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Abstract

Using a series of synthetic examples, in this exercise session you will
acquaint yourselves with kernel ridge regression, fisher discriminant anal-
ysis, gaussian process regression, and normalising and centering of kernel
matrices, the kernel adatron, which is an easy implementation of the sup-
port vector machine (it does not require a quadratic programming solver),
and the bag of words kernel
Keywords: kernel ridge regression (kRR) — fisher discriminant analysis
(FDA) — gaussian process regression (GPR) — normalising, centering —
Kernel adatron — bag of words kernel.

1 Duality, the kernel trick, and nonlinear re-
gression

1.1 Duality

As you proved in the last coursework, the optimal value w∗ as obtained by
Ridge Regression is given by X′Xw∗ + γlw∗ = X′y. ¿From this we can derive
that: w∗ = X′ ·

[
1
l (y −Xw∗)

]
, showing that w can be expressed as a linear

combination of the columns of X′:

w∗ = X′α∗. (1)

The vector α ∈ <n will be referred to as the dual vector.
Using this dual vector, the so-called dual version of RR can be derived as

follows:

α∗ = γl−1 (y −Xw)
⇒ γlα∗ = (y −XX′α∗)

⇒ (XX′ + γlI)α∗ = y

⇒ α∗ = (XX′ + γlI)−1y, (2)
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The evaluation of the function xtest,iw∗ on a test sample can be rewritten
as:

xtest,iw∗ = xtest,iX′α∗. (3)

Thus far, it is not clear why such a formulation can be useful: the size of
XX′ + γlI is equal to the number of samples, which is larger than the size of
X′X + γlI (equal to the dimensionality n) in all cases above, such that nothing
would be gained, on the contrary. However, in the next exercise you will use
this formulation in order to show the equivalence.

Exercise 1 In this exercise you will perform the same Ridge Regression using
the dual from equation (3)

Pick a random weight vector w ∈ <10, and generate a noisy random data
set as yi = x′iw + ni containing 200 samples. Split the data set in training and
test sets of size 100.

Perform RR on the data set once with γ = 10−6 up to γ = 103, and all
powers of 10 in between. What are the training and test mean squared errors?
Plot the training and test set errors as a function of γ (use a log scale for the
γ axis). Try different values for the noise ni to see the effect. Can you see the
effect of regularisation in high and low noise situations?

1.2 Nonlinear regression

However, for nonlinear regression, the dual version will prove important. Let’s
start with the following example:

Exercise 2 In this exercise, you will try to do regression on a data set that is
generated by a nonlinear model. Randomly sample 200 points xi (100 training
samples and 100 test samples) in the interval [−4, 4] (using the matlab function
rand). Compute corresponding labels yi = sinc(xi) + 0.3 · ni, where ni is a
random real number generated by the matlab function randn as before. Perform
LSR and RR on this data set. Give a table of results and explain.

Obviously, linear regression is not capable of achieving a good predictive
performance on such a nonlinear data set. Here, we the dual formulation will
prove extremely useful, in combination with the kernel trick.

This kernel trick is based on nothing more than the observation that equation
to compute α∗ (equation (2)) as well as the equation to evaluate the regression
function (equation (3)) both only contain the vectors xi in inner products with
each other. Therefore, it is sufficient to know these inner products only, instead
of the actual vectors xi.

As a result, we can also work with inner products between nonlinear map-
pings φ : xi → φ(xi) ∈ F of xi into a so-called feature space F , as long as the
inner product K(xi,xj) = φ(xi)′φ(xj) can be evaluated efficiently. In many
cases, this inner product (from now on called the kernel function) can be eval-
uated much more efficiently than the feature vector itself, which can even be
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infinite dimensional in principle. A commonly used kernel function for which
this is the case is the radial basis function (RBF) kernel, which is defined as:

KRBF(xi,xj) = exp
(
−‖xi − xj‖2

2L2

)
. (4)

Using the notation K = XX′ for the kernel matrix or Gram matrix contain-
ing the inner products between all training points, we can rewrite equation (2)
in its kernel formulation (kRR):

α∗ = (K + γlI)−1y. (5)

The evaluation of the regression function on a test point can be reformulated
as:

ytest =
l∑
i=1

K(xi,xtest) · α∗i . (6)

where the K is the kernel function.

Effectively, by using such a kernel function corresponding to a nonlinear fea-
ture map, a linear regression method such as RR can be carried out in the
feature space, amounting to a nonlinear regression function (equation 6) in the
original input space.

Exercise 3 (kRR) Kernel RR applied to the sinc problem.

a. Perform kRR on the data set generated in the previous exercise, with L =
0.5. Use 5-fold cross validation to tune the regularization parameter. Plot
the regression function in the interval [−4, 4]. Note that in fact we can
also tune L in this way.

b. Why is regularization so important in this case?

In summary, by using the kernel trick, we can apply simple techniques for
linear regression in the feature space to perform nonlinear regression in the input
space.

1.3 Gaussian Process (GP) regression

We can also tackle the regression problem in the Bayesian way. We assume that
the outputs y are generated by corrupting an (unknown) true function f with
independent Gaussian noise ξ, ie

yi = f(xi) + ξi (7)

for i = 1, . . . , l. The (also unknown) variance of the noise is called σ2. Hence,
for a fixed vector of function values f = (f(x1), . . . , f(xl)), the data y have the
likelihood

p(y|f) ∝ exp

[
− 1

2σ2

l∑
i=1

(yi − f(xi))2
]
. (8)
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To regularise in the Bayesian approach we assume a Gaussian process prior with
covariance kernel K over the space of functions f . This induces a joint Gaussian
prior density p(f+) over augmented function values f+ = (f , f(xtest))T . Here
xtest is the test point where we would like to make a prediction.

p(f+) ∝ |det(K+)|−1/2 exp
[
−1

2
fT+K−1

+ f+

]
(9)

with k = (K(xtest,x1),K(xtest,x2), . . . ,K(xtest,xl))T and the augmented ker-
nel matrix

K̃ =
(

K k
kT K(xtest,xtest) ,

)
(10)

using the definition of the kernel matrix Kij = K(xi,xj).
We would like to base our prediction on the posterior density

p(f+|y) =
p(y|f)p(f+)

p(y)
. (11)

by calculating the maximum posterior (MAP) prediction, ie

fMAP
+ = argmax ln p(f+|y) . (12)

Since p(f+|y) is a quadratic form in f+ one can get the prediction explicitly.
With a bit of matrix algebra one ends up with the result

fMAP(xtest) = kT
(
K + σ2I

)−1
y . (13)

A comparison with (6) shows that this is the same expression as found for kernel
RR, when we identify γl ≡ σ2.

It is also possible to find the posterior uncertainty for this prediction given
by the posterior variance (Bayesian error bar)

σ2
error(xtest) = K(xtest,xtest)− kT

(
K + σ2I

)−1
k (14)

The Bayesian approach allows us to give a sensible estimate for σ2 without cross
validation by choosing it to maximise the probability of the data (evidence)
which is given by

p(y) =
∫
dfp(f) p(y|f) . (15)

This is a big multidimensional Gaussian integral which can be performed ana-
lytically by hand, but also easier, when one thinks a bit probabilistically. If we
put a Gaussian prior over f with covariance K and also adding white Gaussian
noise to f (with covariance σ2I) according to (7), the vector y becomes jointly
Gaussian with zero mean and covariance matrix K + σ2I. Hence

p(y) =
1

(2π)l/2|det(K + σ2I)| 12
exp

[
−1

2
yT (K + σ2I)−1y

]
(16)
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Exercise 4 (GP) GP regression applied to the sinc problem.

a. Perform GP regression on the data set generated in the previous exercise,
with a true noise variance σ2

0 = 0.32. Again use an RBF kernel of the
form

KRBF(xi,xj) = exp
(
−‖xi − xj‖2

2L2

)
, (17)

with L = 0.5. This time tune the unknown parameter σ by calculating the
log evidence ln p(y) using (16). Plot this for a range of values for σ2 (with
fixed data, ie fixed noise σ0).

b. Plot the regression function in the interval [−4, 4]. Give a measure for
the (Bayesian) uncertainty of your prediction by computing σ2

error using
(14). Plot two extra lines which are one standard deviation σerror above
and below your prediction. Don’t confuse the different σ’s!

c. (bonus) Repeat the experiment described in (a) but varying the width L of
the Gaussian kernel while leaving σ fixed at the value maximising the log
evidence in (a).

2 Normalizing and centering

Normalizing a kernel matrix In some cases, it is a good idea to normalize
all samples to unit norm. This can be done easily on the sample matrix X itself:

Xn =


x′1x1 0 · · · 0

0 x′2x2 · · · 0
...

...
. . .

...
0 0 · · · x′lxl


−1/2

·X. (18)

Note that the diagonal matrix has x′ixi = Kii on its diagonal. Again, it turns
out we can also compute the normalized kernel matrix Kn corresponding to the
kernel K, without ever needing to know the data matrix X itself:

Kn = XnX′n
= diag(x1x′1 x2x′2 . . . xlx

′
l)
−1/2 ·XX′ · diag(x1x′1 x2x′2 . . . xlx

′
l)
−1/2

= diag(K11 K22 . . . Kll)−1/2 ·K · diag(K11 K22 . . . Kll)−1/2 (19)

It’s easy to check that all diagonal entries of Kn, which are the norms of the
normalized samples Xn, are equal to 1 indeed.

Centering a kernel matrix Given a sample X, centering can be performed
by subtracting the means of the features of X (corresponding to columns of X):

Xc = X− 1
l
11′X (20)
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Thus, the matrix containing all inner products of the centered vectors Xc is

XcX′c = (X− 1
l
11′X)(X− 1

l
11′X)′

which is equal to

XcX′c = XX′ − 1
l
11′XX′ − 1

l
XX′11′ +

1
l2

11′XX′11′.

Also here we can use the kernel trick and replace XX′ by the kernel matrix
K. Thus, the centered kernel matrix Kc can be computed directly from the
uncentered kernel matrix as:

K′c = K− 1
l
11′K− 1

l
K11′ +

1
l2

11′K11′ (21)

Exercise 5 (Normalizing and centering) Load the file docs.mat into mat-
lab. As you can see, it contains 4 cell arrays, each of which contains 195 little
texts in either english, french, german or italian (articles from the Swiss con-
stitution. . . ). You can verify that the ith text in one language is a translation
of the ith text in the other languages. In this practical session we will work with
this data set.

Now, there exist kernels specially designed for strings and texts that compute
a certain similarity measure between two texts. Two of these kernels are the bag-
of-words kernel and the 2-mer kernel. Since computing them on that 780 = 4·195
texts would take a while, you don’t have to do that here. Just load the two kernels
K bow and K 2mer into matlab from the file Ks.mat. These are the two kernel
matrices evaluated on all documents of all languages, and the ordering in which
the documents appear is: english, french, german and italian, each language in
the same ordering (so for an english document at position 1 ≤ i ≤ 195, the
german translation occurs at position 2× 195 + i).

a. Have a look at both kernels by printing part of them on the screen. Do you
notice that small texts generally give rise to smaller kernel values? This
is undesirable in many applications: very often, the similarity between
two texts should not be based on their length, but rather on how much
they overlap relative to their length. To get rid of this artefact, you can
normalize the kernels. Do this, and save the resulting normalized kernels
as K bow n and K 2mer n.

b. As a second preprocessing step, center the kernels and save the results as
K bow nc and K 2mer nc. Show that the preprocessing has been successful
by calculating the norms and means for the kernels.

3 The kernel adatron

The kernel adatron is a variant of the support vector machine for classification.
The object function is exactly the same, but the bias term is omitted from the
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constraints. The resulting dual problem is

max
α

f(α) = 1′α− 1
2
α′(K� (yy′))α

s.t. 0 ≤ α ≤ C
(22)

where � is the elementwise matrix product. The result is that the optimization
problem is much simpler, and can be carried out using simple coordinate ascent:

• Equate α = 0.

• Iterate (something like 10 · l times if l is the number of samples):

1. Compute the derivatives gi = df(α)

dαi
= 1− (K� (yy′))α of the object

function with respect to all i.

2. For all i, compute

βi = min (max (αi + ηgi, 0) , C) .

3. Find αi, for which |αi − βi| is maximal.

4. Equate this (and only this) αi to βi.

Even though this standard version of the kernel adatron would work, modifi-
cations have been made to accommodate a bias term b. The resulting algorithm
is then:

• Equate α = 0 and b = 0.

• Iterate (something like 10 · l times if l is the number of samples):

1. Compute z = K(y�α) + b. As you can see, this vector contains the
predictions of the training set labels if we would use α and b.

2. Compute g = 1 − y � z, containing one minus the predicted labels
times the corresponding true labels. (Ideally, when all training labels
are predicted correctly, this is the zero vector. If the ith element is
negative, this means that αi should decrease a bit, and vice versa.
It corresponds to the gradient in the basic kernel adatron algorithm
above.)

3. For all i, compute

βi = min (max (αi + ηgi, 0) , C) .

4. Find αi, for which |αi − βi| is maximal. If change less than 0.005
then exit.

5. Equate this (and only this) αi to βi.
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6. Then, update b as:

b = b+
y′α
4
.

Exercise 6 Implement the kernel adatron, and use it to classify english against
french languages in the swiss constitution data set, using the 2-mer kernel. Tune
the regularization parameter C using cross-validation. Use η = 1 for the step
size.

4 The bag of words kernel

The bag of words kernel evaluated between two documents is nothing more than:∑
word ∈ dictionary

(#occ. of word in text 1)× (#occ. of word in text 2).

Here dictionary is the union of all words occurring in any of the texts.
Even though this looks extremely simple, implementing it such that it can

be evaluated efficiently on a large number of texts is more difficult.

Exercise 7 Implement the bag of words kernel. Use the matlab help to learn
about string processing in matlab ( help strfun). Test it on the documents of
the swiss constitution using the kernel adatron. Compare your results with the
precomputed kernels and give running times for computing the kernel. (Use the
functions tic and toc. A good implementation in matlab requires less than 5
minutes on a modern pc. . . Note: you should obtain a somewhat different kernel
from the one you have been using in the previous practical sessions, because that
kernel was computed after stemming and stop word removal.)

5 Exam style question

a) The Perceptron algorithm applied to the training set

((x1, y1), . . . , (xm, ym))

involves the following training loop:

for i = 1 to m do
if yi〈w,xi〉 ≤ 0 then
w← w + yixi;
end
end
If w is initialised to 0, show that w can be expressed as a linear com-
bination:

w =
m∑
i=1

αiyixi,

of the training data, explaining what the value of αi will be at any stage
of the algorithm.
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b) Show we can evaluate the classification sign(〈w,x〉) on a test example x
using the values of αi and inner products between x and the training data
〈x,xi〉, for i = 1, . . . ,m. Hence, show how we can run the Perceptron
algorithm in a feature space defined by a mapping

φ : x 7−→ φ(x)

using only the kernel function

κ(x, z) = 〈φ(x), φ(z)〉.

c) For inseparable data the Perceptron algorithm will go into an infinite loop.
Assuming the training examples are distinct, consider the modification of
a normalised kernel κ to

κ̃(x, z) = κ(x, z) + aδ(x, z),

where a > 0 and
δ(x, z) =

{
1 if x = z,
0 otherwise.

Show we can find α such that K̃α = y for the label vector y, where K̃ is
the kernel matrix of the modified kernel κ̃. Hence, argue that the training
set is separable in the feature space defined by the mapping φ̃ of the kernel
κ̃.

d) What is the functional margin of the weight vector defined in (c)? Hence,
give an upper bound on the number of updates the Perceptron algorithm
will make using the kernel κ̃.
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