
Search–Based Testing,
the Underlying Engine of Future Internet Testing

Arthur I. Baars∗, Kiran Lakhotia‡, Tanja E.J. Vos∗ and Joachim Wegener†
∗ Centro de Métodos de Producción de Software (ProS)

Universidad Politecnica de Valencia, Valencia, Spain
{abaars, tvos}@pros.upv.es

†Berner & Mattner, Berlin, Germany
joachim.wegener@berner-mattner.de

‡CREST, University College London, London, United Kingdom
k.lakhotia@cs.ucl.ac.uk

Abstract—The Future Internet will be a complex intercon-
nection of services, applications, content and media, on which
our society will become increasingly dependent. Time to market
is crucial in Internet applications and hence release cycles grow
ever shorter. This, coupled with the highly dynamic nature of
the Future Internet will place new demands on software testing.

Search–Based Testing is ideally placed to address these
emerging challenges. Its techniques are highly flexible and
robust to only partially observable systems. This paper presents
an overview of Search–Based Testing and discusses some of the
open challenges remaining to make search–based techniques
applicable to the Future Internet.

Keywords-evolutionary testing; search–based testing; re-
search topics.

I. INTRODUCTION

Future Internet (FI) applications testing will need to be
continuous, post-release testing since the application under
test does not remain fixed after its initial release. Services
and components could be dynamically added by customers
and the intended use of an application could change. There-
fore, testing has to be performed continuously, even after
an application has been deployed to the customer. The
overall aim of the European Funded FITTEST project1 (ICT-
257574) is to develop and evaluate an integrated environ-
ment for continuous automated testing, which can monitor
a FI application and adapt itself to the dynamic changes
observed.

The underlying engine of the FITTEST environment,
which will enable automated testing and cope with FI
testing challenges like dynamism, self-adaptation and partial
observability, will be based on Search–Based Testing (SBT).

The impossibility of anticipating all possible behaviours
of FI applications suggests a prominent role for SBT tech-
niques, because they rely on very few assumptions about the
underlying problem they are attempting to solve. In addition,
stochastic optimisation and search techniques are adaptive
and therefore able to modify their behaviour when faced with

1http://www.facebook.com/FITTESTproject

new unforeseen situations. These two properties - freedom
from limiting assumptions and inherent adaptiveness - make
SBT approaches ideal for handling FI applications testing.

Since SBT is unfettered by human bias, misguided as-
sumptions and misconceptions about possible ways in which
components of a system may combine are avoided. SBT
also avoids the pitfalls that are found with a humans’
innate inability to predict what lies beyond their conceivable
expectations and imagination. However, FI applications give
users increasingly more power and flexibility in shaping an
application, thus placing exactly these requirements on a
human tester.

Past research has shown that SBT is suitable for sev-
eral types of testing, including functional [55] and non–
functional [42] testing, mutation testing [10], regression
testing [60], test case prioritization [52], interaction testing
[12] and structural testing [20], [25], [28], [32], [41], [43],
[54]. The relative maturity of SBT means it will provide a
robust foundation upon which to build FI testing techniques.
However, despite the vast body of previous and ongoing
work in SBT, many research topics remain unsolved. Most
of them are outside the scope of the FITTEST project and so
the aim of this paper is to draw attention to open challenges
in SBT in order to inspire researchers and raise interest in
this field.

We have divided the research topics into four categories:
Theoretical Foundations, Search Technique Improvements,
New Testing Objectives and Tool Environment/Testing In-
frastructure.

The rest of the paper is organized as follows. Section II
provides background information about SBT. Section III
highlights the need for research into the theoretical foun-
dations of SBT, before going on to list areas in which SBT
may also be improved in the future in section IV. Testing
objectives that remain as yet unsolved in the literature are
listed in section V. Section VI presents an overview of
the demands placed on tools implementing SBT techniques,
before section VII concludes.



Figure 1. A typical Evolutionary Algorithm cycle for testing.

II. SEARCH–BASED TESTING

Search–Based Testing uses meta-heuristic algorithms to
automate the generation of test inputs that meet a test
adequacy criterion. Many algorithms have been considered
in the past, including Parallel Evolutionary Algorithms [2],
Evolution Strategies [1], Estimation of Distribution Algo-
rithms [48], Scatter Search [11], Particle Swarm Optimiza-
tion [57], Tabu Search [13] and the Alternating Variable
Method [29]. However, by far the most popular search
techniques used in SBT belong to the family of Evolutionary
Algorithms in what is known as Evolutionary Testing [22],
[56], [55], [39].

Evolutionary Algorithms represent a class of adaptive
search techniques based on natural genetics and Darwin’s
theory of evolution [17], [26]. They are characterized by an
iterative procedure that works in parallel on a number of
potential solutions to a problem. Figure 1 shows the cycle
of an Evolutionary Algorithm when used in the context of
Evolutionary Testing.

First, a population of possible solutions to a problem
is initialized, usually at random. Starting with randomly
generated individuals results in a spread of solutions ranging
in fitness because they are scattered around the search–
space. This is equal to sampling different regions of the
search–space and provides the optimization process with a
diverse set of ‘building blocks’. However, for the purpose of
testing one may want to seed the initial population instead,
for example with existing test cases. Seeding allows the
optimization process to benefit from existing knowledge
about the System Under Test (SUT).

Next, each individual in the population is evaluated by
calculating its fitness via a fitness function. The principle
idea of an Evolutionary Algorithm is that fit individuals
survive over time and form even fitter individuals in future
generations. This is an analogy to the ‘survival of the
fittest’ concept in natural evolution. A selection strategy is
responsible for implementing this behaviour. It selects pairs
of individuals from the population for reproduction such that

fitter individuals have a higher probability of being selected
than less fit ones. Selected individuals are then recombined
via a crossover operator. The aim of the crossover operator
is to combine good parts from each parent individual to
form even better offspring individuals (again analogous to
biological reproduction).

After crossover, the resulting offspring individuals may be
subjected to a mutation operator. Mutation aims to introduce
new information into the gene pool of a population by
making random changes to an individual. It is an important
operator to prevent the optimization process from stagnation
(i.e. crossover operations are not able to produce fitter
individuals).

Once offspring individuals have been evaluated, the pop-
ulation is updated according to a re-insertion strategy. For
example, one may choose to replace the entire population
with the new offspring. More commonly however, only
the worst members of a generation are replaced, ensuring
fit individuals will always be carried across to the next
generation.

An Evolutionary Algorithm iterates until a global opti-
mum is reached (e.g. a test criterium has been satisfied), or
another stopping condition is fulfilled. Evolutionary algo-
rithms are generic and can be applied to a wide variety of
optimization problems. In order to specialize an evolutionary
algorithm for a specific problem, one only needs to define a
problem-specific fitness function. For Evolutionary Testing,
the fitness function must capture the properties of a test
adequacy criterion.

III. THEORETICAL FOUNDATIONS

An advantage of meta-heuristic algorithms is that they
are widely applicable to problems that are infeasible for
analytic approaches. All one has to do is come up with
a representation for candidate solutions and an objective
function to evaluate those solutions. Despite this flexibililty,
meta-heuristic algorithms are not a ‘golden hammer’ that
can be applied to any (testing) problem. Finding a good
representation for individuals and designing suitable fitness
functions is a hard task and may prove impossible for some
problems.

To help a tester overcome these challenges, there is a need
for guidelines on what test techniques to use for different
testing objectives, different levels of testing or different
phases of system development. These guidelines need to
extend to how these techniques contribute to the overall
reliability and dependability of the SUT, and how efficient
and usable their application is. Such guidelines barely exist
for traditional testing techniques, and even less is known
about SBT. A good theoretical foundation is missing to tell
us which problems can be solved using search–based testing,
and for which it is unsuitable. This problem is not unique to
SBT but is experienced throughout the field of Search–Based
Software Engineering.



Many search algorithms are available and it is not clear
which is the best for a certain problem or fitness landscape.
The choice is often made somewhat ad hoc, based on
experience or by trying an arbitrary selection of algorithms.
To tackle this problem Harman [19] called for a more
concerted effort to characterise the difficulty of Software
Engineering problems for which search already produced
good results. Such characterisations will aid in selecting
the most suitable search technique for a particular class of
problems. Since Harman’s publication, researchers, leading
amongst them Arcuri et al., have taken up this call and
started to look at theoretical properties of SBT [3], [25],
[4], [5].

However, because of the diversity and complexity of the
field, empirical studies remain the main means of evaluting
a SBT technique. Empirical studies, if well evaluated [6],
thus play an essential part in laying the foundations for
guidelines and hence need to be integrated in a general Test
& Quality Assurance strategy. The result of these studies
should be used to establish a central repository of examples
that can act as a benchmarking suite for evaluation of
new techniques (for functional as well as non-functional
properties). A central benchmark would not only contribute
to filling the knowledge gap identified by Harman [19],
but it would also allow for much better development of
experiments, by enabling a more thorough comparison of
different testing techniques, search–based as well as others.
It can further be used by the research community to gain
insights into the strengths and weaknesses of each technique.
This insight is invaluable for industry and enables them to
make well-founded decisions on which tool or technique to
apply.

Finally, theoretical foundations of SBT need to provide
an assessment of the quality of the output produced by
SBT. How good are the generated tests compared to tests
derived using other techniques or developed manually by a
tester? Most commonly random testing forms the baseline
against which any new SBT technique is evaluated. This
hardly seems sufficient in an industrial context. Furthermore,
figures are needed to assess the reliability of the test results,
given that SBT is based on stochastic algorithms. Such
assessments are necessary to determine to which extent SBT
could be used as a substitute for manual testing and to which
extent as an addition to manual tests.

IV. SEARCH TECHNIQUE IMPROVEMENTS

Many approaches that look promising in the lab are
inapplicable in the field, because they do not scale up.
However, making a solution scalable is easier said than done.
This section highlights some areas that may enable search–
based techniques to scale up in practice.

A. Parallel computing

A great advantage of evolutionary computing is that it
is naturally parallelizable. Fitness evaluations for individ-
uals can easily be performed in parallel, with hardly any
overhead. Search algorithms in general and SBT in partic-
ular therefore offer a ‘killer application’ for the emergent
paradigm of ubiquitous user-level parallel computing. Grid-
computing for example is the subject of a great number of
EU-projects, so there is an opportunity to team up with these
projects and apply the technologies developed in that area
in SBT.

Another active research area is about achieving par-
allelization of evolutionary computation through General
Purpose Graphics Processing Unit (GPGPU) cards. In the
context of evolutionary computation, GPGPU cards are most
commonly used to evolve (parts of) programs through Ge-
netic Programming [47], [46], [18], [8], [38], [34]. Genetic
Programming uses trees to represent a program (or part of
it) and applies genetic operators such as crossover, mutation
and selection to a population of trees. Since trees can grow
large in size, and possibly have to be executed (interpreted) a
number of times (to account for non-determinism) in order
to obtain a fitness value, GP can be very computationally
expensive. However, GPGPU cards have also been used
to parallelize Particle Swarm Algorithms [15], Evolution
Strategies [62], Genetic Algorithms [58], [51], [45], [37],
[44] and multi-objective problems [59].

Despite the large body of work on evolutionary com-
putation on GPGPU cards, more research is required to
utilize GPGPU cards for SBT. Langdon et al. [35] have
used GPGPU cards to optimize the search for higher order
mutants in mutation testing. The goal of mutation testing is
to evaluate the quality of a test suite by generating a set of
mutant programs, where each mutant represents a possible
fault in the program. A mutant is said to be killed if one or
more test cases that pass on the original program, either fail
for the mutant program, or produce a different output.

The intuition behind mutation testing is that the more
mutants a test suite is able to kill, the better it is at finding
real faults. Typically, a mutant program only contains a
single change. The concept of higher order mutation testing
is to introduce multiple changes into one mutant program,
because it is argued that higher order mutants more closely
represent real faults in software [23].

B. Combining search techniques

Another way of increasing efficiency is to combine differ-
ent search techniques in the form of Memetic Algorithms. A
study by Harman and McMinn [25] shows that a Memetic
Algorithm, combining a global and local search, is better
suited to generate branch adequate test data than either a
global or local search on its own. Again, more research is
needed to find out what combination of search techniques is
best for which category of test objective.



Sometimes, a search technique may also be combined
with a different testing technique. The work of Lakhotia et
al. [33] combines different search techniques with Dynamic
Symbolic Execution (DSE) [16], [49] to improve DSE in
the presence of floating point computations. Inkumsah and
Xie combined a Genetic Algorithm (GA) and DSE in a
framework called Evacon [27] to improve branch adequate
testing of object oriented code.

In both studies, the combination of different test data
generation techniques outperforms a pure search–based or
dynamic symbolic execution–based approach.

C. Multi-objective approaches
In many scenarios, a single-objective formulation of a

test objective is unrealistic; testers will want to find test
sets that meet several objectives simultaneously in order to
maximize the value obtained from the inherently expensive
process of running test cases and examining their output. An
added benefit of multi-objective optimization is the insight
a Pareto front can yield into the trade-offs between different
objectives.

By targeting multiple test objectives at the same time,
the value obtained from the expensive process of executing
the SUT can be maximized. A case study by Harman
et. al. [24] shows promising results in this direction. The
study investigates the performance of a multi-objective GA
for the twin objectives of achieving branch coverage and
maximizing dynamic memory allocation.

Besides the work by Harman et al.[24], the field of multi-
objective testing has remained relatively unexplored. Regres-
sion testing, and in particular test suite minimization [61], is
one of the few areas where multi-objective algorithms have
been applied. The work mentioned in this sub-section on
multi-objective testing suggests that search–based techniques
are well suited for multi-objective testing tasks, but more
research is needed to maximise their potential.

D. Static parameter tuning
Evolutionary Algorithms are a very powerful tool for

many problems. However, to obtain the best performance
it is crucial that their parameters are well-tuned in order to
peform a particular task. This requires a level of expertise in
the area of evolutionary computation. Unfortunately testers
usually have very little knowledge in this field.

A solution would be that the testing tool automatically
tunes its parameters. One approach is to tune parameters a
priori, based on the characteristics of the SUT. These could
be obtained, for example, from the tester, as a tester has a
lot of knowledge about the SUT. In the case of white box
testing this information can also stem from (static) analysis
of the SUT.

E. Dynamic parameter tuning
A better approach is to let a search algorithm tune itself,

based on how well it is proceeding. In this way the search

can automatically adapt to a (possibly changing) fitness
landscape. This approach seems very promising for search
problems that have many different sub-goals or are very
dynamic as in FI applications. Every sub-goal represents
a new optimisation problem, thus, parameter settings that
work well for one sub-goal, might not work well for others.

F. Testability transformations

A testability transformation [21] is a source-to-source
program transformation that seeks to improve the perfor-
mance of a previously chosen test data generation tech-
nique. For structural testing, it is possible to remove certain
code constructs that cause problems for SBT by applying
transformations. This approach is taken, for example, when
removing flag variables. A flag variable is a boolean variable,
and the flag problem deals with the situation where relatively
few input values exist that make the flag adopt one of its two
possible values. As a consequence, flag variables introduce
large plateaus in the search space, effectively deteriorating
a guided search into a random search.

A possible solution to the flag problem is to apply a
testability transformation. Many different transformations
have been suggested in the literature to deal with different
types of flag variables; simple flags [22], function assigned
flags [53] and loop-assigned flags [9].

Testability transformations have also been used to remove
nesting of conditional statements from source code for the
purpose of test data generation [40]. Nested predicates can
have a similar effect on SBT to flag variables. If nested
conditional statements are linked through a data dependency,
the search is missing crucial information on how to satisfy
the nested predicates. Eventually a search will be able to
obtain this information, but at that point the required test data
has been found. The lack of information available during the
optimization process can again lead to plateaus in the fitness
landscape.

G. Search space size reduction

Another way to improve efficiency of SBT is to use
knowledge about the SUT to restrict the size of the search
space. For example, knowledge on value ranges could be
used to set parameters of the search, such as step size for
variation of integers, doubles, etc. Another example is the
seeding of test data with literals extracted from the program
code. Such strategies could result in a very significant search
space reduction and thus potential speed up of the testing
process.

There are many ways to uncover information about a SUT.
The models and specifications (on system, software, design
or component level) could be analysed for information that
can be used to improve the test or the search. Static analysis
may be used to determine which input-variables are relevant
to the search. Irrelevant variables can be left out, reducing
the complexity of the input domain. The effect of input



domain reduction via irrelevant variable removal has been
investigated by Harman et al. [20] on two commonly used
search algorithms; the Alternating Variable Method, a form
of hill climbing, and a Genetic Algorithm. A theoretical
and empirical analysis shows that both test data generation
methods benefit from a reduced search space.

The bounds of variables or the control flow are other
examples of knowledge that can be used by a fitness function
to guide the search. Abstract interpretation may be employed
to provide equivalence partitions. Such a partition is a range
of values for which the SUT behaves the same. During
the search one needs to sample only a single element of
the partition to cover the whole range, greatly reducing the
search space.

H. Minimizing generated individuals

It is often assumed that a fitness evaluation is the most
time consuming task of SBT. However, for time consuming
functional testing of complex industrial systems, minimizing
the number of generated individuals may also be highly
desirable. This might be done using an assumption about
the ‘potential’ of individuals in order to predict which indi-
viduals are likely to contribute to any future improvement.
This prediction could be achieved by using information
about similar individuals that have been executed in earlier
generations.

I. Seeding of test data

Instead of starting with a completely random population,
the search may be initialised using results from previous
testing activities. This way the search can benefit from prior
knowledge. Different strategies for seeding of test data are
investigated by Arcuri et al. [7].

J. Other interesting questions

What can we learn about the system under test from the
execution of a huge number of test data? Is testing the
only thing or could we achieve results for other software
engineering activities from that?

V. NEW TESTING OBJECTIVES

The bulk of previous work on SBT focuses on structural
test objectives, such as branch coverage [20], [25], [28],
[32], [41], [43], [54]. Although the topic of branch coverage
is extensively researched, there are still many points for
improvements:

• dealing with internal states
• dealing with predicates containing complex types, such

as strings, dates, data structures and arrays.
• dealing with loops, especially data dependencies be-

tween values calculated in loops and used outside the
loop.

• how to improve the calculation of the fitness function
for combined conditions (logical and, logical or, etc.)

Besides these points, SBT may also be used to address
new testing objectives, both structural as well as functional
ones. Research is needed to develop an appropriate repre-
sentation and fitness function for each new testing objective.

Below we describe a number of possible testing objec-
tives. For some it is clear how to implement them, for others
the required representations and fitness functions have not
yet been designed and are thus open research topics.

A. Run-time error testing

Some examples of run-time errors are: integer overflow,
division by zero, memory leaks. For testing run-time errors
the objective is to find inputs that trigger such an error.
It should be possible to tackle this area by extending the
existing approaches for structural testing. For example to
test for memory leaks the fitness function should favour test-
inputs on which the subject under test uses more memory.
The work by Harman et al. [24] provides a starting point
in this direction. Equally, the work by Tracey et al. [50] on
exception testing provides a base on which to build.

B. Testing interactive systems

The test input for interactive systems is a sequence of user
actions, such as keystrokes and mouse clicks. This is similar
to GUI testing. A possible test criterion is the responsiveness
of an application. In this case a fitness function should
favour combinations of user actions that take a long time
to complete. Another objective could be the coverage of
different user actions in various combinations.

C. Integration testing

A system usually consists of a number of modules that are
more or less independent from each other. These modules
should of course be tested in isolation. However, there are
also problems that only occur when integrating the different
modules. What should the test goals and corresponding
fitness functions be for applying SBT to integration tests?

D. Testing parallel, multi-threaded systems

Testing parallel, multi-threaded systems is hard, especially
finding bugs that only occur with a certain interleaving of
the processes or threads of the SUT. The need for testing
becomes ever larger, systems get more and more complex
and multi-processor computers are getting more common.
An objective for testing such systems is trying to find
deadlock or race conditions. The fitness function should
somehow favour executions that are close to a deadlock
or race condition. Open questions for this type of testing
include the representation of individuals (corresponding to
interleaving executions of the SUT) and how to measure the
‘closeness’ to a deadlock.

Again, a combination of different techniques might prove
to be desirable. For example, Bohuslav et al. [30] use SBT
to optimize the configuration of ConTest [14], a concurrency



testing tool for JAVA. Their work shows that SBT can help
increase synchronisation coverage of code, and thus increase
the chance of finding bugs that appear in commercial
software due to errors in synchronization of its concurrent
threads.

VI. TOOL ENVIRONMENT/TESTING INFRASTRUCTURE

Despite a growing momentum of SBT research in
academia, SBT is struggling to find any up-take in industry.
One of the reasons is a lack of tooling available. The limited
tools that are available are often research prototypes, focused
on a subset of a particular programming language. Fur-
thermore, problematic language constructs, such as variable
length argument functions, pointers and complex data types
(variable size arrays, recursive types such as lists, trees,
and graphs) remain largely unsupported. Lakhotia et al. [31]
made some progress towards this, but many more problems
remain, some of which are listed in [32].

Central to any SBT technique is a well designed fitness
function. Current tools require a tester to manually write
code for a fitness function and integrate that function into
the tool. In the research prototypes available, this is often not
a straightforward task. Lindlar [36] introduces an approach
that aims at simplifying the process of designing fitness
functions for evolutionary functional testing in order to
further increase acceptability by practitioners. The difficult
task of designing a suitable fitness function could further be
supported by using a wizard based approach.

Finally, non of the currently available SBT tools provide
any visualization that might aid a tester. However, visuali-
sation can provide a user with important insights. There are
several aspects of visualisation:

1) Visualisation of testing progress, for example how
much was tested, testing effort, test coverage, relia-
bility figures.

2) Visualisation of search progress, e.g. how does the
search perform, potential for better results when con-
tinuing, identify potentials for improving the search
and fitness landscape.

Important questions include, which data is useful to a
practitioner, and how to display this data in a concise
manner? Displaying the amount of coverage for a small
piece of code is easy, one can simply colour the covered code
in the editor, or display a coloured control flow graph of the
code. However, for a large system consisting of many lines
of code, different techniques need to be developed. Further,
visualising the fitness landscape is a challenge. It usually
has many dimensions, making it hard to display concisely
in 2-D.

VII. CONCLUSION

Search–Based Testing provides the basis on which the
European Funded FITTEST project builds. The goal of
the FITTEST project is to perform automated, continuous

testing of Future Internet applications. Such testing places
new demands on any automated testing technique. This
paper has presented an overview of Search–Based Testing
and discussed some of the open challenges remaining to
make search–based techniques applicable to industry as well
as the Future Internet. The aim is to encourage further
research into these topics such that users of SBT (like the
FITTEST project) may benefit from the results.

ACKNOWLEDGEMENT

Many people have contributed to the contents of this
paper through personal communications and discussions.
We would like to thank Mark Harman from University
College London; Youssef Hassoun from King’s College
London; Marc Schoenauer from INRIA; Jochen Hänsel from
Fraunhofer FIRST; Dimitar Dimitrov and Ivaylo Spasov
from RILA; Dimitris Togias from European Dynamics; Phil
McMinn from University of Sheffield; John Clark from the
University of York.

REFERENCES

[1] Enrique Alba and Francisco Chicano. Software Testing with
Evolutionary Strategies. In RISE, pages 50–65, 8-9 September
2005.

[2] Enrique Alba and Francisco Chicano. Observations in using
Parallel and Sequential Evolutionary Algorithms for Auto-
matic Software Testing. Computers & Operations Research,
35(10):3161–3183, October 2008.

[3] A. Arcuri. Full theoretical runtime analysis of alternating
variable method on the triangle classification problem. In
Search Based Software Engineering, 2009 1st International
Symposium on, pages 113 –121, may 2009.

[4] Andrea Arcuri. Insight knowledge in search based software
testing. In GECCO, pages 1649–1656. ACM, 2009.

[5] Andrea Arcuri. Theoretical analysis of local search in
software testing. In Stochastic Algorithms: Foundations and
Applications, volume 5792 of Lecture Notes in Computer
Science, pages 156–168. Springer Berlin / Heidelberg, 2009.

[6] Andrea Arcuri and Lionel Briand. A practical guide for using
statistical tests to assess randomized algorithms in software
engineering. In ICSE, pages 1–10. ACM, 2011.

[7] Andrea Arcuri, David Robert White, John Clark, and Xin Yao.
Multi-objective improvement of software using co-evolution
and smart seeding. In Proc of the 7th Int Conf on Simulated
Evolution And Learning (SEAL ’08), volume 5361 of LNCS,
pages 61–70. Springer, December 7-10 2008.

[8] Wolfgang Banzhaf, Simon Harding, William B. Langdon, and
Garnett Wilson. Accelerating genetic programming through
graphics processing units. In Genetic Programming Theory
and Practice VI, pages 1–19. 2009.

[9] André Baresel, David Binkley, Mark Harman, and Bogdan
Korel. Evolutionary testing in the presence of loop-assigned
flags: a testability transformation approach. In ISSTA, pages
108–118. ACM, 2004.



[10] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and
Yves Le Traon. From genetic to bacteriological algorithms for
mutation-based testing. Softw. Test, Verif. Reliab, 15(2):73–
96, 2005.

[11] Raquel Blanco, Javier Tuya, Eugenia Daz, and B. Adenso
Daz. A Scatter Search Approach for Automated Branch
Coverage in Software Testing. International Journal of Engi-
neering Intelligent Systems (EIS), 15(3):135–142, September
2007.

[12] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and
Charles J. Colbourn. Constructing test suites for interaction
testing. In ICSE, pages 38–48. IEEE Computer Society,
May 3–10 2003.

[13] Eugenia Dı́az, Javier Tuya, Raquel Blanco, and José Javier
Dolado. A Tabu Search Algorithm for Structural Software
Testing. Computers & Operations Research, 35(10):3052–
3072, October 2008.

[14] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir,
Gil Ratsaby, and Shmuel Ur. Framework for testing multi-
threaded java programs. Concurrency and Computation:
Practice and Experience, 15(3-5):485–499, 2003.

[15] S. Genovesi, R. Mittra, A. Monorchio, and G. Manara.
Particle swarm optimization of frequency selective surfaces
for the design of artificial magnetic conductors. Technical
report, 2006.

[16] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART:
Directed Automated Random Testing. ACM SIGPLAN No-
tices, 40(6):213–223, June 2005.

[17] D. E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison Wesley, 1989.

[18] Simon Harding and Wolfgang Banzhaf. Distributed genetic
programming on gpus using cuda. In WPABA’09: Proceedings
of the Second International Workshop on Parallel Architec-
tures and Bioinspired Algorithms (WPABA 2009), pages 1–10.
Universidad Complutense de Madrid, September 12-16 2009.

[19] Mark Harman. The current state and future of search based
software engineering. In 2007 Future of Software Engi-
neering, FOSE ’07, pages 342–357. IEEE Computer Society,
2007.

[20] Mark Harman, Youssef Hassoun, Kiran Lakhotia, Phil
McMinn, and Joachim Wegener. The impact of input do-
main reduction on search-based test data generation. In
ESEC/SIGSOFT FSE, pages 155–164. ACM, 2007.

[21] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener,
Harmen Sthamer, André Baresel, and Marc Roper. Testability
transformation. IEEE Trans. Softw. Eng., 30:3–16, January
2004.

[22] Mark Harman, Lin Hu, Robert Hierons, André Baresel, and
Harmen Sthamer. Improving evolutionary testing by flag
removal. In GECCO, pages 1359–1366. Morgan Kaufmann
Publishers, 9-13 July 2002.

[23] Mark Harman, Yue Jia, and William B. Langdon. A manifesto
for higher order mutation testing. In Mutation 2010, pages
80–89. IEEE Computer Society, 6 April 2010. Keynote.

[24] Mark Harman, Kiran Lakhotia, and Phil McMinn. A multi-
objective approach to search-based test data generation. In
GECCO, pages 1098–1105. ACM, 2007.

[25] Mark Harman and Phil McMinn. A theoretical and empirical
study of search-based testing: Local, global, and hybrid
search. IEEE Trans. Software Eng, 36(2):226–247, 2010.

[26] J. H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

[27] Kobi Inkumsah and Tao Xie. Evacon: A framework for inte-
grating evolutionary and concolic testing for object-oriented
programs. In Proc. 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), pages 425–
428, November 2007.

[28] Bogdan Korel. Automated software test data generation.
IEEE Transactions on Software Engineering, 16(8):870–879,
August 1990.

[29] Bogdan Korel. Automated software test data generation. IEEE
Transactions on Software Engineering, 16(8):870–879, 1990.

[30] Bohuslav Krena, Zdenek Letko, Tomás Vojnar, and Shmuel
Ur. A platform for search-based testing of concurrent soft-
ware. In PADTAD, pages 48–58. ACM, 2010.

[31] Kiran Lakhotia, Mark Harman, and Phil McMinn. Handling
dynamic data structures in search based testing. In GECCO,
pages 1759–1766. ACM, 2008.

[32] Kiran Lakhotia, Phil McMinn, and Mark Harman. An
empirical investigation into branch coverage for C programs
using CUTE and AUSTIN. The Journal of Systems and
Software, 83(12):2379–2391, December 2010.

[33] Kiran Lakhotia, Nikolai Tillmann, Mark Harman, and
Jonathan De Halleux. Flopsy: search-based floating point
constraint solving for symbolic execution. In Proceedings
of the 22nd IFIP WG 6.1 international conference on Test-
ing software and systems, ICTSS, pages 142–157. Springer-
Verlag, 2010.

[34] William B. Langdon and Mark Harman. Evolving a CUDA
kernel from an nvidia template. In IEEE Congress on
Evolutionary Computation, pages 1–8. IEEE, 2010.

[35] William B. Langdon, Mark Harman, and Yue Jia. Ef-
ficient multi-objective higher order mutation testing with
genetic programming. The Journal of Systems and Software,
83(12):2416–2430, December 2010.

[36] Felix Lindlar. Search-based functional testing of embedded
software systems. In Doctoral Symposium in conjunction with
ICST, 2009.

[37] Ogier Maitre, Laurent A. Baumes, Nicolas Lachiche, Avelino
Corma, and Pierre Collet. Coarse grain parallelization of
evolutionary algorithms on gpgpu cards with easea. In
GECCO, pages 1403–1410. ACM, 2009.



[38] Ogier Maitre, Pierre Collet, and Nicolas Lachiche. Fast
evaluation of GP trees on GPGPU by optimizing hardware
scheduling. In Proceedings of the 13th European Conference
on Genetic Programming, EuroGP 2010, volume 6021 of
LNCS, pages 301–312. Springer, 7-9 April 2010.

[39] Phil McMinn. Search-based software test data generation:
A survey. Software Testing, Verification and Reliability,
14(2):105–156, 2004.

[40] Phil McMinn, David Binkley, and Mark Harman. Empirical
evaluation of a nesting testability transformation for evolu-
tionary testing. ACM Trans. Softw. Eng. Methodol., 18:11:1–
11:27, June 2009.

[41] Christoph C. Michael, Gary McGraw, and Michael Schatz.
Generating software test data by evolution. IEEE Trans.
Software Eng, 27(12):1085–1110, 2001.

[42] F. Mueller and J. Wegener. A comparison of static analysis
and evolutionary testing for the verification of timing con-
straints. In RTAS ’98: Proc of the Fourth IEEE Real-Time
Technology and Applications Symposium, page 144. IEEE,
1998.

[43] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data
generation using genetic algorithms. Journal of Software
Testing, Verification and Reliability, 9(4):263–282, 1999.

[44] Petr Pospchal, Ji Jaro, and Josef Schwarz. Parallel genetic
algorithm on the cuda architecture. In Applications of Evolu-
tionary Computation, LNCS 6024, pages 442–451. Springer
Verlag, 2010.

[45] Jos L. Risco-Martn, Jos M. Colmenar, and Rubn Gonzalo. A
parallel evolutionary algorithm to optimize dynamic memory
managers in embedded systems. In WPABA’09: Proceedings
of the Second International Workshop on Parallel Architec-
tures and Bioinspired Algorithms (WPABA 2009), pages 21–
30. Universidad Complutense de Madrid, September 12-16
2009.

[46] Denis Robilliard, Virginie Marion, and Cyril Fonlupt. High
performance genetic programming on GPU. In Proceedings of
the 2009 workshop on Bio-inspired algorithms for distributed
systems, pages 85–94. ACM, 2009.

[47] Denis Robilliard, Virginie Marion-Poty, and Cyril Fonlupt.
Genetic programming on graphics processing units. Ge-
netic Programming and Evolvable Machines, 10(4):447–471,
December 2009. Special issue on parallel and distributed
evolutionary algorithms, part I.

[48] Ramón Sagarna, Andrea Arcuri, and Xin Yao. Estimation of
Distribution Algorithms for Testing Object Oriented Software.
In Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC ’07), pages 438–444. IEEE, 25-28 September
2007.

[49] Nikolai Tillmann and Jonathan de Halleux. Pex-white box
test generation for .NET. In Tests and Proofs, Second
International Conference, TAP 2008, Prato, Italy, April 9-
11, 2008. Proceedings, volume 4966 of Lecture Notes in
Computer Science, pages 134–153. Springer, 2008.

[50] Nigel Tracey, John A. Clark, Keith Mander, and John McDer-
mid. Automated test-data generation for exception conditions.
Software Practice and Experience, 30(1):61–79, 2000.

[51] Shigeyoshi Tsutsui and Noriyuki Fujimoto. Solving quadratic
assignment problems by genetic algorithms with gpu compu-
tation: a case study. In GECCO, pages 2523–2530. ACM,
2009.

[52] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfham-
mer, and Robert S. Roos. Time aware test suite prioritization.
In ISSTA, pages 1 – 12. ACM Press, 2006.

[53] Stefan Wappler, Joachim Wegener, and André Baresel. Evo-
lutionary testing of software with function-assigned flags.
The Journal of Systems and Software, 82(11):1767–1779,
November 2009.

[54] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test
environment for automatic structural testing. Information and
Software Technology, 43(1):841–854, 2001.

[55] Joachim Wegener and Oliver Bühler. Evaluation of different
fitness functions for the evolutionary testing of an autonomous
parking system. In Proc of the Genetic and Evolutionary
Computation Conf, pages 1400–1412, 2004.

[56] Joachim Wegener, Kerstin Buhr, and Hartmut Pohlheim. Au-
tomatic test data generation for structural testing of embedded
software systems by evolutionary testing. In GECCO, pages
1233–1240. Morgan Kaufmann, 2002.

[57] Andreas Windisch, Stefan Wappler, and Joachim Wegener.
Applying particle swarm optimization to software testing. In
GECCO, pages 1121–1128. ACM, 2007.

[58] Man Wong and Tien Wong. Implementation of parallel
genetic algorithms on graphics processing units. In Intelligent
and Evolutionary Systems, pages 197–216. 2009.

[59] Man Leung Wong. Parallel multi-objective evolutionary
algorithms on graphics processing units. In GECCO, pages
2515–2522. ACM, 2009.

[60] Shin Yoo and Mark Harman. Pareto efficient multi-objective
test case selection. In ISSTA, pages 140–150. ACM, 2007.

[61] Shin Yoo and Mark Harman. Using hybrid algorithm for
pareto effcient multi-objective test suite minimisation. Jour-
nal of Systems Software, 83(4):689–701, April 2010.

[62] Weihang Zhu. A study of parallel evolution strategy: pattern
search on a gpu computing platform. In GECCO, pages 765–
772. ACM, 2009.


