. Since T3
represents a valid observed behaviour we would expect our
model to accept this trace. In our example however, we see
that T3 is not accepted by the model in Figure 1, because the
close transition cannot be executed after the Formatter
transition. Hence, the model is under-generalizing the possible

legal behaviours of the application by not admitting a legal
execution trace.

On the other hand, we may use the model to generate the
following event sequence:

ES1: 〈println, Formatter, format, close, format,
close, println〉

This event sequence is unlikely to represent a legal be-
haviour of the real system since it involves a double invocation
of the events format, close.

If the model shown in Figure 1 is used to generate abstract
test cases, a legal behaviour which excludes the format
event (see trace T3), can never be tested. Yet it is possible to
generate infeasible (abstract) test cases such as ES1. Hence,
over- and under-approximation are a problem for model based
testing. We therefore propose a set of metrics to quantify these
two properties so that we may use multi-objective algorithms
to find good trade-offs between them.

We can assume that the amount of over-approximation (i.e.,
behaviours that are not possible in reality) is proportional to
the number of unobserved event sequences generated from
the model (up to a given, maximum length L). We say that
an event sequence is unobserved if it is not contained in the
set of execution traces obtained from the real system.

For the amount of under-approximation (i.e., behaviours that
are possible, but are not accepted by the model) we assume it
is proportional to the number of unrecognised traces. A trace
is considered unrecognised if it is not accepted by the model.
Thus, we consider:

Over-approximation ∼ UnObs
Under-approximation ∼ UnRec

However, minimizing the amount of over- and under-
approximation is not enough. Consider a model that consists
of the union of linear event sequences, corresponding to the
execution traces T1, T2, T3 from Table I. Such a model is
shown in Figure 2 (this model is non-deterministic, but it can
be easily transformed into an equivalent deterministic model,
using the powerset construction algorithm). Since this model
reproduces all the execution traces exactly, both the UnObs
and UnRec metrics will be zero.

Based on these values for UnObs and UnRec, one might
wrongly regard such a model as optimal. The problem is
that this model does not generalize the observed behaviours
in any way. Instead it explicitly represents each and every
observed behaviour. Consequently the model is in fact under-
approximating (even though it is truly not over-approximating)
the behaviour of a system.

If we construct a model using the union of all execution
traces, such that UnRec and UnObs are zero, we notice that
the model tends to have many states. Hence, we can use
the size of a model as an approximate measure of the lack
of generalization performed by the model over the traces. A
properly generalizing model will have a smaller size than a
model which represents all traces in parallel.



Fig. 2. Non-deterministic model corresponding to the union of execution
traces T1,T2,T3 from Table I.

Therefore, when trying to find a good trade-off between
over- and under-approximating models, we include a metric
for the degree of “lack of generalization”, i.e., specificity of
the model with respect to the execution traces from which it
was inferred. Hence we introduce the following measures:
• UnObs: This is a count of how many event sequences

(of maximum length L), that do not correspond to any
existing execution traces, can be generated from a model.

• UnRec: This is a count of how many execution traces are
not accepted by a model.

• Size: This is a count of the number of states within a
model.

We propose to use multi-objective algorithms to optimize
(i.e., minimize) those conflicting metrics.

III. MULTI-OBJECTIVE OPTIMIZATION OF MODEL
INFERENCE

Evolutionary Algorithms [10] are a popular choice for solv-
ing multi-objective optimization problems and in this paper we
consider two variants: A multi-objective Genetic Algorithm
and the NSGA-II [6]. Rather than producing a single model,
these algorithms generate a set of nondominating (i.e., Pareto
optimal) models, which we call the Pareto front. We say that
a model M1 dominates another model M2 if, and only if, M1

is better than M2 in at least one objective, and no worse in
all other objectives.

Given our three objectives that we want to minimize, we
can define the dominates function as:
dominates(M1,M2) =

UnObs(M1) < UnObs(M2) ∧ UnRec(M1) ≤ UnRec(M2) ∧
Size(M1) ≤ Size(M2)∨
UnObs(M1) ≤ UnObs(M2) ∧ UnRec(M1) < UnRec(M2) ∧
Size(M1) ≤ Size(M2)∨
UnObs(M1) ≤ UnObs(M2) ∧ UnRec(M1) ≤ UnRec(M2) ∧
Size(M1) < Size(M2)

Figure 3 shows an example of dominance between two
models inferred from all the traces in Table I. UnObs was
determined by generating all event sequences up to length
L = 4 and checking whether these are prefixes of actually

observed traces. The size of these two models, measured as
the number of states, is the same (i.e., 5), but the model on
the left has a lower UnObs and UnRec count.

The dominates function is used by both algorithms to guide
the search process. The algorithms start by generating an initial
population of models. Each model corresponds to a single
execution trace and represents a linear sequence of states,
with each state (except the start and final state) containing one
incoming and one outgoing edge. The population size for the
algorithms is fixed at 1000 models. If there are fewer than 1000
execution traces, randomly selected traces are duplicated until
enough models can be generated to fill the initial population.

A. Multi-objective Genetic Algorithm

The multi-objective GA uses binary tournament selection
to select parents for reproduction. Two models are picked at
random from the current population. If one model dominates
the other (according to the dominates function), it is added
to a mating population. If neither model dominates each other,
one of the models is selected at random and placed into the
mating population. This process is repeated for all winners of
a tournament until the mating population has been filled.

Once the mating population is full, two models are picked at
random (until the mating population is empty) to participate in
a crossover operation. Each crossover of two models produces
a single offspring model. Details of the crossover operator are
provided in Section III-C.

After crossover, offspring models are subject to mutation
(see mutation operator in Section III-C). The final step of
the multi-objective GA is to update the current population
with newly generated offspring. For this we use an elitist re-
insertion strategy. An offspring model is only accepted into
the population if it dominates an existing member of the
population. Whenever an offspring model is accepted into the
population, the model it dominates is removed, thus keeping
the population size constant.

The multi-objective GA also maintains an archive of non-
dominated models. These form the (current) Pareto front. At
every generation, all nondominated models are copied from
the population into the archive. Existing archive members are
removed if they are dominated by newly added models.

B. NSGA-II

NSGA-II is an elitist Nondominated Sorting Genetic Algo-
rithm. The algorithm starts by forming an offspring population,
using binary tournament selection, crossover and mutation
operators as described for the multi-objective GA in the
previous sub-section. Successive generations then use an elitist
re-insertion strategy to update the parent population. This is
done by combining both parent and offspring populations,
ranking the combined population, and selecting the top N
models as the new parent population.

The ranking of models within the combined population is
achieved as follows. First, all models are divided into frontiers.
The first front contains only models that are not dominated
by any other model. It represents the current Pareto front. The



Fig. 3. Dominance example between two inferred models (computed with L = 4) having the same size (5 states).

second front contains all models that are dominated by at most
one other model, while the third front contains all models that
are dominated by at most two models, and so forth.

Once models have been assigned to a frontier, every model
within a specific front is assigned a crowding distance. The
crowding distance measures the average distance of a model,
compared to its two neighbouring models within the front,
along each of the objectives (UnObs, UnRec and Size). Given
two models within the same frontier, one model is preferred
over another if it has a greater crowding distance. It means the
model lies in a less crowded region of the Pareto front, helping
the optimization to create a more diverse set of solutions.

All models can then be ranked according to the frontiers
they appear in, with models within the same front sorted ac-
cording to their crowding distance. Once the parent population
has been updated using elitism, a new offspring population is
formed in the same way as described for the multi-objective
GA.

C. Search Operators

The search space where the Pareto optimal models can
be found is the space of all models that can be inferred
from the execution traces. In order to explore such a huge
space, we define a set of search operators that are analogous
to the traditional crossover and mutation operators used in
evolutionary computation.

The type of search operators we can define for crossover
and mutation operations depends on the abstraction mecha-
nism used by the model inference algorithm. Models can be
inferred using an event sequence abstraction and state-based
abstraction. In this paper we only consider models inferred
using event sequence abstraction.

1) Crossover Operators: Unlike traditional crossover oper-
ators used in Evolutionary Algorithms, the crossover operators
defined in this paper only produce a single offspring model.
We consider two types of crossover operation: Union and
Intersection. For every pair of parent models, we randomly
select which operator to apply.
Union: The purpose of the union operator is to reduce the
number of unrecognised traces (UnRec count) by combining
two models M1 and M2. The union operator introduces a
new unique start node, U1, for the united model. Then, all
nodes from M1 and M2 are added in parallel to the new
model. Finally, each transition from the start nodes of M1 and
M2 is added to the new start node U1. Since the start nodes
are likely to share a transition, the new model is potentially

Model M1 Model M2 Intersection of models
M1 and M2

Fig. 5. The right-hand column shows the result of intersecting the two models
on the left (M1 ) and in the middle (M2).

nondeterministic. Therefore, we apply powerset construction
to make it deterministic again. Figure 4 shows an example of
two models and how they are combined.
Intersection: While the union operator was designed to reduce
the number of unrecognised traces, the intersection operation
aims to reduce the number of unobserved traces that can be
generated from a model (UnObs count). The operator starts
by creating a unique start node I1. Then, all transitions of the
models, starting with the start nodes, are traversed in parallel
in a depth-first manner. At every point, all transitions that
are shared between the models M1 and M2 are added to the
intersected model. Two transitions are considered equivalent
if they share the same name.

Figure 5 contains an example of the intersection operator
(right-hand column) when applied to the two models in the
left columns. Starting at states S1, both models share the
println transition. After executing this transition, both
models, M1 and M2 are in their respective state S2. From
this state both models share the Formatter transition. For
model M1 this is a self-transition, thus it remains in state
S2. Model M2 however is now in state S3. These two states
only share the close transition, which takes both models
back into their respective state S1. The right-hand column
in Figure 5 shows the model after the intersection operator
has been applied. Once again powerset construction is used to
make any resulting model deterministic if necessary.

2) Mutation Operators: Every offspring model has a 50%
chance of being mutated. We have implemented two mutation
operators: Add Trace and Merge States. As with crossover,
we randomly choose which mutation operator is applied to a
model.
Add Trace: This operator randomly selects a trace file from
the set of execution traces used to generate the initial pop-
ulation. The trace is then added to the existing model. Fig-
ure 6a shows how a trace (〈println, Formatter, close,



Model M1 Model M2 Nondeterministic union of models
M1 and M2

Union of models M1 and M2 after pow-
erset construction

Fig. 4. The right-hand column shows the result of the union of the two models M1 and M2.

a) b)

Fig. 6. Add trace and merge states operators.

println〉) is added to the start node of the model. The effect
of this operation is the same as if an offspring model and a
model from the initial population would be combined through
the union crossover described earlier.
Merge States: The merge state mutation comes in two
flavours: random-k-tail and random merge.

The random merge mutation randomly selects two states,
S1 and S2, to merge from the model. First, a new state S′

is created. Then, all incoming and outgoing transitions of S1

and S2 are copied to S′. Finally, the two states S1 and S2 are
removed from the model.

In a random-k-tail merge, two states are selected at random
from a model. If the two states share the same k-tail (i.e.,
they share all transitions up to length k) they are merged. If
two states cannot be merged, another two states are selected
at random. This process continues until either two states have
been merged, or no more states are left to pick from the model.

We set the length of k to 2 in order to increase the
probability of state merges to occur. Figure 6b shows an
example of two states that may be merged using a k-tail of 2,
because the 2-tails of the lower state (〈format, format〉,
〈format, close〉) are also 2-tails of the upper state. Note
that in this example we applied an asymmetric version of k-
tail, requiring one set of k-tails to be a subset of the other.

The random-k-tail mutation is potentially less destructive;
states are only merged if they share a k-tail, and thus this mu-
tation is chosen with a 90% probability over the random merge
mutation. Both mutation operators use powerset construction
to make any resulting model deterministic.

IV. EVALUATION

The aim of this section is to evaluate the use of multi-
objective Evolutionary Algorithms for model inference from

execution traces. We selected KLFA as the benchmark ref-
erence technique to use for comparison, since KLFA [16] is
a recent development of state-of-the-art techniques for model
inference using positive examples. It has been shown to be
superior to the k-tail based algorithms for traces obtained
from software systems [17]. The three research questions to
be addressed in this section are as follows:
RQ1 (Trade off): What trade-offs between over- and under-
approximation are determined by multi-objective optimization
and how do they compare with the benchmark model inference
technique, KLFA?
RQ2 (Infeasibility): Does multi-objective optimization find
models with fewer infeasible event sequences than the bench-
mark? What portion of the Pareto front provides a lower
number of infeasible sequences?
RQ3 (Fault revealing): Does multi-objective optimization find
models with a higher fault detection rate (fraction of event
sequences that reveal a fault) than the benchmark? What
portion of the Pareto front provides a higher number of faults
revealed?

In order to answer these research questions, we selected two
open source web applications. Tudu [8] is an online to-do list
application based on the Java Spring Framework and AJAX.
The application allows users to create and edit tasks, as well
as share them with other users. Trace files for Tudu were
obtained by manually executing the application.

We considered two sets of traces. The first, Tudu-HL uses a
high level abstraction function to transform concrete execution
logs into traces that are suitable for model inference. The
second set, Tudu-LL uses a lower level abstraction function
to generate the trace files used for model inference.
Cyclos [22] is an on-line banking system that offers a set

of e-commerce and communication tools. It is implemented in
Java and uses JSP for the web interface. We manually executed
the application to obtain a set of execution traces.

In order to answer research questions RQ2 and RQ3 we
also collected a set of constraints and bug traces for each
application. Constraints denote precedence relationships be-
tween event sequences. For example, a constraint of the form
〈Formatter|format::close〉 means the close event can
only be preceded by either the Formatter or format event.



They describe sub-machines from a gold standard model2. If
it is possible to construct an event sequence from a model
where close is preceded by any other event, e.g. println,
we consider the model to violate that constraint. The set of
precedence constraints for the test subjects were extracted
from the real application through manual code-inspection and
domain knowledge.

We created the set of bug traces by examining bug reports
from the application’s bug repositories. A bug trace has the
form 〈close, println, format〉 and denotes a sequence
of events that lead to an error state in the real application.
Thus, if a model accepts a bug trace, it is possible to generate
a fault revealing abstract test case from the model. Since the
ultimate goal of testing is to find bugs, models that are able to
reveal more bugs should be preferred over models that fail to
reveal (known) bugs. This is akin to mutation testing, where
the ability of a test suite to find seeded bugs is used as an
indicator of its ability to find unknown bugs in the future.

Note that neither constraint nor bug information is used
during the model generation process. We simply use the
constraint and bug trace information to evaluate the models
once we have completed the inference process.

Both, the multi-objective GA and the NSGA-II, were al-
lowed to run for 100 generations. Due to the stochastic nature
of evolutionary algorithms we repeated the model inference
for each test subject six times using a fixed set of random
number seeds.

We used the model inference tool KLFA [16] as a bench-
mark against which to evaluate our proposed techniques.
The KLFA tool operates in three stages: Preprocessing raw
execution logs into trace files using various analysis and
abstraction techniques; inferring a model from the trace files;
using the inferred model for failure analysis. We only used the
model inference part of KLFA, feeding it the same trace files
used by the multi-objective GA and NSGA-II.

The model inference part of KLFA works by incrementally
building up a model from a set of traces. The algorithm behind
KLFA, named k-behaviour [17], incrementally builds a model
by processing one trace at a time. The idea behind k-behaviour
is that recurring input patterns occurring in the input traces
should be mapped to the same sub-model (i.e., sub-graph of the
automaton). Hence, sub-sequences are identified in the input
traces that can be completely or partially recognized starting
from a state in the model. The model is then extended to accept
the trace fully.

Models are generated by the KLFA algorithm in a deter-
ministic way. Therefore, we only ran KLFA once for each set
of traces from our test subjects.

A. Answer to Research Questions

Table II shows the total number of models created by
the multi-objective GA and NSGA-II (during the six repeat
experiments) for each of the applications studied. The second

2A gold standard model exactly represents the true application behaviour.
Ideally a model inference technique would be able to infer the gold standard
model.

TABLE II
THIS TABLE SHOWS THE NUMBER OF MODELS CREATED BY THE

MULTI-OBJECTIVE GA AND NSGA-II FOR EACH OF THE TEST SUBJECTS.
RPF STANDS FOR REFERENCE PARETO FRONT.

Subject Traces Algorithm Models Models on RPF
Tudu LL 15 GA 122 41
Tudu LL 15 NSGA-II 70 35
Tudu LL 15 KLFA 1 1
Tudu HL 125 GA 175 51
Tudu HL 125 NSGA-II 351 315
Tudu HL 125 KLFA 1 1
Cyclos 262 GA 160 119
Cyclos 262 NSGA-II 397 291
Cyclos 262 KLFA 1 1

column contains the number of traces used during the infer-
ence process. The table also includes a Reference Pareto Front
(RPF) made up from all nondominated models found by either
the multi-objective GA, NSGA-II or KLFA.

In all cases, the model inferred by KLFA is on the RPF. This
means the multi-objective GA and NSGA-II failed to generate
models that are better in all objectives than the KLFA inferred
models. In the remainder of this section we analyse the quality
of the models found in more detail.
Answer RQ1 (Trade off): The goal of the multi-objective
algorithms is to find models that contain good trade-offs
between under- and over-approximation of an application’s
behaviour. Figure 7 shows the distribution of models found
by the multi-objective GA and NSGA-II, along the UnObs
objective, in the form of box plots. Figure 9 shows the
distribution of models plotted along the UnRec objective, and
Figure 8 shows the distribution of models plotted along the
Size objective. As a point of reference we also included the
benchmark model produced by KLFA in each of the figures.

The plots are drawn using the union of nondominated so-
lutions found during the six repeated runs of the experiments.
The red line inside the boxes show the median value for an
objective, while the end points of the whisker lines denote the
lowest and highest values, disregarding outliers3. Outliers are
shown as red plus signs and they denote extreme regions of a
Pareto front.

Looking at Figure 7, both the multi-objective GA and
NSGA-II are able to infer models that have a low UnObs
count, i.e., that are not over-approximating the applications’
behaviour. In the best case we do not generate any unobserved
event sequences from the models (i.e., UnObs = 0).

The figures also show that the models inferred by KLFA
have a very high UnObs count. Even if we take the fur-
thest outlier (with the highest UnObs count) from the multi-
objective GA or NSGA-II, it has a lower UnObs value than
the benchmark model. Thus, both the multi-objective GA and
NSGA-II models are less over-approximating than the KLFA
benchmark.

Recall that the size of a model can also be used as an
approximate measure of the level of generalization performed

3An outlier is a value that is more than 1.5 times the interquartile range
away from the top or bottom of a box.



Fig. 7. Box plots of the UnObs counts from the models inferred by the
multi-objective GA and NSGA-II. The bottom plots zoom in on the box plot
regions of the top plots.

Fig. 8. Box plots of the Size counts from the models inferred by the multi-
objective GA and NSGA-II.

by the model. Both multi-objective algorithms are able to
generate very small models (see Figure 8). In the extreme case,
models only contain a single transition. While such models are
truly not over-approximating, they are not useful for testing
either, because they do not allow us to test the majority of an
application’s behaviour.

In general, models that have a low UnObs count will also
be small in size. An exception are models that contain loops.
Loops (or self-transitions) enable us to generate infinitely
many event sequences while keeping the size of a model small.
For example, the KLFA benchmark models are relatively

Fig. 9. Box plots of the UnRec counts from the models inferred by the
multi-objective GA and NSGA-II.

small (see Figure 8), but have a very high UnObs count (see
Figure 7). Hence they contain a lot of loops.

Finally, Figure 9 shows box plots for the UnRec count. The
NSGA-II is better at finding models that have a lower UnRec
value than the multi-objective GA. This means models found
by the NSGA-II are less under-approximating.

However, compared to KLFA, both the multi-objective GA
and NSGA-II generate worse models in terms of UnRec. For
all applications and execution traces, the KLFA benchmark
has no unrecognised traces. Combined with the data from
Figure 7 this is not surprising. The KLFA model tends to over-
approximate rather than under-approximate an application’s
behaviour.
Answer RQ2 (Infeasibility): The motivation behind the work
in this paper is to use inferred models for testing, in particular,
abstract test case generation. Thus, for models to be useful in
practice, they must not violate application constraints. If they
do, it is possible to generate invalid test cases, placing extra
burden on the tester.

We manually collected a set of constraints for each of the
two applications. For Tudu we created five and for Cyclos
15 constraints. To assess whether a model violates a constraint
we examine every state within the model and check if is
possible to construct a violating sequence from that state.

Depending on the set of execution traces used for Tudu,
the model inferred by KLFA violates either four (Tudu-LL)
out of five or all five constraints (Tudu-HL). For Cyclos,
the KLFA inferred model violates eight of the 15 constraints.

To look at how good the multi-objective GA or NSGA-II
inferred models are compared to the KLFA benchmark with
respect to infeasibility (i.e., constraint violation), we cannot
simply pick the best model from a Pareto front and compare
it with KLFA’s model, as this would be unfair to KLFA.

Multi-objective algorithms do not generate a single solution,



TABLE III
THE COLUMNS SHOW THE TOP 5%, 10%, 50% AND 100% OF MODELS

WITH THE LOWEST UnObs COUNT AND THEIR AVERAGE NUMBER OF
CONSTRAINTS VIOLATED (ALONG WITH THE STANDARD DEVIATION).

Subject Algorithm 5% 10% 50% 100%
Tudu LL GA 0.5 (0.8) 1.6 (1.9) 1.8 (1.7) 2.2 (1.7)
Tudu LL NSGA-II 0.7 (1.2) 1.1 (1.6) 1.6 (1.7) 1.8 (1.7)
Tudu LL KLFA – – – 4.0 (0.0)
Tudu HL GA 2.1 (1.6) 2.5 (1.7) 3.1 (1.6) 3.3 (1.5)
Tudu HL NSGA-II 3.1 (2.1) 3.1 (1.9) 3.8 (1.5) 4.3 (1.2)
Tudu HL KLFA – – – 5.0 (0.0)
Cyclos GA 2.4 (2.6) 2.4 (2.2) 4.1 (2.5) 5.3 (2.4)
Cyclos NSGA-II 4.0 (2.6) 3.9 (2.6) 6.5 (2.4) 8.2 (2.7)
Cyclos KLFA – – – 8.0 (0.0)

but rather a set of solutions. It is up to a decision maker to pick
one solution, out of a set of equally good solutions. Therefore,
we would like to know from which region of a Pareto front
a decision maker should pick a model, and, on average, how
many constraints are violated by models from that region.

To answer this question, we generated 3 orderings (see
Tables III, IV, V), one for each objective, sorted according
to their respective objective values. Then, we took the top
5%, top 10%, top 50% and 100% of models in each ordering
and computed how many constraints these models violate.

For example, consider models inferred by the NSGA-II.
Table V shows the result for the Size ranking. For Tudu-LL,
a decision maker can pick any model from the top 5% of
models with the lowest Size count. Whichever model is chosen,
it will, on average, not violate any constraints. In contrast,
models inferred by the multi-objective GA violate on average
0.2 constraints, while the model inferred by the KLFA violates
four constraints.

The top 5% of models with the lowest Size count inferred
from Tudu-HL traces violate on average 0.4 (multi-objective
GA) and 0.6 (NSGA-II) constraints. Similarly for Cyclos,
the top 5% of models with the lowest Size count violate on av-
erage 0.6 (multi-objective GA) and 1.1 (NSGA-II) constraints.
For comparison, KLFA models for these traces violate five
(Tudu-HL) and eight (Cyclos) constraints respectively.

Using any other region from the Pareto fronts, e.g. top 5%
with the lowest UnObs or top 5% with the lowest UnRec,
yields models that violate on average more constraints. Thus,
a decision maker should pick a model that lies within the
top 5% of the lowest Size value. Compared to the KLFA
benchmarks, models from this region will violate, on average,
fewer constraints.
Answer RQ3 (Fault revealing): In mutation testing, the quality
of a test suite is evaluated according to its ability to detect
known bugs. In this paper we evaluate the quality of our
inferred models by checking how many known bug traces a
model accepts. The more bug traces a model accepts the better,
because we can generate more fault revealing test cases from
the model.

We collected 37 bug traces for Tudu and nine bug traces for
Cyclos. For each model generated by KLFA, multi-objective
GA and NSGA-II, we then constructed all event sequences up

TABLE IV
THE COLUMNS SHOW THE TOP 5%, 10%, 50% AND 100% OF MODELS

WITH THE LOWEST UnRec COUNT AND THEIR AVERAGE NUMBER OF
CONSTRAINTS VIOLATED (ALONG WITH THE STANDARD DEVIATION).

Subject Algorithm 5% 10% 50% 100%
Tudu LL GA 4.0 (0.0) 4.0 (0.0) 3.7 (0.7) 2.2 (1.7)
Tudu LL NSGA-II 4.0 (0.0) 4.0 (0.0) 3.2 (1.2) 1.8 (1.7)
Tudu LL KLFA – – – 4.0 (0.0)
Tudu HL GA 4.9 (0.4) 4.6 (0.5) 4.3 (0.5) 3.3 (1.5)
Tudu HL NSGA-II 4.9 (0.2) 4.9 (0.2) 4.9 (0.3) 4.3 (1.2)
Tudu HL KLFA – – – 5.0 (0.0)
Cyclos GA 7.8 (0.5) 7.8 (0.7) 7.2 (1.1) 5.3 (2.4)
Cyclos NSGA-II 12.2 (1.4) 11.8 (1.2) 10.0 (1.8) 8.2 (2.7)
Cyclos KLFA – – – 8.0 (0.0)

TABLE V
THE COLUMNS SHOW THE TOP 5%, 10%, 50% AND 100% OF MODELS

WITH THE LOWEST Size COUNT AND THEIR AVERAGE NUMBER OF
CONSTRAINTS VIOLATED (ALONG WITH THE STANDARD DEVIATION).

Subject Algorithm 5% 10% 50% 100%
Tudu LL GA 0.2 (0.4) 0.1 (0.3) 0.8 (1.1) 2.2 (1.7)
Tudu LL NSGA-II 0.0 (0.0) 0.0 (0.0) 0.5 (0.9) 1.8 (1.7)
Tudu LL KLFA – – – 4.0 (0.0)
Tudu HL GA 0.4 (0.5) 0.6 (0.5) 2.4 (1.5) 3.3 (1.5)
Tudu HL NSGA-II 0.6 (0.5) 1.1 (0.9) 3.7 (1.5) 4.3 (1.2)
Tudu HL KLFA – – – 5.0 (0.0)
Cyclos GA 0.6 (0.7) 1.4 (1.7) 3.5 (2.0) 5.3 (2.4)
Cyclos NSGA-II 1.1 (0.9) 2.8 (2.2) 6.5 (2.4) 8.2 (2.7)
Cyclos KLFA – – – 8.0 (0.0)

to length L = 6, L = 8 and L = 10 in a depth-first manner. If
a bug trace is a sub-sequence in any of the event sequences,
we consider the bug as revealed.

Further, we estimate the effort for generating a bug trace as
the ratio between number of event sequences to be generated
(up to length L) and number of bugs revealed. Table VI
summarizes the average number of traces and, on average,
how many bugs we are able to detect with those traces.

1) Tudu-LL: Using a maximum sequence length L = 6,
we can use the KLFA model to detect 14 Tudu bugs. This
compares to an average of three bugs found by the multi-
objective GA and NSGA-II models. However, the NSGA-II
inferred models have the best event sequence to bug ratio.

If we increase the maximum sequence length L to eight, we
encountered “OutOfMemory” exceptions for the KLFA model,
despite increasing the Java stack size to 6GB. The number of
event sequences we can generate given L = 8 is simply too
big.

Increasing L to eight does not change the number of bugs
found for models inferred by the multi-objective algorithms.
If we increase L to ten however, we can detect an average
of four bugs using the multi-objective GA models. Models
inferred from the NSGA-II can still only detect an average of
three bugs.

2) Tudu-HL: Given L = 6, we can detect 25 bugs using
the KLFA model. Models generated by the NSGA-II detect on
average three bugs. However, models inferred from the multi-
objective GA cannot be used to detect any bug. Again, in terms
of effort to find a bug, the NSGA-II inferred models have the



best event sequence to bug ratio.
As before we cannot increase L beyond six for the KLFA

model. Increasing L to eight makes no difference for the multi-
objective GA or NSGA-II models. Once we increase L to ten,
the multi-objective GA models detect on average one bug,
while the the NSGA-II models detect on average four bugs.
However, as L increases, the bug detection ratio decreases.

3) Cyclos: With L = 6, we can generate 328 event
sequences from the KLFA model, on average 14 event se-
quences from the multi-objective GA inferred models, and
on average 52 event sequences from the NSGA-II inferred
models. However, none of these event sequences matches a
bug trace. Increasing L to eight or ten makes no difference
either. This means Cyclos bugs are hard to detect, requiring
potentially many event sequences (of length L > 10) before a
bug trace can be generated.

B. Discussion

In this section we examined three properties of models
inferred by the multi-objective GA, NSGA-II and KLFA. We
found that KLFA models over-approximate an application’s
behaviour. A side-effect of over-approximation is that KLFA
models violate more application constraints than models found
by multi-objective optimization. On the other hand, over-
approximating models are better suited to find bugs. For
example, in theory, the KLFA model for Cyclos could detect
nine bugs, the model for Tudu-LL 14 bugs and the model
for Tudu-HL 25 bugs. These numbers were computed by
checking if the KLFA model contains a state that accepts a
bug trace.

There is however a cost involved in finding bugs. Due to the
large number of event sequences that can be generated from
KLFA models (given a maximum sequences length L), the
ratio of event sequences to bugs detected is very low. In the
case of Cyclos for example, it was impossible to generate
any bug trace from the KLFA model in practice. Despite
detecting fewer bugs overall, the multi-objective algorithms, in
particular the NSGA-II, infer models that have a better event
sequence to bug detection ratio.

In summary, multi-objective optimization results in models
that are well-distributed across several combinations of the
levels of over- and under-approximation. The tester can choose
a region from these trade-offs to ensure that few constraints
are violated. This results in fewer infeasible test cases. These
models also have a very favourable ratio of event sequences
generated per bug revealed, although they cannot reveal all
bugs in the application under test.

V. RELATED WORK

A vast literature exists on the inference of finite state models
from a set of observed execution traces [1], [4], [5], [2], [11],
[13]. The algorithms used for inference perform either an
abstraction of the observed concrete states [5] or an abstraction
of the observed event sequences [2]. In both cases, the result
of the abstraction is a finite state machine which accepts more
traces than the observed ones and might (in some cases) not

accept some of the observed traces. The capability to accept
more traces than just the observed traces is a desired property
of the inferred model, which is supposed to generalize the
observed behaviours into the set of all possible behaviours.

Existing algorithms are sometimes evaluated for their gen-
eralization capabilities, using metrics such as the balanced
classification rate [23], which takes into account both false
positives (associated with over-approximation) and false neg-
atives (associated with under-approximation).

However, to the best of our knowledge, no approach has ever
incorporated the two (implicit) objectives of minimizing both
over- and under-generalization. This work is the first to explic-
itly address the problem of over- and under-generalization by
means of a multi-objective optimization approach, and using
positive examples only (i.e., only legal traces are used for the
inference).

The foundation of model inference from execution traces
lies in the theory of grammar inference and more specifically
automata induction [3], [19]. Most applications of automata
induction to software engineering [2], [13] extend and adapt
grammar inference algorithms to the problem of generating a
model from traces produced during the execution of a software
system. The inferred model is expected to be useful for
carrying out some software engineering task, typically model
based testing [13], but also formal verification [1] and intrusion
detection [18]. There are two major families of algorithms
that perform grammar inference from event sequences: (1)
algorithms relying on positive examples only [2], [4], [7],
[13], [21]; (2) algorithms that assume the availability of both
positive and negative examples [3], [9], [12], [20].

Our work clearly belongs to the first category, since negative
examples are usually not available when software traces are
considered. Some approaches [12], based on the availability
of both positive and negative examples, formulate the model
inference problem as an optimization problem. In fact, they
measure precision and recall in order to maximize their
harmonic mean (also known as F-measure).

However, these approaches are single-objective, while ours
is multi-objective. However, the main difference with our
approach is that we work under the assumption that negative
examples are not available, which makes precision and recall
not computable in our case.

Some approaches [1] aim at inferring a model of the
common behaviour of the software, under the assumption that
a common behaviour is often also a correct behaviour, that can
be used as the basis for the definition of a formal specification
of the system. The algorithm used for this purpose is a
probabilistic finite state automaton learner, optimized in terms
of size (smaller / better) and capability of recognizing frequent
sub-sequences (low UnRec for frequent sub-traces). Differ-
ently from our approach, the over-generalization problem is
not addressed directly and explicitly, being (to some extent) a
side-effect of the probabilistic automata induction algorithm.



TABLE VI
THE ‘AVG. # TRACES’ COLUMN SHOWS THE AVERAGE NUMBER OF TRACES (UP TO LENGTH L) WE ARE ABLE TO GENERATE FROM ALL MODELS ON A

PARETO FRONT OR THE KLFA MODEL. THE ‘AVG. # BUGS’ COLUMN SHOWS THE AVERAGE NUMBER OF BUGS THESE TRACES DETECT.

Subject Algorithm (L = 6) (L = 8) (L = 10)
Avg. # Traces Avg. # Bugs Avg. # Traces Avg. # Bugs Avg. # Traces Avg. # Bugs

Tudu LL GA 15 3 29 3 101 4
Tudu LL NSGA-II 8 3 9 3 13 3
Tudu LL KLFA 4224 14 – – – –
Tudu HL GA 81 0 1103 0 16967 1
Tudu HL NSGA-II 41 3 76 3 177 4
Tudu HL KLFA 928232 25 – – – –
Cyclos GA 14 0 45 0 178 0
Cyclos NSGA-II 52 0 128 0 276 0
Cyclos KLFA 328 0 – – – –

VI. CONCLUSIONS AND FUTURE WORK

This paper has investigated the use of a multi-objective
Genetic Algorithm and the NSGA-II to infer models from
execution traces for testing. Inferred models balance the
amount of over- and under-approximation of an application’s
behaviour.

We found models generated by multi-objective algorithms
to be well-distributed across various levels of over- and
under-approximation. In terms of validity, the multi-objective
algorithms produce models that violate fewer application con-
straints than the KLFA models. On the other hand, models pro-
duced by KLFA could potentially reveal more bugs. However,
the ratio of the number of event sequences we have to generate
from KLFA models in order to find a bug is prohibitively high.
The number of event sequences (hence, test cases) that need
to be generated from multi-objective models per bug revealed
is substantially smaller, making the latter models preferable in
practice.

In our future work we plan to further assess the generality of
the inferred models, by conducting new experiments. We also
plan to experiment with machine learning approaches based on
the use of both, a training and a validation set, during model
inference.

ACKNOWLEDGEMENT

Mark Harman, Yue Jia, Kiran Lakhotia, Alessandro Marchetto, Cu Duy
Nguyen and Paolo Tonella are funded through the EU project FITTEST (ICT-
2009.1.2 no 257574). In addition, Mark Harman is supported by EPSRC
Grants EP/G060525/1, EP/D050863, GR/S93684 & GR/T22872 and also by
Daimler Berlin, BMS and Vizuri Ltd. London.

REFERENCES

[1] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining specifications,” in Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, ser. POPL ’02. New York, NY, USA: ACM,
2002, pp. 4–16.

[2] A. Biermann and J. Feldman, “On the synthesis of finite-state machines
from samples of their behavior,” IEEE Trans. on Computers, vol. 21,
no. 6, 1972.

[3] O. Cicchello and S. C. Kremer, “Inducing grammars from sparse data
sets: A survey of algorithms and results,” Journal of Machine Learning
Research, vol. 4, pp. 603–632, 2003.

[4] J. E. Cook and A. L. Wolf, “Discovering models of software processes
from event-based data,” ACM Trans. Softw. Eng. Methodol., vol. 7, no. 3,
pp. 215–249, 1998.

[5] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller, “Mining
object behavior with ADABU,” in Proceedings of the 2006 international
workshop on Dynamic systems analysis, ser. WODA ’06. New York,
NY, USA: ACM, 2006, pp. 17–24.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE-EC, vol. 6, pp. 182–
197, Apr. 2002.

[7] F. Denis, A. Lemay, and A. Terlutte, “Learning regular languages using
rfsas,” Theor. Comput. Sci., vol. 313, no. 2, pp. 267–294, 2004.

[8] J. Dubois, “Tudu Lists,” http://www.julien-dubois.com/tudu-lists.
[9] M. J. Heule and S. Verwer, “Exact dfa identification using sat solvers,”

in Grammatical Inference: Theoretical Results and Applications 10th
International Colloquium, ICGI 2010, ser. Lecture Notes in Computer
Science, J. M. Sempere and P. Garca, Eds., vol. 6339. Springer, 2010,
pp. 66–79.

[10] J. H. Holland, Adaption in Natural and Artificial Systems. University
of Michigan Press, 1975.

[11] I. Krka, Y. Brun, D. Popescu, J. Garcia, and N. Medvidovic, “Using
dynamic execution traces and program invariants to enhance behavioral
model inference,” in ICSE (2), 2010, pp. 179–182.

[12] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. V.
Jagadish, “Regular expression learning for information extraction,” in
Conference on Empirical Methods in Natural Language Processing,
2008, pp. 21–30.

[13] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of soft-
ware behavioral models,” in 30th International Conference on Software
Engineering (ICSE). IEEE Computer Society, May 2008.

[14] A. Marchetto and P. Tonella, “Search-based testing of Ajax Web
applications,” in 1st International Symposium on Search Based Software
Engineering, May 2009, pp. 3 –12.

[15] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of Ajax Web
applications,” in ICST, 2008, pp. 121–130.

[16] L. Mariani and F. Pastore, “Automated identification of failure causes in
system logs,” in ISSRE. IEEE Computer Society, 2008, pp. 117–126.

[17] L. Mariani and M. Pezzè, “Dynamic detection of cots component
incompatibility,” IEEE Software, vol. 24, no. 5, pp. 76–85, 2007.

[18] C. C. Michael and A. K. Ghosh, “Using finite automata to mine
execution data for intrusion detection: A preliminary report,” in Recent
Advances in Intrusion Detection, 2000, pp. 66–79.

[19] R. Parekh and V. Honavar, “Grammar inference, automata induction, and
language acquisition,” in Handbook of Natural Language Processing.
Marcel Dekker, 2000, pp. 727–764.

[20] S. Porat and J. A. Feldman, “Learning automata from ordered examples,”
Machine Learning, vol. 7, pp. 109–138, 1991.

[21] S. P. Reiss and M. Renieris, “Encoding program executions,” in 23rd
International Conference on Software Engineering (ICSE), 2001, pp.
221–230.

[22] STRO Uruguay and Instrodi, “Cyclos,” http://project.cyclos.org.
[23] N. Walkinshaw, K. Bogdanov, C. Damas, B. Lambeau, and P. Dupont,

“A framework for the competitive evaluation of model inference tech-
niques,” in Proceedings of the International Workshop on Model Infer-
ence in Testing (MIIT), 2010.


