
GI01/M055: Supervised Learning

7. Tree-based learning algorithms and Boosting

December 14, 2009

John Shawe-Taylor

1

Today’s plan

• Classification and regression trees (CART)

• Weak learners

• Adaboost

• Bounding generalisation of boosting

• Linear programming boosting

Bibliography: These lecture notes are available at:

http://www.cs.ucl.ac.uk/staff/J.Shawe-Taylor/courses/index-gi01.html

Lecture notes are based on Hastie, Tibshirani & Friedman, Chapters 8.3 and 9.2,9-4

2

Tree-based learning algorithms

Tree methods attempt to partition the input space into a set of rectangles
and fit a simple model (e.g. a constant) in each one

f(x) =
N∑

n=1

cnI{x ∈ Rn}

• {Rn}N
n=1: hyper-rectangles partitioning the input space:

⋃N
n=1 Rn =

IRd, Rn ∩ R� = ∅
• I{x ∈ Rn} = 1 if x ∈ Rn and 0 otherwise (indicator function)

• {cn}N
n=1: some real parameters. A natural choice is

cn = ave(yi|xi ∈ Rn) ≡
∑m

i=1 yiI{xi ∈ Rn}∑m
i=1 I{xi ∈ Rn}

3

Recursive binary partitions

• Left plot: Each partition line has a simple description, yet partitions
may be complicated to describe

• Right plot: recursive binary partition (first split the space into two re-
gions then iterate in each region)

4

Tree representation

• Left plot: tree representation for the recursive binary partition above

• Right plot: prediction function f(x) =
∑5

n=1 cnI{x ∈ Rn}
5

Some remarks

• A nice feature of a recursive binary tree is its interpretability (e.g. in
medical science the tree stratifies the population into strata of high and
low outcome on the basis of patient characteristics)

• Warning: risk for overfitting! (with enough splits the tree can fit arbi-
trarily well the data)

Key question: how to compute the tree (hence the regions Rn) and how
to control overfitting?

6

Regression trees (I)

The algorithm needs to automatically decide on the splitting variables (1st
or 2nd in above example) and split points. Recall that:

cn = ave(yi|xi ∈ Rn)

which corresponds to minimizing the square error in region n

Ideally we would like to solve the problem

min
R1,...,RN

⎧⎪⎨
⎪⎩

m∑
i=1

⎛
⎝yi −

N∑
n=1

ave(yj|xj ∈ Rn)I{xi ∈ Rn}
⎞
⎠2

⎫⎪⎬
⎪⎭

But it is generally computationally intractable. So we resort to an alternate
heuristic procedure

7

Regression trees (II)

Let’s find the first split in the tree

Define the pair of axis parallel half-planes:

R1(j, s) = {x|xj ≤ s}, R2(j, s) = {x|xj > s}
and search for optimal values j̄ and s̄ which solve the problem

min
j,s

⎧⎪⎨
⎪⎩min

c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

⎫⎪⎬
⎪⎭

8

Regression trees (III)

min
j,s

⎧⎪⎨
⎪⎩min

c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

⎫⎪⎬
⎪⎭

• The inner minimization is solved by

c̄1 = ave(yi|xi ∈ R1(j, s)) c̄2 = ave(yi|xi ∈ R2(j, s))

• For each splitting variable j the search for the best split point s can
be done in O(m) computations (can split between any two training
points)

Thus the problem is solved in O(dm) computations

9

Regression trees (IV)

In order to build the tree we recursively assign training points to each ob-
tained region and repeat the above steps in each one

If we do not stop the process we clearly overfit the data! So, when should
we stop it?

• follow a split only if it decreases the empirical error more than a thresh-
old? No, there might be better splits below a“bad” node

• when a maximum depth of the tree is reached? No, this could underfit
or overfit. We need to look at the data to determine a good size of the
tree

10

Regression trees (V)
We choose the tree adaptively from the data:

• first grow a large tree T̂ (stopping when a minimum number of data
(e.g. 5) is assigned at each node)

• then prune the tree using a cost-complexity pruning, i.e. look for
Tλ ⊆ T̂ which minimizes

Cλ(T) =
|T |∑

n=1

mnQn(T) + λ|T |

where T is a subtree of T̂ , n runs over leaf nodes of T (a subset of
the nodes of T̂) mn is the number of data assigned to node n and
Qn(T) = 1

mn

∑
xi∈Rn(yi − cn)2 (so the first term in Cλ is just the

training error)

• Can show that there is a unique Tλ ⊆ T̂ which minimizes Cλ

11

Regression trees (VI)

A Cλ is a kind of regularized empirical error: T0 = T̂ , the original tree.
Large values of λ result in smaller trees. A good value of λ can be obtained
by cross validation

• weakest link pruning: successively collapse the internal nodes that
produce the smallest per node increase in

∑|T |
n=1 mnQn(T) and con-

tinue till the root (single-node) tree is produced

• search along the produced list of trees for the one which minimizes Cλ

One can show that Tλ is in the produced list of subtrees, hence this algo-
rithm gives the optimal solution

12

Classification trees (I)

When the output is a categorical variable (say Y = {1, . . . , K}) we use
the same algorithm above with two important modifications

• For each region Rn we defined the empirical class probabilities:

pnk =
1

mn

∑
xi∈Rn

I(yi = k)

• We classify an input which falls in region n in the class with maximum
probability

f(x) = argmaxK
k=1

N∑
n=1

pnkI{x ∈ Rn}

• We use different measures Qn(T) of node impurity

13

Classification trees (II)

• Misclassification error:
1 − pnk(n),
k(n) := argmaxK

k=1pnk

• Gini index:∑
k pnk(1 − pnk)

• Cross entropy:∑
k pnk log pnk

Cross entropy or Gini index are used to grow the tree (they are more sen-
sitive in changes in the node probabilities). Misc. error is used to prune
it.

14

Spam email classification problem

Consider the problem of classifying an email you receive as “good email”
or “spam email”

• Different features can be used to represent an email
e.g. the bag of words representation (we may also use additional features to code

the text in the subject section of the email etc.)

• Different learning methods (Naive Bayes, SVM, k-NN, CART, etc.) can
be used to approximate this task...

• Key observation: it is easy to find “rules of thumb” that are often correct
(say 60% of the time) e.g. “IF ‘business’ occurs in email THEN predict
as spam”

• Hard to find highly accurate prediction rules

15

Weak learners and boosting

Weak learner: an algorithm which can consistently find classifiers (“rules
of thumb”) at least slightly better than random guessing, say better than
55%

Boosting: a general method of converting rough rules of thumb into a
highly accurate prediction rule (classifier)

16

Boosting algorithm

• Devise a computer program for deriving rough rules of thumb

• Choose rules of thumb to fit a subset of example

• Repeat T times

• Combine the classifiers by weighted majority vote

key steps are:

• how do we choose the subset of examples at each round? concen-
trate on hardest examples (those most often misclassified by previ-
ous classifiers)

• how do we combine the weak learners? by weighted majority

17

Adaboost algorithm

Given training data S = {(x1, y1), . . . , (xm, ym)}
Initialize D1(i) = 1

m

For t = 1, . . . , T :

• fit a classifier ht : IRd → IR using distribution Dt

• choose αt ∈ IR

• update
Dt+1(i) =

Dt(i)e−αtyiht(xi)

Zt
(∗)

where Zt is a normalization factor (so as to ensure that Dt+1 is a distribution)

Output the final classifier H(x) = sign
(∑T

t=1 αtht(x)
)

18

Some remarks

• The basic idea in Adaboost is to maintain a distribution D on the train-
ing set and iteratively train a weak learner on it

• At each round larger weights are assigned to hard examples, hence
the weak learner will focus mostly on those examples

Let εt be the weighted training error of classifier t:

εt =
m∑

i=1

Dt(i)I{ht(x)
= yi}

We will justify later the following choice for αt

αt =
1

2
log

1 − εt

εt
(1)

19

Weight by majority

αt =
1

2
log

1 − εt

εt

The final classifier is a weighted majority vote of the T base classifiers
where αt is the weight assigned to ht

f(x) =
T∑

t=1

αtht

Typically εt ≤ 0.5 hence αt ≥ 0 (this is always the case if ht and −ht are
both in the set of weak learners, e.g. for decision stumps)

Thus, f is essentially a convex combination of the ht with weights con-
trolled by the training error

20

Example (round 1)

Let’s discuss a simple example
where the weak learners are de-
cision stumps (vertical or hori-
zontal lines, i.e. trees with only
two leaves)
the 2nd plot highlights the diffi-
cult examples

(Thanks

to Rob Schapire for providing the figures for this example)

21

Example (round 2)

The second classifier concentrates more on the difficult examples

Examples are then re-weighted according to this classifier

22

Example (round 3)

In this example the set of weak learners can be assumed to be finite. There
are roughly 4m weak learners/decision stumps corresponding to choosing
either the horizontal or vertical coordinate and splitting between any two
points

23

Example (final classifier)

The final classifier has zero training error!

24

Analysis of the training error (I)

The training error of the boosting algorithm is bounded as

1

m

m∑
i=1

I{H(xi)
= yi} ≤ 1

m

m∑
i=1

e−yif(xi) =
T∏

t=1

Zt

where we have defined f =
∑

t αtht (so that H(x) = sign(f(x)))

The inequality follows from: H(xi)
= yi ⇒ e−yif(xi) ≥ 1

The equality follows from the recursive definition of Dt (see also page 18)

25

Analysis of the training error (II)

The previous bound suggests that if at each iteration we choose αt and ht

by minimizing Zt the final training error of H will be reduced most rapidly

Generally we choose ht : IRd → IR (margin classifiers). However, if we
constrain ht to have range {−1,1} (so these are binary classifiers), Zt is
minimized by the choice in equation (1) above

αt =
1

2
log

1 − εt

εt

We show this next

26

Analysis of the training error (III)

From formula (*) on page 18 we have

Zt =
∑
i

Dt(i)e
−αtyiht(xi)

Using the fact that ht returns binary values we also have that

Zt = eαt
∑

i:yi
=ht(xi)

Dt(i) + e−αt
∑

i:yi=ht(xi)

Dt(i)

= εte
αt + (1 − εt)e

−αt

Equation (1) now easy follows by solving dZt
dαt

= 0

27

Analysis of the training error (IV)

Placing αt = 1
2 log 1−εt

εt
in the above formula for Zt we obtain

Zt = εte
αt + (1 − εt)e

−αt = 2
√

εt(1 − εt) =
√

1 − 4γ2
t

where γt = 1/2 − εt. Hence we have the following bound for the training
error

Error ≤ ∏
t

Zt =
∏
t

√
1 − 4γ2

t ≤ e−2
∑

t γ2
t

Thus, if each weak classifier is slightly better than random guessing (if
γt ≥ γ > 0) the training error drops exponentially fast

Error ≤ e−2Tγ2

28

Additive models and boosting

Boosting can be seen as a greedy way to solve the problem

min
w

m∑
i=1

V (yi,w
φφ(xi))

where the feature vector φφ = (φ1, φ2, . . . , φN) is formed only by weak
learners

At each iteration a new basis function is added to the current basis expan-
sion f(t−1) =

∑t−1
s=1 αshs

(αt, n(t)) = argminα,n

m∑
i=1

V (yi, f
(t−1)(xi) + αφn(xi))

and ht = φn(t). This is unlike in CART, where at each iteration previous
basis function coefficients are re-adjusted

29

Additive models and boosting

min
αt,n

m∑
i=1

V (yi, f
(t−1)(xi) + αtφn(xi))

In the statistical literature, this type of algorithm is called forward stagewise
additive model

It is also possible to establish a relation between boosting and L1 norm
regularization

min
w

m∑
i=1

V (yi,w
φφ(xi)) + λ

N∑
n=1

|wn|

which says that essentially boosting maximizes the L1 margin (
∑N

n=1 |wn|)−1

30

Why the exponential loss?

We will show when V is the exponential loss that

e−yi(f(t−1)(xi)+αtht(xi)) ∝ Dt(i)e
−yiαtht(xi)

In fact, using formula (*) on page 18 recursively it is easy to see that

Dt(i) =
e−yif

(t−1)(xi)

m
∏t−1

s=1 Zs

from which, summing over i, it follows that

Dt(i) =
e−yif

(t−1)(xi)∑m
j=1 e−yjf(t−1)(xj)

Note: as a special case we have that
∏T

t=1 Zt = 1
m

∑m
i=1 e−yif(xi) show-

ing the equality on page 25

31

Why the exponential loss? (cont.)

The formula

e−yi(f(t−1)(xi)+αtht(xi)) ∝ Dt(i)e
−yiαtht(xi)

implies that

m∑
i=1

e
−yi

(
f(t−1)(xi)+αtht(xi)

)
∝

m∑
i=1

Dt(i)e
−yiαtht(xi)

= (eαt − e−αt)εt(ht) + e−αt

where as before εt(ht) =
∑m

i=1 Dt(i)I{ht(xi)
= yi}

Hence, for a fixed value of αt > 0, minimizing the exponential loss w.r.t. ht

is the same as minimizing w.r.t. the weighted misclassification error!

32

Summarizing Adaboost

In summary, Adaboost can be interpreted as a greedy way to minimize
the exponential loss criterion via the forward-stagewise additive model ap-
proach

Alternatively, let {hn}N
n=1 the set of all weak learners (assume they are

finite in number). Adaboost minimizes

m∑
i=1

e−yi
∑N

n=1 wnφn(xi)

by coordinate descent, at each iteration t choosing coordinate ht = φn(t)

which produces the biggest decrease in error and updating wn(t) = αt

33

Boosting and logistic regression

The expected error w.r.t. the exponential loss

Ex,y

[
e−yf(x)

]
= Ex

[
P(y = 1|x)e−f(x) + P(y = −1|x)ef(x)

]
is minimized (exercise) for

f∗(x) =
1

2
log

P(y = 1|x)
P(y = −1|x) ⇒ P(y = 1|x) =

1

1 + e−2f∗(x)

The last formula can be used to convert the output of Adaboost into a
probability estimate

34

Generalization error (I)

How do we expect training and
test error of boosting to depend
on T?

At first sight, we’d expect that if
T is too large overfitting kicks off

However, the plot shown here is
not typically the case...

(Figures from Schapire et. al)

35

Generalization error (II)

Typically, the test error keeps decreasing even when the training error is
zero! (eventually it will increase but may take many more iterations to do
so)

However the margin distribution keeps decreasing as well which explains
why test error does so

36

Generalization error (III)

The margin of point i is simply the quantity margini = yif(xi) where
we assume that

∑
t αT

t=1 = 1 (just normalize the weights after the last
iteration of boosting).

The margin distribution is the empirical distribution of the margin

One can show that with high probability (say 99%)

generalization error ≤ Premp(margin ≤ θ) + O

⎛
⎜⎝

√
d/m

θ

⎞
⎟⎠

where m is the number of training points, d the V C-dimension of the set of
weak learners (logN in our case) and Premp denotes empirical probability
of the margin (like the training error this converges exponentially fast to
zero)

37

Generalization error (IV)

• A clearer bound is obtained using Rademacher complexity an alterna-
tive measure of function class complexity derived from its ability to fit
to random ±1 noise:

Rm(H) = ESEσ∈{−1,+1}m

⎡
⎣ 2

m
sup
h∈H

m∑
i=1

σih(xi)

⎤
⎦

where we assume the class H the class is closed under negation.

38

Generalization error (V)

Using this definition we can bound the generalisation in terms of the margin
distribution as with SVMs

generalization error ≤
m∑

i=1

ξi + BRm(H) + 2

√
log(1/δ)

2m
(1)

where H is the class of weak learners with range [−1,1] and B =∑T
i=1 αi.

Note that this no longer assumes the normalisation of the weights as for
the previous bound, while the ξi, the margin slack variable, are computed
as

ξi =

⎛
⎝1 − yi

N∑
j=1

αjhj(xi)

⎞
⎠

+

39

Linear programming machine

• The previous bound suggests an optimisation similar to that of SVMs.

• seeks linear function in a feature space defined explicitly.

• For example using the 1-norm it seeks w to solve

minw,b,ξ ‖w‖1 + C
∑m

i=1 ξi

subject to yi (〈w,xi〉 + b) ≥ 1 − ξi, ξi ≥ 0,
i = 1, . . . , m.

40

Linear programming boosting

• Very slight generalisation considers the features as a set Hij of ‘weak’
learners (and include the constant function as one weak learner and
negative of each weak learner):

mina,ξ ‖a‖1 + C
∑m

i=1 ξi

subject to yiHia ≥ 1 − ξi, ξi ≥ 0, aj ≥ 0
i = 1, . . . , m.

41

Alternative version

• Can explicitly optimise margin with 1-norm fixed:

maxρ,a,ξ ρ − D
∑m

i=1 ξi

subject to yiHia ≥ ρ − ξi, ξi ≥ 0,aj ≥ 0∑N
j=1 aj = 1.

• Dual has the following form:

minβ,u β

subject to
∑m

i=1 uiyiHij ≤ β, j = 1, . . . , N ,∑m
i=1 ui = 1, 0 ≤ ui ≤ D.

42

Column generation
Can solve the dual linear programme using an iterative method:

1 initialise ui = 1/m, i = 1, . . . , m, β = ∞, J = ∅
2 choose j� that maximises f(j) =

∑m
i=1 uiyiHij

3 if f(j�) ≤ β solve primal restricted to J and exit
4 J = J ∪ {j�}
5 Solve dual linear programme restricted to set J to give ui, β
6 Go to 2

• Note that ui is a distribution on the examples

• Each j added acts like an additional weak learner

• f(j) is simply the weighted classification accuracy

• Hence gives ‘boosting’ algorithm - with previous weights updated sat-
isfying error bound (1)

• Guaranteed convergence and soft stopping criteria

43

LASSO Method

• L1 regularised least squares regression is known as LASSO (Least
Absolute Shrinkage and Selection Operator)

•
mina,ξ ‖a‖1 + C

∑m
i=1 ξ2i

subject to yi − Hia = ξi,
i = 1, . . . , m, aj ≥ 0.

• Again leads to many of the coefficients aj being set to 0

44

dual LARS (Least Angle Regression) algorithm
• Lagrangian:

L(a, β) =
N∑

j=1

aj +
m∑

i=1

(yi − Hia)
2 +

N∑
j=1

βjaj

Implying 1 − 2C
m∑

i=1

(yi − Hia)Hij + βj = 0

• Using KT conditions: if aj
= 0 then βj = 0 and so for index set I

HTH[I, I]aI = HT [I, :]y − 1

2C
j[I]

with HTH[j, I]aI − HT [I, j]y +
1

2C
≥ 0 when j ∈ I

45

Sample exam question

a) Explain how Adaboost uses the distribution Dt that weights the exam-
ples ((x1, y1), . . . , (xm, ym)) to choose a weak learner from a set H

at stage t.

b) If the input space is �d, describe the set of decision stumps often used
as weak learners. How many decision stumps need to be considered
at each stage to evaluate all achievable training set behaviours?

46

Sample exam question (cont)

c) The Adaboost algorithm reweights the ith example at iteration t using
the update

Dt(i) ∝ Dt−1(i) exp (−yiαtht(xi))

with D0(i) = 1/m for all i, where ht is the weak learner selected with
coefficient αt > 0. Give an intuitive justification for this update.

d) Show that the distribution Dt(i) is proportional to the exponential of
the margin of the function

ft(x) =
t∑

j=1

αjhj(x).

.

47

